D
2023
SegmentCodeList: Unsupervised Representation Learning for Human Skeleton Data Retrieval
SEDMIDUBSKÝ, Jan, Fabio CARRARA a Giuseppe AMATO
Základní údaje
Originální název
SegmentCodeList: Unsupervised Representation Learning for Human Skeleton Data Retrieval
Autoři
SEDMIDUBSKÝ, Jan (203 Česká republika, garant, domácí), Fabio CARRARA a Giuseppe AMATO
Vydání
Cham, 45th European Conference on Information Retrieval (ECIR), od s. 110-124, 15 s. 2023
Další údaje
Typ výsledku
Stať ve sborníku
Obor
10200 1.2 Computer and information sciences
Stát vydavatele
Česká republika
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14330/23:00130177
Organizační jednotka
Fakulta informatiky
Klíčová slova anglicky
3D skeleton sequence;segment similarity;unsupervised feature learning;Variational AutoEncoder;segment code list;action retrieval
Příznaky
Mezinárodní význam, Recenzováno
V originále
Recent progress in pose-estimation methods enables the extraction of sufficiently-precise 3D human skeleton data from ordinary videos, which offers great opportunities for a wide range of applications. However, such spatio-temporal data are typically extracted in the form of a continuous skeleton sequence without any information about semantic segmentation or annotation. To make the extracted data reusable for further processing, there is a need to access them based on their content. In this paper, we introduce a universal retrieval approach that compares any two skeleton sequences based on temporal order and similarities of their underlying segments. The similarity of segments is determined by their content-preserving low-dimensional code representation that is learned using the Variational AutoEncoder principle in an unsupervised way. The quality of the proposed representation is validated in retrieval and classification scenarios; our proposal outperforms the state-of-the-art approaches in effectiveness and reaches speed-ups up to 64x on common skeleton sequence datasets.
Návaznosti
EF16_019/0000822, projekt VaV | Název: Centrum excelence pro kyberkriminalitu, kyberbezpečnost a ochranu kritických informačních infrastruktur |
|
Zobrazeno: 3. 11. 2024 00:29