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Abstract—Hands-on computing education requires a realistic 
learning environment that enables students to gain and deepen 
their skills. Available learning environments, including virtual 
and physical labs, provide students with real-world computer 
systems but rarely adapt the learning environment to individual 
students of various proficiency and background. We designed 
a unique and novel smart environment for adaptive training 
of cybersecurity skills. The environment collects a variety of 
student data to assign a suitable learning path through the 
training. To enable such adaptiveness, we proposed, developed, 
and deployed a new tutor model and a training format. We 
evaluated the learning environment using two different adaptive 
trainings attended by 114 students of various proficiency. The 
results show students were assigned tasks with a more appropri­
ate difficulty, which enabled them to successfully complete the 
training. Students reported that they enjoyed the training, felt 
the training difficulty was appropriately designed, and would 
attend more training sessions like these. Instructors can use the 
environment for teaching any topic involving real-world computer 
networks and systems because it is not tailored to particular 
training. We freely released the software along with exemplary 
training so that other instructors can adopt the innovations in 
their teaching practice. 

Index Terms—Adaptive and intelligent educational systems, 
intelligent tutoring systems, learning environments, virtual labs, 
security 

I. I N T R O D U C T I O N 

Mastering cybersecurity requires extensive knowledge and 
skills, ranging from a wide area of theoretical concepts to 
practical skills with operating systems, command-line tools, 
and system vulnerabilities [ 1 ] . A t the same time, more and 
more students with different backgrounds are entering the field 
of cybersecurity [2], A s a result, it is difficult for instructors 
to conduct hands-on cybersecurity training that would match 
the proficiency of all students. 

Existing cybersecurity training offerings are based on static 
scenarios with limited or no adaptiveness to an individual stu­
dent [3] . Although the instructor can intervene to help students 
interactively, this is feasible only in relatively small classes, and 
not every student actively asks for help. The interactive help 
is especially complicated during online training (e.g., forced 
by restrictions caused by the C O V I D - 1 9 pandemic [4]) . 
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We see the opportunity to address the instructors' problem 
and improve the students' learning experience using a smart 
learning environment (SLE) . This environment considers 
students' proficiency and adapts the learning content using data 
about student actions and performance in ongoing training. As 
a consequence, low-performing students are not overwhelmed 
by too difficult tasks, and high performers are not bored by too 
simple assignments. In the end, each student benefits from the 
adaptive training compared to the static assignments. Instructors 
benefit from efficient management, as wel l as monitoring of 
the learning environment and actions of individual students. 
A n S L E thus saves the precious time of instructors, which they 
can spend on assisting individual students who struggle. 

We reviewed the literature on S L E and related technologies 
such as remote labs, intelligent tutoring systems, and adaptive 
learning systems. There are many works and systems for various 
learning domains such as engineering, technology, science, 
foreign languages and mathematics [5]. However, we have 
not found any smart network lab that would assign hands-
on cybersecurity tasks to students based on their proficiency 
and performance in ongoing training featuring computer and 
network systems. Therefore, we have been iteratively develop­
ing and evaluating a learning environment with this capability. 
Since cybersecurity is a complex domain encompassing diverse 
technical knowledge and skills, creating an S L E for it represents 
a substantial research challenge. 

The aims of this paper are to i) introduce the design of a 
smart network lab for training that involves computer networks, 
operating systems, and vulnerable applications, and ii) evaluate 
the lab in authentic teaching of cybersecurity skills. Our smart 
lab uses an unique tutor model and a training format, which are 
not present in state-of-the-art network lab environments. We 
evaluated our lab in field studies with 1 1 4 students of various 
proficiency participating in either on-site or remote training 
sessions. The objectives of the evaluation are to investigate i) 
how efficiently were individual learners distributed to tasks of 
various difficulty and ii) stakeholders' experience of using our 
lab. The results show that students persisted in the adaptive 
training and successfully completed more tasks compared to 
non-adaptive training. The students also reported they enjoyed 
the adaptive training, felt the training difficulty was appropriate, 
and would attend more adaptive training sessions. 

This paper is organized into seven sections. Section II 
summarized related work, introduces smart learning environ­
ments, their core functions, and existing systems providing 
these functions for teaching cybersecurity hands-on. Section III 
introduces our smart lab for learning cybersecurity skills, used 
methods, and technological components. Section IV details 
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the instructor's and student's view of the S L E . Section V 
describes a case study of using the developed S L E in authentic 
teaching in on-site and remote settings, and Section V I reports 
and discusses the results. Finally, Section VII summarizes our 
contributions. 

II. B A C K G R O U N D A N D R E L A T E D W O R K 

Our work is related to remote labs, intelligent tutoring 
systems (ITS) and adaptive learning, and especially to smart 
learning environments. 

Remote labs have been researched, developed, and used for 
teaching of various science and engineering disciplines for more 
than two decades [6], [7], [8]. Some labs collect data about 
students' interaction with the lab to provide learning analytics 
for teachers and learners [9], [10], [11], [12], for instance, 
an identification of common students' mistakes and remedial 
actions [13], [14]. Other labs provide automated student 
assessment or personalized assignments for each student [15], 
[16]. However, there is no published lab that would provide 
adaptive learning features described in this paper. 

Research of ITS and adaptive learning environment is well-
established [17], [18]. There are examples of successful tutoring 
systems for various fields of computer science, such as S Q L -
Tutor [19] or ProTuS [20], or systems created by various 
authoring tools [21], even by non-programmers [22]. However, 
to the best of our knowledge, there are no ITS for hands-on 
cybersecurity training in a networked lab environment. 

A. Smart Learning Environments 

A recent and thorough literature review by Tabuenca et al. [5] 
has shown that the term Smart Learning Environment is used 
inconsistently in the literature. The authors consolidated the 
terminology and synthesized core functions and characteristics 
of SLEs. In the rest of this paper, we use the terms presented in 
the review. Its authors concluded that "the smartness in SLEs 
is the quality of a system to provide assistance for students or 
teachers considering their barriers for learning." 

Next, the review identified four key components of SLEs : 

1) Stakeholders - students and teachers. 
2) Space - physical or virtual environment where learning 

occurs. 
3) System providing smartness to the S L E by its core 

functions sense, analyze, and react. 
4) Tools and technology that facilitate students learning. 

The system collects data from the learning context (the sense 
function), processes the collected data (the analyze function), 
and suggests actions to ease learning constraints (the react 
function). These functions are performed using tools and 
technologies such as data processing or visualization. 

Tabuenca et al . [5] also identified affordances of S L E s 
reported in 68 empirical studies published from 2000 to 2019. 
Here we list the four most frequent affordances. 

1) Adaptation, customization, and personalization (adaptable 
onwards) - refers to adjusting the learning environment 
considering the stakeholders' context, for instance, pro­
viding adapted and personalized environment for each 
student. 
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2) Tracking and monitoring (traceable onwards) - recording 
data from the stakeholders' context throughout learning 
activities using sensors installed in the environment. 

3) Feedback and recommendations (recommendation on­
wards) - information provided by the S L E based on stake­
holders' actions during learning activities, for instance, 
providing feedback just after answering the question. 

4) Patterns, activity, and behavior identification (pattern 
recognition onwards) - analysis of the collected data and 
identification of patterns related to stakeholders' behavior 
and their context, for example, identification of students' 
engagement when playing an educational game. 

B. Environments for Learning Cybersecurity Skills 

Cybersecurity skills are taught using interactive learning 
environments featuring emulated networks, IT systems, or 
applications [23], [24]. These learning environments range 
from relatively simple C T F 1 platforms [26] to sophisticated 
cyber ranges [27]. They enable individual students to learn by 
solving a set of tasks (T), which are often ordered linearly as 
depicted in Figure 1. 

Fig. 1. Linear structure of training consisting of several tasks (T). 

The completion of each task is assessed by the environment, 
which checks whether the student submitted the correct answer, 
generated the expected network traffic, or changed the system 
state in the required way. Some platforms allow instructors 
to define static hints, which are provided to students on-
demand when needed. Examples of these platforms are Hack 
The Box [28], TryHackMe [29], Project Ares [30], T H R E A T -
A R R E S T [31], and K Y P O Cyber Range Platform [32]. 

The role of the instructors who use these platforms shifts 
from being an active intermediary between learning content and 
students to a facilitator of learning who employs the platform 
and its features. Once a training starts, the instructors monitor 
students' progress using the insights automatically provided 
by the platform, such as those presented in [33]. The insights 
are generated using the methods of learning analytics [34] 
and educational data mining [35], which leverage data from 
educational contexts to understand and improve teaching and 
learning [36], [37]. If the instructors see students who need 
help, they can intervene appropriately. 

C. How Smart Are Existing Environments for Learning Cyber­
security Skills? 

Although Tabuenca et al. [5] did not discover any S L E built 
specifically for learning cybersecurity or related fields such as 
networking or operating systems, there are a few works that 
include some of the S L E core functions. 

1 Capture the Hag (CTF) is a popular form of gamified cybersecurity training 
in an informal setting. A successful solution of a C T F task yields a textual 
string called flag, which the learner submits in the learning environment to 
prove reaching the solution [25]. 
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Cyber ranges [27] and Capture the Flag platforms [26] are 
learning technologies for cybersecurity that often employ data 
collection (the sense function). Maennel [38] reviewed digital 
datasets collected in cybersecurity training, which include 
timing information, commands, action counts, and input logs. 
However, as Weiss et al . [39] pointed out, the subsequent 
analysis of these data (the analyze function) is often limited 
to binary scoring of learners. 

A rare exception is a work by Deng et al. [40] who evaluated 
a personalized lab environment that analyzes student activities. 
Examples of these activities include "mouse click, mouse 
hover, command line activity and time spent inside a virtual 
machine" for cybersecurity training. Data about these activites 
are used as features to train a classifier to determine students' 
learning style. Subsequently, the system personalizes the style 
and presentation of the study materials for individual students. 
The S L E proposed by us differs in its goal: we aim to provide 
learners with adaptively chosen tasks of suitable difficulty. 

To conclude, almost no environment for learning cyberse­
curity skills is advanced enough to offer actionable steps for 
supporting learning (the react function). 

H I . S M A R T L A B F O R L E A R N I N G C Y B E R S E C U R I T Y S K I L L S 

The proposed smart lab (further KYPO SLE) is based on 
K Y P O C R P [32], a platform we have been developing and using 
for hands-on cybersecurity training. Figure 2 shows K Y P O 
S L E mapped to the overall composition of a smart learning 
environment presented in [5, F ig . 3]. Here, we detail the key 
S L E components in the context of learning cybersecurity skills. 

• Stakeholders - Instructors and students. Instructors prepare 
and supervise training activities in the virtual learning 
environment for students who perform these activities. 

• Spaces - A virtual environment that a student can use 
from anywhere with a stable Internet connection, most 
commonly from home, school, or workplace. 

• System - K Y P O C R P enhanced by these S L E core 
functions: 

- Sense: Collects actions that students performed in the 
virtual environment, for instance, commands typed 
in the emulated environment (training sandboxes) or 
answers submitted to the training portal (see Sec­
tion III-B). 

- Analyze: Processes the collected data and provides 
them as input to a novel tutor model described in 
Section III-C, which determines the most suitable 
learning path for each student. Also processes the data 
for creating the visualization of students' progress and 
performance for both students and instructors. 

- React: Presents the most suitable task for each student 
based on the output of the tutor model and evaluates 
the task completion (see Section III-D). Using the 
terminology of adaptive learning systems, our S L E 
provides task-loop adaptivity [18]. 

• Tbo/s1 and technology - The virtual environment students 
interact with is hosted in a cloud or locally at personal 
computers (such as a P C in a school lab or students' own 

laptops). In addition, the S L E is designed so that students 
need only a web browser to participate in training. 

Smart Learning Environment 
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Fig. 2. Architecture overview of components of K Y P O S L E . 

A. Generic Format of an Adaptive Training 

To enable the adaptable affordance of K Y P O S L E , we 
proposed a generic structure for adaptive cybersecurity training. 
In general, the training can contain an arbitrary number of 
phases and tasks. Each phase represents a learning activity. 
Each task in the phase exercises the same skills but varies in 
difficulty. Figure 3 shows an example of such structure with 
five phases: three with two tasks and two with three tasks of 
various difficulty. 

The training consists of several components: the introduction 
(Intro), the pre-training assessment (A) , training phases (Px) 
including variant tasks (Ty), decision components (PD) , and 
post-training questionnaire (Q). 

First, the introduction (Intro) familiarizes the student with 
the training and communicates necessary information before 
the training starts. 

The pre-training assessment (A) is the first component of 
collecting data about students' knowledge and skills. The 
questions asked in the pre-training assessment are grouped 
into question groups based on their relation to specific training 
phases. Each question can be assigned into several question 
groups since they can be relevant to more phases. For each 
training phase, we set the minimal ratio of knowledge to 
determine whether the student's knowledge or self-reported 
skills are sufficient or not. For example, the minimal ratio 
can be set to 100%, which would mean the students need 
to know answers to all the questions or self-report a defined 
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Fig. 3. Graph structure of adaptive cybersecurity training with pre-training assessment (A), decision component (PD) applying the proposed model, and 
a post-training questionnaire (Q). This exemplary training contains five phases (Px) with different number of tasks (Ty). 

level of skills for a particular phase. In particular, pre-training 
assessment should mostly include knowledge quizzes, as 
students' self-assessment can be inaccurate [41], [42]. 

The training phases contain tasks (Ty) that vary in difficulty 
but all aim at practicing the same topic. The decision component 
assigns exactly one task from the given phase. This assignment 
is based on the student performance in previous phases and on 
the results of the pre-training assessment. Students interact with 
their dedicated emulated environment, typically by entering 
shell commands, to find an answer: proof they completed 
the task. The student performance is measured by time, used 
commands, submitted answers, and a solution displayed in 
the phase. These performance indicators were selected based 
on the capabilities of the K Y P O C R P platform and aligned 
with the review of metrics in cybersecurity exercises [38]. The 
tasks are denoted as T i , T 2 , Tn, where T i represents the 
most difficult task in the phase and Tn the easiest task in the 
same phase. We refer to T i as the base task and T 2 , ...,Tn as 
variant tasks. Further, the decision component (PD) processes 
the students' performance and knowledge to assign a suitable 
task from the training phase. 

Finally, the post-training questionnaire (Q) is an optional 
part of training, which enables instructors to collect imme­
diate feedback from the students. Depending on the training 
objectives, the post-training questionnaire can be the same or 
different as the pre-training questionnaire. 

B. Sense - Collect Data 

K Y P O S L E collects answers from the pre-training assess­
ment, training actions, and shell commands from the learning 
environment. A l l these data are further required by the tutor 
model, which selects the most suitable task for each student 
(see Section III-C). 

Pre-training Assessment and Training Actions: The Learning 
Management System ( L M S ) is a key component of the S L E . 
It presents students with the pre-training assessment and tasks 
that have to be completed in the emulated environment. The 
L M S collects answers from a questionnaire at the beginning 
of the training (the state A in Figure 3) and audits training 
actions that students make while they work on tasks (PxTy) 
in the training phases. 

The training actions include answers submitted by the student 
in a l l phases, the action of revealing the task solution, and 
the action of correct/wrong answer to complete the task. A l l 
these data are timestamped and saved to the central storage. 

For instance, when a student submits an incorrect answer (e.g., 
. i n v o i c e s 2 0 2 1 ) , the system audits current timestamp in 

Epoch time (e.g., 1 6 2 1 5 2 4 9 4 1 3 1 2 ) , the type of the training 
action ( a c t i o n . t r a i n i n g . W r o n g A n s w e r S u b m i t t e d ) , 
user pseudo-identifier (e.g., 5) and the training run identifier 
(e.g., 3). The data are stored as J S O N records. 

Shell Commands: When students interact with the emulated 
environment, they enter commands in shells such as B A S H or 
Metasploit Console. These commands are captured at hosts in 
the environment in real-time and forwarded using the Syslog 
Protocol [43] to the central storage using Elastic Stack [44]. 
The commands are stored in J S O N and timestamped with 
microsecond precision. 

For example, a command s s h a l i c e S s e r v e r executed 
by a student in the Linux terminal at a machine in the 
emulated environment is timestamped and audited using Syslog 
as a string (Figure 4). Then, it is transformed into J S O N 
and forwarded to the central storage as an entry for further 
processing [32]. This way, the submitted commands can be 
correlated with the pre-training assessment and training actions 
of the same student. 

Dec 1 2021 1 5 : 0 0 : 3 3 use rname="roo t " c l i e n t 

timestamp username hostname 

s r c = " 10 .10 . 40 . 5 " cmcl="ssh a l i c e S s e r v e r " 

host IP address command 

cmd_type="bash" u i d = " l " wd="/home" 

command type sandbox ID working directory 

Fig. 4. A log entry for a command executed on one machine in an emulated 
environment [32]. 

A l l hosts in the emulated environment use clock synchroniza­
tion via the network time protocol (NTP) [45]. This setting is 
a key requirement for time-correlating the captured commands 
with training actions and other data. The architecture for 
collecting shell commands is detailed in [46]. 

C. Analyze - Select the Most Suitable Task 

When designing the 'Analyze" function of K Y P O S L E , we 
had to deal with constraints specific to cybersecurity hands-on 
training. These include: heterogeneity of training definitions, 
which can have different phases and relations between them; a 
limited volume of data to find statistical patterns; complexity 
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of the performed tasks; and the inability to collect more in-
depth data about students before the training. We designed a 
novel tutor model that processes the collected student data and 
computes the number of the most suitable task in a particular 
phase for each student [47]. 

Tutor model: Let us denote the variables p, k, a, t, and s, 
which are the binary vectors on the correctness or incorrectness 
of prerequisites for a particular training phase. Vector p is 
defined as follows: p = (p1 p2 . . . Prn), where m is the 
number of training phases. The other vectors use the analogous 
notation. 

• p represents the (in)correctness of answers from the pre-
training assessment, 

• k indicates i f the student used the expected key commands 
in the command line within the given task, 

• a denotes whether the student submitted the expected 
answers to the task, 

• t contains the information i f the task was completed in 
a predefined time, and 

• s contains the information whether the student asked to 
reveal the solution for the task. 

The model is defined by the Equations (1) to (3). B y 
Equation (1), we get the decision matrix W with weights for 
the individual phases' metrics. It is specific for each training 
phase. The weights represent the relationships between phases 
and their metrics. The value of the weight determines the 
importance of the metric to the phase. For instance, consider 
training with six phases where the third phase deepens the topic 
exercised in the first phase. In this case, we set the weights in 
the third matrix so that the selected weights for the metrics from 
the first phase are non-zero. The other performance metrics 
with weights set to zero are ignored. 

The weights have to be manually set by the instructor since 
each training is unique. The number of decision matrices 
is equal to the number of training phases. The symbols 
7T, k, a, 9, a denote the columns in the decision matrices and 
the i = 1 , . . . , m are the rows in the decision matrices. 

By Equation (2) we get the student's performance based on 
the defined metrics and their weights for completed phases. 
The value of the performance is in the interval of [0,1]. 
In Equation (2), s is multiplied by a, k, and t to distinguish 
between students who satisfy a, k, and t metrics without using 
a solution and solved the task on their own. 

By Equation (3) we get the number of the most suitable task 
y in phase x for a particular student (1 is T i , 2 is T 2 , and so 
on). 

W ( X ) = (w\f),i = l,...,m, j = n,K,a,9,a (1) 

/(*) = — — , ' : (2) 
E (4n + + ™t} + 4e} + 

_ \nx, i f f(x) is equal to 0 

" 1 t runc(n x [ l — f(x)]) + 1, otherwise 

(3) 

where: 

x = the phase a student is entering, 

y = the order of the task in a phase, 

Ty = the most suitable task of the phase x for the student, 

nx = the number of variant tasks in the phase x, 

I 1, i f question group i from A is correctly answered 
Pi = \ 

10, otherwise, 

ki = commands corresponding to the phase i were used, 

ei = expected time to complete of the phase i, 

Oi = student's completion time in the phase i , 

f 1, i f Oi < ei in phase i 

| 0 , otherwise, 

I 1, i f the solution of the phase i is not displayed 
Si = \ 

10, otherwise, 

ai = answers corresponding to the phase i were submitted. 

Model Assumptions: The proposed model requires several 
assumptions that must be met by any S L E that would use it 
for hands-on cybersecurity training [47]. 

• The learning environment has to collect the required data: 
the pre-training assessment answers p, commands typed by 
the students k, the submitted answers a, phase completion 
time t, and the action of displaying the solution s. 

• The model expects that some tasks are related; otherwise, 
it w i l l heavily rely only on the pre-training assessment 
that may not be sufficient to capture students' proficiency. 

• The pre-training assessment question groups have to be 
mapped to the training phases to distinguish the level of 
knowledge and self-reported skills for a particular phase. 

• The model assumes that the tasks in the phases are sorted 
so that the T\ is the most difficult task, T2, . . . , are 
gradually easier tasks than T i , and Tn is the easiest task. 

To ease the unified design and run of the training, we add 
the following constraints that simplify the model assumptions: 

• The students' performance in a phase is evaluated in the 
same way in all tasks. 

• The observed metrics are binary. Other metrics of students' 
performance, such as similarity of the submitted answers 
to the correct ones, are either unavailable or ignored. 

The model was developed with the aim to reinforce the 
cybersecurity training with respect to the commonly used 
performance metrics [38]. Nevertheless, it can be applied in 
any domain collecting such data. 

D. React - Serve the Selected Task 

When the student transitions between phases, the P D compo­
nent (see Figure 3) is applied. This component uses the model 
described in Section III-C to assign the most suitable task in 
the next phase. When the task is assigned to the student, the 
task content is shown to the student. Each student can receive 
different task content. 
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Fig. 5. Instructor's user interface for setting weights for Phase 6 of the Knowledge Base training via the Decision matrix. The instructor can also set task 
content and related questions from the pre-training assessment (available under Tasks and Related Questions accordions, respectively). This interface allows 
setting all weights for all phases in the adaptive training as depicted in Figure 12. Note: This screenshot from K Y P O S L E contains also non-training phases 
(Intro, A , Q) so the numbering of phases does not align with the phase numbering in other figures (e.g., Sankey diagrams). 

IV. S T A K E H O L D E R S ' U S A G E O F T H E S M A R T L A B 

In this section, we describe interactions of instructors and 
students with K Y P O S L E before, during, and after the training. 

A. Instructor's View 

1) Before the training: A t first, the instructor(s) have to 
prepare the training: task assignments, the correct answers, and 
emulated environment. The learning activities have to be split 
into several phases as described in Section III-A. For each 
phase, the instructor designs several tasks of varying difficulty 
to serve students of various proficiency. Further, for each phase, 
the instructor sets model weights to define logical relations 
between phases and their metrics. 

Figure 5 shows user interface of K Y P O S L E for setting the 
weights of preceding phases for the sixth phase. In this example, 
the instructor set the weight for Questionnaire Answered 
assigned to the sixth phase, and Completed in Time and Solution 
Displayed metrics for the fifth and the fourth phase, and for 
Submitted Answers metric in the fifth phase. The weights set to 
non-zero values determine which metrics w i l l be used by the 
S L E for computing the most suitable task in the sixth phase. 
To ease the design of the model weights, we provide a tool 
assisting the instructors with the adaptive training design [48]. 

Finally, the instructor deploys the created training for a 
particular training session for a predefined number of students. 
The S L E automatically creates the emulated environment for 
the defined number of students and generates a unique access 
token, which the instructor distributes to the students. 

2) During the training: After the students enter the training 
session, the instructor monitors their progress using visual 
analytics provided by Sankey diagram and a progress chart. 

The Sankey diagram (see Figure 7) enables the instructor 
to monitor the overall progress of all students in the training. 
The instructor might provide additional help to students who 
enter the easier tasks and still struggle. The progress chart 
(see Figure 6) provides a detailed view of the progress and 
pathway of a selected student. 

3) After the training: When the training is over, the 
visualization of student progress is shown to the instructor 
and students. While instructors see the pathways of all students 
in one view (as in Figure 7), each student sees only their own 
pathway (as in Figure 6). The instructor can easily identify 
the critical training phases and give feedback to students for 
future learning or improve the training. 
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Introductory into Pre-tralnlng assessment Getting to know the environment Looking tor server's IP address Connect tc the server Find interesting tiles Crack the password to the zip Post-training questionnaire 

Task 3 1 > • 1 • 
Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 Phase 7 Phase B 

The master handed you a laptop, saying to you: "You studied bard in the past weeks. Now, you are ready for teal-world hacking training, but you need the rigbt equipment. In todays lecture, I will teach you using Kali Linux and show you X 
some ot its basic functionality, which wilt make hacking easier." 

First, get acquainted with the command line at your Kali Linux, the most popular Linux distribution for penetration testing. Or hacking? :-) Log in as the user root with the password toor. Open Terminal (Terminal Emulator in the mair 
menu) and look around your home directory / r o o t . You will need this skill when you hack into another Linux machine." The answer for this task is the name of the single file stored in a non-empty directory in your home directory. 

Fig. 6. Visualization showing the student's training path and the tasks description. 

Results of Knowledge base - October 2021 

Fig. 7. Visualization showing the real-time progress of students during the 
adaptive training in K Y P O CRP. It shows the number of students in particular 
phases and tasks. 

B. Student's View 

1) Before the training: Before the training, the students 
receive a U R L to the web portal of K Y P O S L E , requirements 
for the student's system used for accessing the S L E , and access 
token to enter a particular training. Then, the students log into 
the system using their credentials and enter the access token to 
start the training. In that moment, one instance of an existing 
emulated environment is assigned to the student. 

2) During the training: First, the students read an intro­
duction to the training and continue with the pre-training 
assessment of their theoretical knowledge and self-reported 
levels of skills. After the students complete this assessment, 
they enter the training phases to exercise cybersecurity skills. 
The training phases involve practical tasks performed in the 
student's own instance of the emulated environment. The 
students are not explicitly informed that training is adapted to 
their current performance and proficiency. 

3) After the training: When a student finishes the training, 
their progress is visualized to them to provide feedback and 
insights for future learning. Figure 6 shows an example of 
such visualization. The student can see their path through the 
training. If the path moves in the lower parts (variant tasks, such 

as P3T3), this indicates missing knowledge or skills required by 
a particular task since the student did not satisfy prerequisites 
for more difficult tasks (such as P3T2 or P3T1). Additionally, 
the student can see the assignment of any task by selecting 
bullets in the grid representing all tasks in the training. 

V . C A S E S T U D Y S E T U P 

This section describes the case study of using K Y P O S L E 
in teaching practice. The study evaluates the smart features of 
the learning environment in different contexts. 

A. Study Objectives 

The objective of the study is to investigate i) how efficiently 
were individual learners distributed to tasks of various difficulty 
and ii) stakeholders' experience of using K Y P O S L E . In the 
case of students, we are interested whether the lab eases 
their learning. In particular, we study whether low-performing 
students are provided with easier tasks, which enables them to 
complete the training in expected time. In the case of instructors, 
we analyze how much time and effort is saved by K Y P O S L E 
compared to a manual assignment of training tasks to each 
student by instructors. Our study is conducted in two different 
contexts: a training session with and without the instructor's 
supervision. 

B. Study Design 

We followed the approach of action research [49], which is 
closely related to design-based research [50]. Both methods 
are extensively used in applied and educational research. Their 
methodology involves developing a prototype that addresses a 
practical problem, testing it in an authentic context, performing 
a small-scale evaluation, and iterating the development further 
based on the lessons learned from the evaluation [25]. 

A t first, we enhanced our existing K Y P O Cyber Range 
Platform with data collection features described in Section III-B 
and implemented a prototype of the tutor model presented in 
Section III-C. A l o n g with that, we created the first adaptive 
training following the proposed generic format described in 
Section III-A. Then, we held the first training session with 24 
participants and published the initial results [47]. 

Based on the lessons learned, we integrated the prototype of 
the tutor model with a user interface described in Section III-D 
and created a full-fledged S L E , which is publicly available [51]. 
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Fig. 8. Phases of the Junior Hacker adaptive training. Assignments of variant tasks enhance base tasks by hints or the solution [47]. 
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Fig. 9. Phases of the Knowledge Base adaptive training that follows the proposed generic format. The assignment of Task 2 enhances Task 1 by a hint. 

We then designed another adaptive training and held additional 
training sessions to show the versatility of the training format 
and K Y P O S L E . In total, we held ten training sessions with 
114 participants in two different trainings. 

Both trainings were designed to last two hours to fit our 
classes. They were first tested by experienced instructors and 
then used in this study. The second training was intentionally 
designed with more phases but less tasks to highlight capabili­
ties and limitations of the proposed training format and tutor 
model. 

Figure 10 visualizes the study framework. The role of 
instructors during the supervised sessions was only to provide 
technical assistance related to using the S L E . Specifically, the 
instructors did not provide any hints on training tasks. 

28 students 21 students 
(various institutions) (cyber competition) 

Knowledge Base 
training 

Fig. 10. Study design: 114 students completed one of two adaptive trainings 
deployed in K Y P O S L E and answered a post-training questionnaire. Most 
training sessions (86 students) were facilitated by the instructor, but some (28 
students) were not. 

C. Adaptive Trainings 

Junior Hacker Training: This training consists of the pre-
training assessment with eight questions and five phases 
covering topics depicted in Figure 8. Each training phase 
features one base task and two variant tasks, including one 

presenting the step-by-step solution. The task with the solution 
is assigned to students who would not match any phase 
prerequisites. In the first training phase, basic Linux tools are 
practiced in three tasks ( P i T 1 ; and P i T 3 ) . Task PXT2 

contains the same assignment as P\T\ and provides Hint 1. 
The third task P\T^ contains the assignment from P\T\ with 
Hint 1 and the solution to that task. The subsequent training 
phases apply the same pattern that differs only in the content 
of the tasks, hints, and solution provided. The relationships 
between the training phases expressed as weights of each phase 
in the proposed tutor model are shown in Figure 11. 

(5) (5) (5) (5) 
1« i " ' l a ' "'IS ' "'la 

Fig. 11. The relationships between all phases of Junior Hacker training. Px 

is a phase x and u>y is weight for phase x and metric ij [47]. 

Knowledge Base Training: This training consists of the 
pre-training assessment with eight questions and seven phases 
covering topics depicted in Figure 9. Each phase contains one 
base task and one variant task, which enhances the assignment 
of the base task with a specific recommended tool or steps 
needed for finishing the phase. In contrast to the Junior Hacker 
training, this training contains fewer inter-related phases, as 
shown in Figure 12. However, the student performance in 
the first phase on Linux essentials ( P i ) is considered when 
determining the suitable task in all other phases but the second 
phase (P2) . This was a design decision motivated by i) the 
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fact the basic skills to use the L inux system were a strong 
prerequisite in this training, and ii) the intent to demonstrate 
the versatility of the proposed training format and tutor model. 

Fig. 12. The relationships between all phases of Knowledge Base training. 
Px is a phase x and is weight for phase x and metric ij. 

D. Participants 

In total, 114 individuals of diverse demographic characteris­
tics (age, education, experience, and background) participated 
in our study. The participants' age ranged from 18 to 37. 
They consisted of high school students, university students, 
and university graduates, a l l focusing on computing and 
related technical disciplines. Since the participants' expertise 
in cybersecurity varied, they represented a suitable sample for 
demonstrating the capabilities of our adaptive S L E . 

86 participants attended the training under the supervision of 
one, two, or three instructors, either on-site or remote via video 
conference. 65 participants were undergraduate students and 
graduates of Masaryk University (MU) and the Brno University 
of Technology (BUT), both located in Brno, Czech Republic. In 
addition, this group included 4 high school students completing 
an internship at Masaryk University. 21 participants were senior 
high school students and bachelor students of other universities, 
the finalists of the Czech national cybersecurity competition. 

In addition, 28 participants attended the training remotely 
without any guidance (unsupervised training). They came from 
various institutions including industry companies (such as I B M 
and Kyndryl) or the two universities (Masaryk University and 
the Brno University of Technology). 

Table I summarizes the information about the trainings. A l l 
participants attended voluntarily because of their interest in 
security. 

E. Data Collection 

The participants were assigned the Junior Hacker or Knowl­
edge Base training described in Section V - C . They were 
informed that the estimated time for completing the training is 
up to two hours. The supervised training sessions were held 
on-site in a computer lab or remotely via video conference 
in a time period between December 2020 and September 
2021. The primary role of the instructor(s) was only to assist 
students with access to the virtual lab or to troubleshoot any 
technical issues that might occur during the training. In contrast, 
the unsupervised session took place without any instructor's 

T A B L E I 
INFORMATION ABOUT T H E FIELD STUDIES AND T H E PARTICIPANTS. 

M U = M A S A R Y K UNIVERSITY, C Z E C H R E P U B L I C 
B U T = B R N O UNIVERSITY OF TECHNOLOGY, C Z E C H R E P U B L I C 

Training date Training 
modality 

Participants' 
institution 

Survey responses / 
num. participants 

Dec 2, 2020 remote M U 9 / 9 
Dec 4, 2020 remote M U 7 / 7 
Dec 11, 2020 remote M U 4 / 4 
Jan 14, 2021 remote M U 4 / 4 
May 25, 2021 remote M U 19 / 19 
May 26, 2021 remote B U T 8 / 10 
May 28, 2021 remote B U T 8 / 8 
Jul 22, 2021 hybrid Various 17 / 21 
Sep 9, 2021 on-site High school 4 / 4 
Oct-Nov 2021 unsupervised Various 15 / 28 

Total: 95 / 114 

presence and support. Students could choose any time in 
October and November 2021 when they wanted to take the 
training and interacted only with our lab. 

We collected all data available in K Y P O S L E , i.e., students' 
answers to questions from the pre-training assessment, train­
ing actions, and shell commands. Both trainings contain a 
post-training Likert-scale questionnaire about their training 
experience (see Table II). Students who did not finish the 
training (i.e., did not reach the post-training questionnaire) 
were asked to f i l l in an additional questionnaire about issues 
they encountered during the training. 

The study was waived from review by the university 
institutional review board as the collected data are anonymous 
and reported aggregately. In addition, all participants provided 
informed consent to use the collected data for research 
purposes. 

V I . R E S U L T S A N D D I S C U S S I O N 

We now report and discuss the results of the study. We 
distinguish training sessions with instructor supervision (on-
site and remote) and without any supervision (fully remote). 
Next, we discuss the effort required to run adaptive training 
with and without the S L E . Finally, we report limitations of the 
study and lessons learned. 

A. Adaptive Training with Instructor's Supervision 

Junior Hacker Training: This training was finished by all 65 
participants. Figure 13 shows the transitions of all participants 
between tasks (PXTV) in a l l training phases of this training. 
The diversity of transitions shows that the S L E enabled all 
participants to finish the training, yet by completing less 
difficult tasks. 

Further, the transitions from more difficult to easier tasks 
between phases indicate that the participants had different issues 
with different tasks. In the first phase, 23 students assessed 
their knowledge of Linux basic commands as "None" or "Low". 
These answers determined the P\Ti task for them. In the second 
phase, w^J, w^J, w^J, and metrics were evaluated. 23 
students were assigned to the hardest (base) task P^Tx since 
they correctly answered the question related to Phase 2 and 
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successfully finished Phase 1. 16 students were assigned to 
P2T2 mostly due to their inability to complete Phase 1 in the 
expected time; others entered too many commands or did not 
correctly answer the question assigned to Phase 2. The last 
group of 26 students was assigned to the P2T3 task mainly since 
they claimed to have "None" or " L o w " skills in searching for 
opened network ports. In total, 51 students incorrectly answered 
the question assigned to P2, 25 students exceeded the shell 
commands limit w^} in P i , 29 students exceeded the expected 

time w^' in P i , and six students displayed the solution 
in P i . In the remaining phases, the students were assigned T\ 
i f they performed wel l or the other tasks (T2 or T3) due to 
various issues in related phases or pre-training assessment. 

(2) 

P1T1 (42) 

P1T2 (23) 

P2T1 (23) 

P2T2 (16) 

P2T3 (26) 

P3T1 (26) 

P3T2 (34) 

P4T1 (32) 

P4T2 (28) 

P3T3 (5) n P4T3 (5) 

P5T1 (44) 

P5T2 (19) 

P5T3 (2) 

Fig. 13. Transitions of 65 students between particular tasks in Junior Hacker 
training. PxTy denotes task Ty in the phase Px. The number of students 
solving the task is in brackets. 

P1T1 (21) P2T1 (19) P3T1 (19) 

Q P2T2 (2) • P3T2 (2) 

P4T1 (12) 
P5T1 (15) 

P5T2 (3) 

P6T1 (18) 

P7T1 (9) 

P7T2 (9) 

Fig. 14. Transitions of 21 students between particular tasks in Knowledge 
Base training. PxTy denotes task Ty in the phase Px. The number of students 
solving the task is in brackets. The two students quit the training in phase P3. 

Knowledge Base Training: This training was finished by 18 
out of 21 (86%) participants. Figure 14 shows the transitions 
of 21 participants between tasks (PxTy) in the phases of 
Knowledge Base training. This training session was attended 
by the senior high school students and undergraduates who 
were finalists of the Czech national cybersecurity competition. 

Although we expected better performance of this group, 
Figure 14 shows that students also solved easier variants of 
the tasks in a l l phases except Phase 1. This phase named 
"Linux workout" contains only one task, so a l l the students 
were assigned to it. In the second phase, two students failed 
to answer that the nmap tool is used for scanning network 
ports. In the third phase, two students were provided with 
the P3T2 task. One student revealed solutions in the first two 
phases, exceeded the estimated time in P i , and failed to answer 
the questions relevant to the third phase. The other student 
exceeded the time in the first two phases and failed to answer 
the question assigned to the third phase. Further, two students 
exited the training. In the third phase, seven students fell into the 
P4T2 task. Out of the seven students, two revealed the solution 
from Phase 1 and 3. The other five students had different 
issues: one submitted too many wrong answers and revealed 

the solutions, and the others failed to complete the previous 
phases in an expected time, submitted too many wrong answers, 
and revealed the solutions. In the fourth, fifth, and sixth phase, 
the students faced various issues such as exceeding the time 
to complete, submitting wrong answers, revealing solutions, or 
providing incorrect answers from pre-training assessment. Due 
to these deficiencies, the students were assigned easier tasks 
in the respective phases. 

Q l Q2 Q3 Q4 Q5 Q6 

Fig. 15. Post-training questionnaire answers to Q1-Q6 in the survey from I 
students (red - Junior Hacker, blue - Knowledge Base). 

T A B L E II 
WORDING OF T H E POST-TRAINING QUESTIONNAIRE [47]. 

No. 
Q l 

Q2 

Q3 

Q4 

Q5 

Q6 

Question 
Did you feel the tasks were designed so that you can 
complete the training in a timely manner? 
Did you feel you got stuck at some point during the 
training? 
How much did you enjoy the training? 
Did you feel the training should be more difficult for 
you? 
Did you feel you would like the training to be longer 
with additional tasks to solve? 
Would you like to play more cybersecurity training 
sessions like this one? 

Figure 15 presents answers to questions from the post-
training questionnaire listed in Table II for both Junior Hacker 
and Knowledge Base training. The participants reported that 
tasks of both trainings were appropriately designed so that 
they have successfully completed the training in time ( Q l ) . 
The majority of participants of both trainings (70% in Junior 
Hacker, 68% in Knowledge Base) did not get stuck Much nor 
Very much during the training (Q2). The participants of both 
trainings enjoyed the learning experience (Q3). Junior Hacker 
training was rated higher than Knowledge Base. The majority 
of participants (51% in Junior Hacker, 63% in Knowledge 
Base) felt the trainings should be only Slightly or Not at 
all more difficult (Q4), which indicates the provided tasks 
are not overwhelming yet keep the participants appropriately 
motivated. Only one participant of Junior Hacker training 
thought the training should be Very much more difficult. Next, 
the participants engaged in both trainings and would like to 
continue i f possible (Q5). Finally, the participants of both 
trainings would like to join another similar training (Q6). This 
was unequivocal for those who participated in Junior Hacker 
training. Opinions of participants of Knowledge Base training 
were mixed, though still mainly positive. 
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To conclude, we see K Y P O S L E caters to the students with 
various proficiency. Otherwise, these students would l ikely 
have not completed the training i f using other state-of-the-art 
cybersecurity training platforms. 

B. Adaptive Training without Instructor's Supervision 

Since the training sessions with the supervision were a 
success, we investigated the limits of the proposed approach. 
We prepared one training session with Knowledge Base training 
open for two months for anyone interested. We expected that 
the adaptive training would reduce the participants' failure 
rate and enable them to complete the training as we have 
seen in our supervised training sessions. However, out of 28 
participants joining this session, only 15 successfully finished 
it. We, therefore, asked these participants who did not have 
the opportunity to fill in the post-training questionnaire to 
give us feedback on the training. We specifically asked i f the 
participants encountered any issues during the training. Four 
students provided us with the following answers: 

1) "7 could not for some reason access a file specified by 
[the] task - it looked it was not there for some reason, 
but maybe I did something wrong." 

2) "7 did not know how to finish the task even with the 
provided solution." 

3) "7 only started the training to see what is it about. I wanted 
to play it later, but due to COVID, I didn't manage to do 
so. I'll try it later." 

4) "Something interrupted me while participating in this 
training. Otherwise I would [have] finished [the] whole 
training." 

The first two answers may indicate an issue in the design 
of this particular training, which discouraged the student from 
continuing. Students tend to stop the training and never come 
back in such cases. The third and fourth answer shows these 
students were forced to stop the training due to unforeseen 
circumstances that might be more distracting during the 
unsupervised training. To conclude, this particular training 
does not seem suitable for running in the unsupervised mode. 

C. Effort Required to Run Adaptive Trainings 

Table III shows descriptive statistics of training actions and 
shell commands entered by students who finished the supervised 
training (86 students, 2 trainings). Each participant performed 
36 actions and typed 131 commands on average during one 
training session lasting about two hours. In addition, they also 
filled in the pre-training assessment comprising eight questions. 
The total amount of data is so vast that it is infeasible to 
process manually, thus necessitating automation. 

To support this argument, we now estimate how much 
time an instructor familiar with a state-of-the-art environment 
collecting these data would need to analyze the data manually. 
Our estimates come from the manual analysis performed in 
our initial study [47]. Without the S L E , the instructor would 
evaluate the pre-training assessment answers and map them 
to the relevant training phase. This evaluation may take tens 
of seconds for each student. Before each training phase, the 

T A B L E III 
DESCRIPTIVE STATISTICS OF TRAINING ACTIONS A N D COMMANDS 

ENTERED IN K Y P O S L E BY 86 STUDENTS (65 FROM JUNIOR H A C K E R AND 
21 FROM K N O W L E D G E B A S E TRAINING). T H E MEANS ARE ROUNDED TO 

T H E NEAREST WHOLE NUMBER. 

Training Min | Max | Mean | Median Total 

Training actions 

Junior Hacker 7 1 45 28 25 1415 

Knowledge Base 23 88 43 41 897 

Both 7 1 88 36 33 2312 

Commands 

Junior Hacker 12 155 83 74 4557 

Knowledge Base 54 556 180 150 3775 

Both 12 556 131 112 8332 

instructor would need to analyze captured shell commands 
(searching for keywords, counting the commands) and training 
actions of each participant (counting the number of wrong 
answers, searching whether a solution was taken). This analysis 
may take tens of seconds, perhaps a minute or more in training 
events with tens of participants or more. This time estimation 
is based on the experience of four instructors that organized 
the first four training sessions in Table I when the S L E was 
not fully integrated into the K Y P O C R P Finally, the instructor 
would need to combine all these results to compute the suitable 
task for each participant using the tutor model. While the 
instructor is extremely busy and overwhelmed at that time, the 
student is only waiting to be assigned the next task. Using 
this "manual" approach, the instructor can handle only a few 
students. However, for medium to large classes, the manual 
approach does not scale. This example clearly supports the 
necessity of a S L E for running adaptive hands-on cybersecurity 
training sessions. What is more, automated task assignments 
by the S L E enable instructors to focus on providing additional 
help to struggling students. 

7). Limitations 

In this evaluation, the Knowledge Base training has only 
two tasks in each phase. Providing more tasks may increase 
the probability that the participant w i l l get a more suitable task 
and increase their overall student experience. 

We challenged our approach and studied whether the S L E can 
fully substitute a human instructor. The results of Knowledge 
Base training in an unsupervised mode showed this is still 
not feasible. However, we might obtain better results with 
the Junior Hacker training, which we consider easier than 
Knowledge Base. 

Another aspect that may negatively affect the unsupervised 
training session is that the S L E cannot easily recognize whether 
the student is thinking about the task (while not producing 
any training action or typing the command) or interrupted the 
training for a while. The latter may mislead the tutor model 
using the "completed in time" metric. 
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E. Lessons Learned 

For easier adoption of the developed S L E , we highlight the 
main lessons learned and provide general recommendations. 
A l l lessons are based on our experience from adaptive trainings 
in an authentic setting. Each lesson is illustrated with a concrete 
example. 

1) Adjust the weights in the model carefully: Inappropriate 
settings of weights in the decision matrices of the tutor model 
may lead to suboptimal transitions through the training tasks. 
The instructor(s) should verify the training with simulated 
students who perform differently to test that the model weights 
are set correctly. To reduce the complexity of such simulation, 
the instructor can use assisting tools described in [48]. 

Next, the instructor may stress critical prerequisites for a 
particular phase by setting a greater value of an important 
weight. For instance, all weights but one were set to one in the 
Knowledge Base training. The weight of timely completion in 
Phase 4 was set to two for Phase 7 to express its importance. 

2) The training content must be thoroughly designed and 
tested: The S L E significantly helps the instructor to prepare 
and run the adaptive hands-on cybersecurity training. However, 
when the training content is not designed properly, (e.g., long 
and difficult Phase 6 in the Knowledge Base training), the 
students might get stuck in the task due to the misunderstanding 
of the task or the insufficient number of easier tasks. To design 
trainings more effectively, instructors may benefit from the 
documented guidelines [52]. 

3) The beginning of the training affects its progress: The 
training sessions are mostly held in a limited time frame (such 
as class). The pre-training assessment questionnaire should be 
brief and follow best practices for educational assessment [53], 
[54]. It should be also complemented by one or two phases 
with a single task that evaluates the skills of the students. For 
instance, Phase 1 in the Knowledge Base training served this 
purpose. The combination of quizzes, sk i l l self-assessment, 
and ski l l evaluation provides a solid foundation for the tutor 
model. 

4) Design as many tasks for each phase as possible: To 
cater to students of various proficiency, the training should 
provide several variant tasks in each phase. If there are only 
two tasks in a phase as in the Knowledge Base training, some 
students may still struggle and need the instructor's assistance. 
However, a higher number of tasks increases the instructor's 
effort in preparing the training. 

5) Design at least some relationships between the training 
phases: K Y P O S L E relies on the collected data and the model 
settings. If the instructor sets the model weights so that there 
are no relationships between any phases, tasks wi l l be assigned 
only based on the pre-training assessment questionnaire. This 
might not truly reflect the students' proficiency before entering 
particular tasks. 

V I I . C O N C L U S I O N 

The proposed smart learning environment K Y P O S L E is, to 
the best of our knowledge, one of the first SLEs for hands-on 
cybersecurity training. The main objective of K Y P O S L E is 
to provide an optimal individual learning path in hands-on 

training to improve the students' experience. To achieve that, 
we designed a new tutor model and a new training format that 
supports a graph structure to enable different learning paths for 
each student. The tutor model processes questionnaire answers 
and training actions from the learning management system 
and shell commands from the emulated environment. Based 
on these data, it determines the most suitable task for each 
individual in the training. 

We implemented the training format, data collection, and 
the tutor model and evaluated the developed S L E with 114 
participants from a wide variety of institutions (high schools, 
universities, and companies). The evaluation showed that the 
proposed tutor model and adaptive training format are generic 
enough to be used for various training sessions with different 
topics. Further, the developed S L E can increase the students' 
ability to successfully complete the hands-on training, and thus 
increase their positive experience. Without the S L E , instructors 
would not be able to process the complex and voluminous 
learning data required for determining the most suitable task. 
Finally, to ease the adoption of the proposed S L E , we released 
it as an open-source project [51] together with a detailed 
documentation [55] and an exemplary definition of an adaptive 
training [56]. 

A. Affordances of KYPO SLE 

Our smart lab qualifies as a S L E because it fulfills the 
six characteristic features identified by Tabuenca et al . [5]. 
Specifically, it is or has: 

• Adaptable - it adjusts the learning environment so that it 
is adaptive and personalized for each student. 

• Tracking and monitoring - the instructor can monitor 
progress of each student during the training and revisit 
the results of each individual student after the training. 

• Feedback and recommendations - tasks assigned to 
students are determined based on the student's assessment 
and current performance, 

• Pattern recognition - the instructor can define patterns 
that are searched for in students' data during the training. 
These patterns are essential for selecting the most suitable 
task for each student. 

• Efficient - the lab enables assigning tasks of appropriate 
difficulty with respect to students' proficiency and current 
performance. 

• Effective - the lab enables more students to complete the 
training compared to the non-adaptive training where all 
students are provided with the same tasks regardless of 
students' proficiency and performance. 

B. Open Challenges 

We identified two distinct directions for possible future work. 
Machine learning for setting the tutor model: The parameters 

of the tutor model are now set by instructors based on their 
expertise, the content of the tasks, and their relations between 
phases. Exploring how to employ machine learning algorithms 
should optimize metrics selection and weights settings. The 
application of machine learning algorithms wi l l be challenging 
due to the typically small number of participants in each 



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 16, NO. 3, JUNE 2023 13 

training session, their diverse proficiency, and the complexity 
of performed tasks. 

Conditional phases: The current format of the adaptive 
training assumes each student w i l l pass through each training 
phase. Enhancing the format by allowing to skip some phases 
if certain conditions are met during the training can open new 
opportunities. 
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