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The prevalence of metabolic diseases, such as obesity, diabetes, metabolic

syndrome and chronic liver diseases among others, has been rising for several

years. Epidemiology and mechanistic (in vivo, in vitro and in silico) toxicol-

ogy have recently provided compelling evidence implicating the chemical envi-

ronment in the pathogenesis of these diseases. In this review, we will describe

the biological processes that contribute to the development of metabolic dis-

eases targeted by metabolic disruptors, and will propose an integrated patho-

physiological vision of their effects on several organs. With regard to these

pathomechanisms, we will discuss the needs, and the stakes of evolving the

testing and assessment of endocrine disruptors to improve the prevention and

management of metabolic diseases that have become a global epidemic since

the end of last century.
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Introduction to the history of
obesogenic endocrine disrupting
chemicals

Since the middle of the twentieth century, the preva-

lence of obesity, diabetes and non-alcoholic fatty liver

disease (NAFLD) has dramatically increased in devel-

oped countries. Now the rise is even faster in the low-

and medium-income countries. In 2016, about 2 billion

adults aged 18 or older and 340 million children and

adolescents were overweight or obese. In parallel, the

number of people with diabetes quadrupled from 1980

to 2014. NAFLD, which concerns around 25% of

adults, is worsened by obesity, insulin resistance and

type 2 diabetes [1]. Thus, these pathologies are related

to each other and have common primary causative fac-

tors such as unbalanced diets, malnutrition, and lack

of physical exercise or sedentary lifestyle. Besides psy-

chosocial and physical factors, the environment, in

particular the chemical environment, is suspected of

contributing to the spread of this worldwide epidemic.

In 2006, Grun and Blumberg were the first to propose

that endocrine disruptors (EDs), which are chemicals

affecting endocrine systems and provoke deleterious

effects, could induce or increase weight gain. They

coined the name obesogens to describe these substances

[2]. Obesogens have multiple modes of action: they can

lead to an excessive development of the adipose tissue,

increased inflammation that leads to abnormal adipo-

cytes (e.g. resistant to insulin), increase in the produc-

tion of pro-inflammatory cytokines, triacylglycerols

storage, a decrease in fat consumption that leads to dys-

function of other organs, such as the liver and the pan-

creas, and of the inter-organ’ communication. These

EDs have also been termed ‘metabolism disrupting

chemicals’ (MDCs) [3] and there is converging evidence

confirming their role in the development of metabolic

diseases. At this stage, obesogens and MDCs overlap

considerably and either term is suitable.

Among 1000 chemicals with presumed endocrine

effects, epidemiological data indicate that exposure to

some chemicals classified as persistent organic pollu-

tants (POPs) by the Stockholm Convention alters

metabolic functions and increases obesity. They

include polychlorinated biphenyls (PCBs), polybromi-

nated diphenyl ether (PBDE), perfluorooctane sulfonic

acid (PFOS) and perfluorooctanoic acid (PFOA)

(present in electrical appliances, paper, textiles or

kitchenware), pesticides such as dichlorodiphenyl-

trichloroethane (DDT) (or its metabolite dichlorodi-

phenyldichloroethylene, DDE) and hexachlorobenzene

(HCB). Forbidden or restricted, these pesticides or

chemicals used for their insulating, flame retardant or

anti-adhesive properties, are lipophilic and accumulate

in fat mass of living organisms because of their resis-

tance to biodegradation, except for PFAS. Alterna-

tively, and more recently, many non-persistent

pollutants present in everyday consumer products,

used as plasticisers, food/cosmetic additives and

preservatives (monosodium glutamate, phthalates and

parabens) but also heavy metals (cadmium and

arsenic) released from industrial, agricultural products

and tobacco, are also suspected of favouring either

increased weight mass or disturbed carbohydrate and

lipid homeostasis. Thus, new and more appropriate

terms, MDCs or obesogens, are now used to name the

EDs that induce metabolic disorders and promote the

development of obesity, type 2 diabetes and fatty liver

diseases. In this review, we will describe the mecha-

nisms targeted by the substances in key organs, that is,

adipose tissue, liver, pancreas, gut and brain, which

can alter inter-organ communication and lead to the

development of metabolic diseases.

Epidemiological evidence for the
metabolic effects of MDCs

The occurrence of metabolic diseases at the population

level is influenced by exposure to several families of

toxicants as shown by several epidemiological studies:

evidence for inorganic compounds such as metals

(arsenic, mercury and cadmium) remains limited [4,5]

despite some trends of association (arsenic, mercury

and dyslipidaemias [6-8]), while evidence of presumed

risk for organic compounds is more conclusive. For

persistent molecules such as organochlorine pesticides

[beta-hexachlorocyclohexane (b-HCH) and heptachlor

epoxide], associations are suggested with type 2 dia-

betes and metabolic syndrome [9-12].

There is growing evidence for a causal link to meta-

bolic disorders concerning perfluorinated compounds

(e.g. used to produce Teflon) such as PFOA and

PFOS, which are highly persistent molecules (ecosys-

tems and organisms): in young children exposed

in utero, an increased risk of obesity, dyslipidaemia

and hypertension is observed [13-15]. Exposure of ado-

lescents or adults is associated with an increased risk

of obesity, dyslipidaemia and type 2 diabetes in adults

[16-18]. Alternatives to these perfluorinated com-

pounds (GenX, Gi-PFESA) do not appear to be safer

either, according to recent studies [19].

A large number of observations have also been car-

ried out on compounds that are not persistent by nature

but to which we are regularly exposed through our life-

styles: thus, among bisphenols (used in the plastics and

packaging industries), a major focus on bisphenol
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A (BPA) over the past several years has suggested that

exposure to BPA, both during the perinatal period and

in adulthood, increases the risk of metabolic syndrome,

in particular, obesity and insulin resistance (one of the

components of type 2 diabetes) [20-23]. Recent experi-

mental studies suggest that BPA substituents (notably

bisphenol S and F) are not safe alternatives [24].

For phthalates, which are also produced by the plas-

tics industry, obesity appears to be one of the most

common pathologies due to exposure during early life

(in utero, childhood) or during adulthood [20,25,26].

In adults, disorders of glucose metabolism and hyper-

tension are also identified with yet unexplained dimor-

phic effects [27].

Exposure to polycyclic aromatic hydrocarbons

(PAHs, compounds resulting from combustion and

cooking processes that are important air pollutants

and food contaminants) is also associated with an

increased risk of obesity in children and adults [28]. In

adults, an increased risk of diabetes and hypertension

is observed in association with environmental PAH

exposure [29,30].

Experimental evidence for metabolic
effects of MDCs

Numerous studies have been conducted on organs

involved in the development of metabolic diseases

including adipose tissue, liver, intestine, pancreas and

specific systems or processes such as the microbiome,

the central nervous system (regarding the control of

appetite) or epigenetic mechanisms. We will now

describe the most recent effects of EDs on these speci-

fic systems below.

Alteration of adipocyte functions: adipogenesis,

adipokine secretion, insulin response

White adipose tissue (WAT) has a central role in

metabolic homeostasis and its enlargement via hyper-

plasia and hypertrophy of adipocytes, is an essential

adaptive response to caloric excess. This tissue is well

studied in toxicology for several reasons: it is a target

organ of EDs that can affect its development and

functions; it is also a storage organ of POPs that can

be released during lipolysis or on a long-term basis

[31]. Formation of adipocytes or adipogenesis includes

commitment of stem cells into the adipocyte lineage,

proliferation of preadipocytes (the precursor adipocytic

cells) and their differentiation into adipocytes [32].

Adipogenesis requires a sequential cooperation of tran-

scription factors among which CCAAT-enhancer-

binding protein-alpha (C/EBPa) and peroxisome

proliferator-activated receptor-gamma (PPARc) play a

crucial role. They activate target genes such as lipopro-

tein lipase (LPL), performing the lipolysis of circulat-

ing triacylglycerol-rich lipoproteins, CD36, a fatty acid

(FA) cell-membrane transporter, fatty acid-binding

protein 4 (FABP4), which binds and translocates intra-

cellular FA, and perilipins that stabilise oil globules,

all of them contributing to the formation of the lipid

droplet of functional adipocytes that also secrete

adipokines like leptin [33]. When the storage capacity

of WAT is exceeded, this process is altered and leads

to ectopic fat depots (in visceral WAT, liver and mus-

cles) characterised by hypertrophic, inflammatory and

insulin-resistant adipocytes [34].

Among the in vitro models used to assess the mecha-

nisms of action of MDCs, 3T3-L1 and OP9 cell lines

and C3H10-T1/2 mesenchymal stem cells (MSCs) are

the most common murine models. The use of human

models such as the Simpson–Golabi–Behmel syndrome

(SGBS) preadipocytes and human adipose-derived

stem cells is less common because of their more limited

availability and their high cost. Rodents and zebrafish

are essential in vivo models to highlight obesogenic

and metabolic effects resulting from direct or in utero

exposure to MDCs.

Organotin compounds such as tributyltin (TBT) rep-

resent an example of an environmental obesogen linked

to abnormal adipocyte functions as shown by in vivo

(rodents and zebrafish) and in vitro experiments. In dif-

ferent models, pre- or post-natal exposure to TBT

increases body weight, fat mass, number of inflamma-

tory cells in WAT, glycaemia and insulinaemia, while it

decreases muscle mass [35-37]. Some of these effects per-

sisted into adulthood and the next generations.

Similarly, BPA or its structural analogues (bisphenols

AF, B, E, F and S) and halogenated derivatives [tetra-

bromobisphenol A (TBBPA) and tetrachlorobisphenol-

A], phthalates [e.g. diethylhexyl phthalate (DEHP)],

parabens, PFOS, PFOA and organochlorine pesticides

such as DDT/DDE and HCB are associated with an

increased adipogenesis and subsequently to an increased

body weight and other disorders such as inflammation,

hyperglycaemia, dyslipidaemia, glucose intolerance and

insulin resistance [38-43]. For some chemicals such as

tetrachlorodibenzo-p-dioxin (TCDD), PCB153, a sec-

ond hit (e.g. an exposure to a high-fat diet) is necessary

to observe an obesogenic effect, hyperglycaemia, or glu-

cose and insulin intolerance [44-46].

At the molecular level, several receptors have been

involved in the effects of most MDCs: three xenobiotic

receptors mediate such signalling including constitutive

androstane receptor (CAR) and pregnane X receptor

(PXR) whose activation by mono(2-thylhexyl)
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phthalate (MEHP) and monoisononyl phthalate [47]

can explain the ability of these phthalates to regulate

the expression of genes involved in glyceroneogenesis

and triacylglycerol metabolism [48]. In vitro data con-

cerning TCDD and dioxin-like PCBs that activate the

aryl hydrocarbon receptor (AhR) (a bHLH/PAS tran-

scription factor), argue in favour of their anti-

adipogenic and pro-inflammatory effects [46,49,50,51]

(see above the necessity to have a second type of hit to

observe an obesogenic effect).

Interestingly, receptors which were not traditional

xenobiotic receptors are also involved in MDC effects:

for example, BPA and its substitutes (AF, F and S),

parabens (ethyl-, propyl-, butyl- and benzyl-parabens),

PFOS and PFOA, act via the binding or upregulation

of PPARc and C/EBPa, which increases expression of

adipogenic genes such as FABP4, LPL, leptin and per-

ilipin [42,52,53,54]. Some pollutants display multiple

targets: obesogenic effects of TBT are related to its

ability to activate several nuclear receptors (NRs) such

as retinoid X receptor-alpha (RXRa) and PPARc [55],

which increase the adipogenic commitment of MSCs,

stimulate adipocyte proliferation and differentiation,

and induce lipid uptake by adipocytes [3]. Similarly,

phthalates and their metabolites can interact with dif-

ferent PPARs as agonists, and the androgen receptor

(AR) as antagonists, and elicit endocrine-disrupting

effects possibly contributing to obesity [56,57]. Several

environmental compounds may activate the PPARc of

different vertebrate species similarly [57]. In addition,

oestrogen receptor-alpha (ERa) activation and/or AR

inhibition by bisphenols, DDT/DDE and parabens

[58,59] and glucocorticoid receptor (GR) activation by

parabens [53] are also observed. Thus, MDCs by pro-

moting the formation of hypertrophic and inflamma-

tory adipocytes and counteracting the effects of

endogenous ligands of several nuclear receptors (NRs),

impair WAT functions. However, several signalling

mechanisms appear to contribute to these effects.

Alteration of the hepatic functions: glucido-lipidic

metabolism, secretion of hepatokines, response

to insulin

During the last decades, the impact of EDs and/or

MDCs on the liver and their consequences on meta-

bolic disease outcomes have been largely supported.

Most of them lead to NAFLD which are further

linked to obesity, metabolic syndrome, insulin resis-

tance (IR) and diabetes [1,60]. Thereafter, some exam-

ples of the effects of MDCs on mechanisms involved

in the development of liver diseases from steatosis

(lipid accumulation as droplets in hepatocytes) to non-

alcoholic steatohepatitis (NASH, characterised by liver

cell death and inflammation) are presented through

four non-exhaustive parts: (a) disruption of lipid

homeostasis, (b) disruption of carbohydrate metabo-

lism, (c) alteration of insulin responses and (d) inflam-

mation and secretion of hepatokines.

With regard to the (a) disruption of lipid homeosta-

sis, the first step of NAFLD is the accumulation of

FA in the hepatocytes, mainly stored in the form of

triglycerides; this can be driven by multiple processes:

increased FA uptake, increased de novo lipogenesis

(DNL), decreased mitochondrial FA oxidation

(mFAO) and decreased FA export. These processes

are highly regulated by nuclear receptors and other

xenoreceptors, including PPARs, liver X receptors

(LXRs), CAR, PXR, AhR and/or by other transcrip-

tion factors, such as sterol regulatory element binding

protein 1c (SREBP1c). Each of them has been shown

to be altered by EDs [1,61]. A good example of such

perturbations leading to liver steatosis could be the

effect of an exposure to PCB156 which activates the

AhR in mice while decreasing the expression of

PPARb/d, a nuclear receptor which promotes FA oxi-

dation [62]. Both PCB156 effects may then contribute

to: an increased expression of CD36 (a plasma mem-

brane transporter involved in FA uptake), and of

SREBP1c (a transcription factor which regulates

the expression of DNL-associated and cholesterol

metabolism genes), a decreased expression of carnitine

palmitoyl-transferase 1B (CPT1B) (a regulatory

enzyme involved in mitochondrial FA entrance) and of

apolipoprotein C2 (APOC2) (the co-factor activator of

LPL), and ATP-binding cassette subfamily A member

1, ABCA1, involved in cellular cholesterol efflux [63].

Accumulation of lipids and disruption of expression of

genes involved in the control of lipid metabolism can

be similarly observed in liver cells exposed to perfluori-

nated compounds, such as PFOS [64] or in mice

exposed to low doses of BPA (5 and 50 lg�kg�1�day�1)

increases the liver expression of lipogenic enzymes

(Acc, Fasn, Scd1) and transcription factors which reg-

ulate lipogenesis (LXR, SREBP1c, ChREBP or carbo-

hydrate responsive element binding protein). This

effect is not observed at high doses

(5000 lg�kg�1�day�1) [65].

Regarding the (b) disruption of carbohydrate meta-

bolism, it has been shown that several EDs bind CAR

in hepatocytes. CAR is a nuclear receptor which binds

xenobiotics and endobiotics, including retinoic acids

and steroids, and it forms dimers with its partner,

RXRa. In addition to xenobiotic metabolism and

transport regulation, CAR regulates several liver func-

tions, including, carbohydrate and lipid metabolism,
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through a transcriptional activation associated with

histone acetylation and a transcriptional repression

when competing on enhancers with other regulatory

factors such as HNF4a, PPARa or FXR [66]. CAR

has been described as a repressor of gluconeogenesis:

it binds to the transcriptional regulator FoxO1 and

thus induces transactivation of several gluco-

neogenic genes including cytoplasmic phospho-

enolpyruvate carboxykinase (PEPCK) and glucose 6-

phosphatase (G6Pase) []. Phtalates and perfluorinated

compounds have been described as CAR agonists

[DEHP, Dibutyl phthalate (DBP) or PFOS] or antago-

nists (PFOA) [67-69]. Bisphenols have been described

as either agonists (BPA) or antagonists (TBBPA).

BPA acts on CAR as an inverse agonist, that is, its

binding to the receptor exerts an opposite effect com-

pared with an agonist [70]. In that case, BPA might

favour gluconeogenesis and increase glycaemia. More-

over, BPA and its analogues can decrease glucokinase

expression leading to an impairment of glucose sensing

and glucose intolerance [71]. Glucose metabolism is

also highly linked to insulin regulation and response,

and EDs are also well-known to interfere with this

pathway, as discussed in the next section.

Concerning the (c) alteration of insulin responses,

the secretion of insulin, the main blood glucose-

regulating hormone, is induced by increased blood glu-

cose, upon the body shifting from a fasted to a fed

state, and promotes liver glycogenesis and lipogenesis,

while inhibiting liver gluconeogenesis and glucose

secretion [72,73]. EDs are known to interfere with

insulin response in the liver and other peripheral

organs (muscles and AT) [74,75]. An example of direct

effects of EDs on the liver is the disruption of insulin

signalling by BPA, which reduces the level of insulin

receptor and glycogenesis in the liver of rats [76]. It

should be noted that reduction of insulin response by

EDs in muscles or adipose tissues, leading respectively

to hyperglycaemia or hyperlipidaemia, also promote

both NAFLD and other metabolic diseases [74,75].

Finally, about (d) inflammation and secretion of

hepatokines, it is worth noting that cytokines and pro-

inflammatory proteins produced by the liver are cru-

cial players in NAFLD progression to non-alcoholic

steatohepatitis (NASH). NASH is a pathophysiological

state in which liver steatosis is combined with inflam-

mation and sometimes fibrosis; it can eventually lead

to cirrhosis or hepatocellular carcinoma. Cytokine

expression and secretion are regulated by EDs [1] such

as PFOA in mice [77] or BPA that increases IL-8 and

TNF-alpha secretion in HepG2 cells [78]. EDs such as

BPA, PFOS and TCDD mediate liver inflammatory

responses not only through pro-inflammatory

cytokines secretion but also by the activation and the

polarisation of Kupffer cells (KCs) into pro-

inflammatory M1-phenotype [79], the infiltration of

immune cells in the liver and the activation of quies-

cent hepatic stellate cells (HSCs) into myofibroblast-

like cells [80]. Furthermore, it has been shown in mice

that polychlorinated biphenyls (PCBs) could increase

the expression of several secreted proteins, known as

hepatokines (Fgf21, Igf1 and betatrophin), thus pro-

moting NAFLD progression and pancreatic alteration

favouring diabetes [81].

Impaired pancreatic functions

Pancreatic b-cell dysfunction is known to be the hall-

mark of type 2 diabetes but also a major contributing

factor in the aetiology of other metabolic diseases like

obesity or metabolic syndrome. Experimental evidence

has revealed that certain EDs may display direct

effects on pancreatic b-cells leading to several adverse

outcomes including oxidative stress, mitochondrial

damage, cell apoptosis, altered electrical activity,

impaired Ca2+ signalling and insulin secretory defects.

Here we give a brief overview of the currently known

EDs affecting b-cells and of the mechanisms of action

of POPs and non-POPs.

Current experimental evidence supports that BPA

can disrupt glucose metabolism by affecting pancreatic

b-cell physiology. Acute low doses of BPA have been

reported to alter the expression and activity of the

main ion channels implicated in the coupling of glu-

cose metabolism to insulin secretion. In particular,

BPA was found to promote the closure of the KATP

channel, increase the frequency of [Ca2+]i oscillations,

as well as to reduce Na+ and K+ currents in mouse

and human pancreatic b-cells. Furthermore, BPA sig-

nificantly disturbed the expression of genes encoding

important Na+ and K+ subunits. These changes ulti-

mately led to increased glucose-stimulated insulin

secretion (GSIS) through the activation of the extranu-

clear oestrogen receptor beta (ERb) [82,83]. Longer

exposures to BPA upregulated insulin content in an

oestrogen receptor alpha (ERa)-mediated manner [84].

BPA-treated animals also manifested an excessive insu-

lin secretory response leading to hyperinsulinaemia

and insulin resistance [85,86].

A number of studies have also examined the impact

of a direct DEHP exposure on pancreatic b-cells and,

although limited to immortalised b-cell lines, they all

indicate that DEHP can promote increased apoptosis

[87-90]; various mechanisms have been proposed to

explain this effect including oxidative stress [87-90],

DNA damage [90], decline of antioxidant protection
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[89], activation of ER (endoplasmic reticulum) stress

responses [89] or interaction between oxidative stress

and autophagy [88]. DEHP exposure has also been

shown to suppress GSIS [87,89], which could be par-

tially explained by the DEHP-induced b-cell loss.
Among POPs, studies performed in the mouse pan-

creatic b-cell line b-TC6 have revealed that PFOS may

differently impact pancreatic b-cell function depending

on time of exposure. Thus, acute PFOS treatment for

1 h resulted in augmented intracellular [Ca2+]i and,

consequently, insulin release, in a mechanism depend-

ing on G protein coupled receptor (GPR40) activation

[91,92]. This was confirmed in vivo [91]. In contrast,

longer exposure to PFOS (48 h) promoted decreased

mitochondrial membrane potential, ATP production,

Ca2+ influx, as well as insulin secretion, via downregu-

lation of SIRT1-UCP2 pathway [93]. Decreased ATP

levels and GSIS were also reported in ex vivo treated

mouse islets together with a significant reduction on

Pdk1-AktmTOR pathway expression levels [94].

As it was the case for PFOS, TBT effects on pancre-

atic b-cells was largely dependent on the length of

treatment. Acute exposure (4 h) significantly increased

[Ca2+]i and insulin secretion. These effects were attenu-

ated in the presence of the oestrogen receptor antago-

nist ICI 182780, the antioxidant N-acetylcysteine, and

the specific PKC inhibitor Ro32-0432, suggesting that

both oestrogen-related and ROS/PKC signalling path-

ways were involved. This was confirmed in the b-cell
line Rin-m5F but also in mouse and human islets trea-

ted ex vivo [95]. TBT exposure for 24 h led to oxida-

tive stress and consequent activation of JNK pathway

resulting in increased apoptosis and decreased GSIS in

RIN-m5F b-cells and mouse isolated islets [96].

Among dioxins, TCDD is the best known to be

harmful for pancreatic b-cells. Studies in mouse and

human islets have demonstrated that TCDD may

impair insulin release through an AhR-dependent

pathway, as CYP1A1 expression and activity were

found to be elevated [97]. In addition, TCDD has been

reported to promote increased apoptosis through

ERK1/2 and JNK signalling pathways [98]. Both

increased apoptosis and decreased GSIS were related

to ultrastructural alterations such as increased mito-

phagy and mitochondrial swelling in mouse and

human islets [99].

Impaired intestinal and microbiota functions

While the impact of EDs on the liver: adipose axis has

been well studied through their roles on metabolic dis-

eases like NAFLD, diabetes or obesity [100-102], their

effect on the intestine still needs to be investigated.

Notwithstanding, the gastrointestinal tract constitutes

a prime target of many pharmaceuticals and xenobi-

otics that can affect human health and disease [103].

The gut microbiota is an organ, capable of produc-

ing a large number of biologically active molecules

that influence the physiological functions of the host

whose secretions in turn influence the composition and

function of the microbiota.

Indeed, there is mounting evidence that the gut

microbiome, through crosstalk with the gut–liver and

gut–brain axis, could mediate the outcome of ED

chemical exposure. This could lead to reproductive

and mental disorders as well as to metabolic diseases

by altering hormone regulation of food intake, appe-

tite and satiety [104]. Even if the mechanisms behind

this dysbiosis are still not clarified, the impact of EDs

on intestinal microbiota may be responsible for obesity

even in young children [105]. EDs influence the gut-

microbiome dialogue and can lead to dysbiosis. The

microbiota can also be responsible for the metabolism

of food contaminants (dechlorination of DDT to

DDD). Finally, a sexual dimorphism in the composi-

tion of microbiota could play a role in sexual predis-

position to diseases [106], including metabolic

syndrome (NAFLD) [107].

Some studies have identified putative mechanisms

leading to metabolic pathologies: indeed, in different

animal models (mice, zebrafish and dogs), BPA is able

to induce changes in the microbiota, both in terms of

its composition and its function: BPA (a) favours Pro-

teobacteria populations (as in case of exposure to a

high-fat diet) or CKC4 [108,109] and disfavours the

phylum Bacteroides, Flexispiraphyla, Oscillospira and

Ruminococcaceae [110,111], (b) changes the blood

metabolome (increased plasma bicarbonate concentra-

tions in relation to Bacteroides disruptions), [110], (c)

feminises the microbiota [112]. Other EDCs have been

studied such as phthalates, diethylphthalate (DEP),

methylparaben (MP) and triclosan (as well as their

mixture) but they had significantly different population

effects with a relative increase in Bacteroides and

decrease in Firmicutes in female rats [113]. In contrast,

MEHP causes a relative increase of Firmicutes and a

reduction in Verrucomicrobia in mice, whereas DEP

causes a decrease in Firmicutes [114]. The importance

of pattern and chemical nature of molecules is con-

firmed with pesticides: carbemazine, a reprotoxic

fungicide, and DDE and b-HCH, insecticidal

organochlorines, reduce microbiota diversity by

decreasing bacteroids, and favouring firmicutes

[115,116] while pentachlorophenol (PCP), a herbicide

and insecticide, favours bacteroids at the expense of

firmicutes [117]. These studies raise the question of
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antagonistic and potentiating effects of mixtures of

molecules especially since some persistent molecules

(such as 2,3,7,8-tetrachlorodibenzofuran, PCB126,

TCDD and DDE) are also responsible for these imbal-

ances, for some in relation to metabolic diseases

[116,118,119]. In particular, phosphatidylcholine, phos-

phatidylserine, phosphatidylethanolamine and triacyl-

glycerols have been identified as key metabolites

affected by DDE treatment, the levels of which are

strongly correlated with altered microbiota composi-

tion [119]. At this stage it is not completely clear

whether the effects on microbiota account for the

MDC metabolic effects or whether the impacts on

metabolism can account for the observed imbalance in

microbial species.

Several studies attempted to address these mecha-

nisms. Male mice treated with BPA showed, in addi-

tion to the bacterial composition alterations seen

above, an accumulation of hepatic lipids. The sus-

pected mechanism is that the decrease in the diversity

of the gut microbiota leads to increased permeability

related to elevated levels of endotoxins, and an

increase in liver inflammation (IL-1b and 6, TNF-

alpha) that promotes steatosis [120]. In BPA-treated

rats, intestinal imbalance (decrease in faecal bifidobac-

terial elements) is associated with impaired glucose tol-

erance that subsequently leads to the development of

obesity, type 2 diabetes (through insulin resistance and

inflammation of peripheral tissues such as adipose tis-

sue) [121].

TCDD, a ubiquitous POP, could alter the composi-

tion of the microbiota in male rats and thus disrupt

the enterohepatic cycle leading to a significant decrease

in faecal bile acids, and thus an increase in intestinal

transit time and intestinal permeability [122]. One of

the modes of action of dioxins is through their binding

to the AhR; however, this receptor also binds trypto-

phan metabolites that can be produced by the micro-

biota, and an alteration of this metabolic capacity is

associated with the metabolic syndrome, in mice and

humans. Dioxins such as TCDD could hijack ‘Trp

metabolites – AhR’ signalling; indeed, restoration of

AhR signalling through the use of natural agonists,

attenuates both intestinal permeability and metabolic

syndrome in mice [122-124].

Finally, the microbiota produces short-chain FA

(SCFAs) such as propionate, an anti-inflammatory

molecule that may reduce the development of hepatic

steatosis by reducing the transcription of several

de novo lipogenesis enzymes [125]. Butyrate potentiates

the secretion of pituitary GH and its stimulatory fac-

tor, ghrelin [126] which increases food intake. Yet it

has been shown that chronic exposure to chlorpyrifos

(an organophosphate insecticide) can reduce the pro-

duction of SCFA and lactate.

The intestine itself plays a central role in fat home-

ostasis by regulating intestinal lipid transport. Further-

more, several relevant molecular actors are expressed

in the intestine. For instance, PXR is a ligand-

dependent transcription factor that is activated by

numerous endogenous hormones, dietary steroids,

pharmaceutical agents, and xenobiotics and regulates

the expression of genes required for xenobiotic meta-

bolism in the liver and intestine, including Phase I–III
proteins [127]. Whereas the role of PXR in xenobiotic

metabolism has been well established, its role in medi-

ating the pathophysiological effects of ED chemicals in

humans and animals has been less investigated

although recent studies reported the role of PXR in

dyslipidaemia and atherosclerosis. The principal role

of PXR in the intestine is to maintain barrier function

and reduce inflammation, as well as to regulate intesti-

nal transcription of metabolic enzymes [100]. The diet-

ary xenobiotics resulting from PXR-regulated

intestinal absorption could impact the physiological

function of the liver and adipose tissue and promote

steatosis and obesity (among others) [100]. Recently,

Kim et al. [128] showed the role of PXR in phys-

iopathology of NAFLD, obesity and inflammation

linked to gut microbiome dysbiosis using PXR-

knockout mice. The activation of intestinal PXR is

responsible for transcriptional activity of key meta-

bolic enzymes such as the CYP3A4 which is the major

expressed P450 in intestinal enterocytes, with levels

uncorrelated to those of liver. It is involved in the

metabolism of endogenous compounds like cholesterol

[129] and contributes to the first-pass metabolism of

drugs [130]. PXR may link hypercholesterolaemia and

exposure to ED chemicals as it is involved in both

cholesterol and xenobiotics metabolism [131]. Thus,

the disruption of intestinal PXR and/or CYP3A4

expression could lead to serious metabolic diseases

through the deregulation of signalling pathways impli-

cated in intestinal barrier function, inflammation,

xenobiotics detoxification and endogenous metabolism.

Alteration of appetite and thermogenesis

Endocrine disruptors can influence food intake and

thermogenesis at multiple levels and thus contribute to

an increased risk of obesity [132,133].

Obesogenic molecules are likely to influence the

function of the hypothalamus, an area of the brain

responsible for controlling eating behaviour. Similarly,

at the peripheral level, they influence the secretion and

production of adipokines by the adipose tissue.
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Specifically, perinatal exposure to BPA in rats influ-

ences pre- and post-synaptic connections at the

hypothalamic level, increasing food consumption by

stimulating compulsive eating behaviours, which ulti-

mately leads to obesity [134]. A recent study shows

that exposure to BPA and a brominated derivative,

TBBPA at concentrations commonly found in the

environment (between 20 and 500 lg�L�1) alters the

behaviour of adult male zebrafish. The latter consumes

a greater amount of food, which leads to obesity and

hepatic steatosis. BPA and its derivative bind the

cannabinoid receptor type 1 (CB1), a G protein-

coupled receptor expressed in the peripheral and cen-

tral nervous system. Selective antagonists of this CB1

receptor are used for weight reduction. Binding of

BPA or TBBPA may promote food intake and con-

tribute to the development of metabolic diseases [135].

Obesogens also control the levels of adipokine pro-

duction and secretion that influence food intake; for

example, in humans, serum BPA levels are associated

with increased body weight and serum leptin and ghre-

lin levels [136]. In mice, at the level of adipocytes,

BPA promotes the production of leptin transcripts (us-

ing the 3T3-L1 cell line), which leads to the hypothesis

of an increased production of this hormone, which

could therefore influence food intake [137]. This is also

observed in vivo in mice treated with methyl-paraben

and DEHP which increase serum leptin levels; the lat-

ter (DEHP) also decreases adiponectin levels [138,139].

Regarding thermogenesis, recent studies deciphered

the mechanisms of communication between organs

which govern the metabolic switches and potentially,

how pollutants may affect this communication [140].

Indeed, cold-induced thermogenesis leads to the release

of free fatty acids from white adipose tissue, which are

taken up by the liver, which in turn produces a large

amount of acylcarnitines in an HNF4a-dependent pro-
cess. These molecules reach the brown adipose tissue

(BAT) but neither the liver nor the white adipose tis-

sue, for which the capture is blocked [141]. A recent

study showed that chlorpyrifos impairs mitochondrial

respiration in BAT in mice at very low concentrations

(1 pM). Rearing temperature is a key element of this

experiment since at thermoneutrality, subjected to a

high-fat diet, mice treated with chlorpyrifos develop

obesity, NAFLD and insulin resistance. Thus chlor-

pyrifos, seems to inhibit diet-induced thermogenesis

and activation of BAT [142].

Epigenetic effects of EDs

Several EDs are associated with epigenetic modifica-

tions (modifications of DNA methylation, post-

translational histones modifications and microRNA

expression), possibly transgenerational: diethylstilbe-

strol (DES) represents a classical example: DES, a

nonsteroidal oestrogen commonly prescribed during

pregnancy between 1947 and 1971, is a potent ED

whose prenatal exposure in animals causes develop-

mental defects of the reproductive system; several epi-

demiological and animal studies suggest that prenatal

exposure to this EDC is linked to obesity. More

recently, it was shown that exposure to three EDs that

are constituents of certain plastics, BPA, DEHP and

DBP, to female rats (F0) during gestation induced in

the F3 generation (which has never been in contact

with these EDCs), changes in DNA methylation at

genes associated with obesity, with increased suscepti-

bility to this pathology in both males and females

[143].

This is also true for POPs such as methoxychlor

[144], DDT [145,146] or TBT, an organotin antifouling

agent, historically used to control the appearance of

organisms on the hulls of ships. TBT is indeed a

prominent example of obesogens as it has been docu-

mented to have obesogenic effects in animals

[2,37,147]. TBT is a potent environmental ligand of

RXR and promote adipogenesis and alter lipid home-

ostasis via RXR-dependent pathways [148]. TBT pro-

motes, in different generations (F1 and F3), an

increase in perigonadal fat deposits but without any

change in body weight [149]. However, a susceptibility

to weight gain is observed specifically in males of the

next generation (F4) [150]. Changes in DNA methyla-

tion are also observed for example in the leptin gene

[151]. For DDT, a 2019 study suggests by isolating

adipocytes, that this insecticide has a sexual dimorphic

effect in terms of DNA methylation modification

[152].

Inorganic pollutants exerting endocrine disrupting

effects such as cadmium (in a mixture associated with

mercury), are also incriminated by studies conducted

in rats exposed over several generations, to metabolic

alterations (glucose intolerance and increased abdomi-

nal fat deposition) up to the F4 generation [153].

Multi-organ alterations contributing to
the development of metabolic
diseases: an integrative view

Several types of pollutants have been epidemiologically

associated with the development of metabolic diseases

in young children, adolescents or adults (sometimes

due to perinatal exposure) and several inter-organ

mechanisms of action can be identified for these mole-

cules.

3114 FEBS Letters 596 (2022) 3107–3123 � 2022 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Endocrine disruptor-induced alterations and metabolic diseases K. Bernal et al.

 18733468, 2022, 24, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1002/1873-3468.14465 by C

zechs - M
asaryk U

niversity, W
iley O

nline L
ibrary on [15/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



The most common mechanism of action is the stim-

ulation of inflammatory processes that can impact, for

example, the function of adipose tissue (particularly in

terms of insulin resistance) or that of the liver; inflam-

mation being an essential component of NASH. Meta-

bolic processes can also be directly affected: for

example, the membrane FA transporter CD36 is regu-

lated by several transcriptional factors in certain tis-

sues (such as C/EBPa for AT), some of which are also

nuclear receptors (PPARc) or xenobiotic receptors

(AhR). CD36 allows the import of FA into cells, par-

ticularly at the adipocyte and hepatic levels, contribut-

ing respectively to adipogenesis and NAFLD

formation. Another example is SREBP1c, a transcrip-

tion factor that is synthesised as a precursor anchored

to the nuclear membrane and the endoplasmic reticu-

lum. Its expression is increased by insulin, which

induces, after cleavage of the precursor, translocation

of the mature protein to the nucleus leading to the reg-

ulation of genes involved in lipogenesis and glucose

metabolism. Several pollutants increase the expression

of CD36 or SREBP1c such as TCDD [154,155],

PCB156 [62], PFOS [64], BPA [156] or atmospheric

particles [157].

Some pollutants such as BPA have the capacity to

target several key organs in metabolic regulation; their

mode of action can thus be understood at the scale of

the organism and of the inter-organ communication.

Indeed, BPA displays a variety of effects in different

organs that concur in leading to metabolic disruption.

(a) BPA acts as an endocrine disruptor by impacting

the production and secretion of insulin by the pancreas

in an ER-dependent manner. While BPA augments

insulin content through an ERa/ERK pathway, ERb
modulates the expression and activity of ion channels

in pancreatic b-cells leading to an increase in glucose-

stimulated insulin release. Overall, this excessive secre-

tory response may be a contributing factor in the

long-term development of insulin resistance [82-86]. (b)

At the hepatic level, there are multiple targets of BPA:

it behaves as a reverse agonist of CAR [70], a receptor

suppressing gluconeogenesis; as a consequence, BPA

potentially contributes to hyperglycaemia but it also

reduces the level of insulin receptor contributing to

insulin resistance [76], which could be enhanced by

inflammatory cytokine production [78] and polarisa-

tion of KCs to a pro-inflammatory phenotype. (c)

BPA promotes in AT, increased adipogenesis associ-

ated with increased body weight but also inflammation

that contributes to insulin resistance and hypergly-

caemia [38-40]. BPA and its substitutes (AF, F and S),

act by modulating the activity of PPARc; it should be

noted that, in this tissue, the effects of the BPA

substitute, BPS, are even more powerful and include a

robust induction of adipogenic genes such as FABP4,

LPL, leptin and perilipin [52].

Beyond the liver–pancreas–adipose tissue network,

other tissues are impacted by BPA, such as the intes-

tine, in particular the microbiota. The diversity of the

gut microbiota appears to be reduced in favour of

endotoxin-producing bacteria leading to increased per-

meability of the gut barrier, increased inflammation of

the liver, and consequently insulin resistance and

steatosis [120]. BPA would also act at the central level

(hypothalamus) by increasing compulsive eating beha-

viours [134] and peripheral (AT) by increasing leptin

secretion [137]. In addition to all the direct effects

mentioned, this would result in a dietary energy imbal-

ance (Fig. 1).

Conclusion and future perspectives

A major step forward in toxicology has been an

increasing attention to combinations of exposure path-

ways, of stressors and of mechanisms of action. In this

review, we did not discuss either aggregated exposure

pathways or mixture effects, which are highly relevant

but have been covered elsewhere [158,159].

The importance of taking into account multi-organs

interaction needs to be addressed and we thus have

highlighted that combining the disrupting effects that

a given environmental chemical has on different

organs is key to providing a better understanding of

toxicity at the organism level. The combinatorial

approach whereby organ-level pathway disruption is

integrated into a global organism-level toxicity is par-

ticularly well suited for metabolic disruption. Indeed,

it is well known that bodily metabolism is influenced

by endocrine and signalling pathways at play in multi-

ple organs and that exhibit considerable crosstalk: the

gut–liver–pancreas–adipose–muscle–brain network

governs organism metabolism and therefore it is par-

ticularly important to assess the effects of chemicals

on these organs and to attempt to integrate them. This

is what we have tried to do here for BPA.

The Adverse Outcome Pathway Network (AOPN)

provides a particularly suitable framework to address

combinatorial pathway disruption effects. By integrat-

ing different mechanisms of action at the molecular,

cellular, organ and organism levels, it allows research-

ers to describe how combinations of multiple organ-

or cellular-level pathways disruptions contribute to

adverse outcomes. AOPN makes it possible to better

determine the critical events leading to metabolic out-

comes and possibly to identify effect markers for epi-

demiological or toxicological studies. Such markers
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could also be useful to rapidly verify the safety of

chemical substituents and contribute to a safe by

design approach to the development of new chemicals.

While integrated multi-organ toxicity can obviously

be tested in vivo, it is also possible to address these inte-

grated multi-organ mechanisms by combining several

in vitro and in silico assays. This requires a mechanistic

understanding of ED effects at the organ level. While

significant advances in our understanding of the modes

of action and effects of EDs on the metabolic phys-

iopathology of organisms have been made in recent

years, there is still a need to pursue this research to

enhance such knowledge at the molecular, cellular and

tissue levels, particularly in order to develop

mechanism-based assays, which could be implemented

at the regulatory level and thereby fill existing gaps in

hazard and risk assessment of chemicals. In this perspec-

tive, it is important to design these assays so that they

could be used to efficiently establish causal and possibly

quantitative links between mechanisms and adverse

effects by taking advantage of the Adverse Outcome

Pathways. The development of species-specific in silico,

in vitro and in vivo models and their integration into an

efficient strategy to monitor human health must precede

their regulatory recognition and use.
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