Detailed Information on Publication Record
2022
Prenylated phenolics from Morus alba against MRSA infections as a strategy for wound healing
ŠKOVRANOVÁ, Gabriela, Marie ČULENOVÁ, Jakub TREML, Lucia DZURICKA, Ivana MAROVA et. al.Basic information
Original name
Prenylated phenolics from Morus alba against MRSA infections as a strategy for wound healing
Authors
ŠKOVRANOVÁ, Gabriela (703 Slovakia, guarantor, belonging to the institution), Marie ČULENOVÁ (203 Czech Republic, belonging to the institution), Jakub TREML (203 Czech Republic, belonging to the institution), Lucia DZURICKA, Ivana MAROVA and Alice SYCHROVÁ (203 Czech Republic, belonging to the institution)
Edition
Frontiers in Pharmacology, Lausanne, Frontiers Media SA, 2022, 1663-9812
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
30104 Pharmacology and pharmacy
Country of publisher
Switzerland
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 5.600
RIV identification code
RIV/00216224:14160/22:00128069
Organization unit
Faculty of Pharmacy
UT WoS
000898590100001
Keywords in English
antibacterial activity; antimicrobial resistance; kuwanon C; MRSA; mulberry; prenylated phenolics; synergy; wound healing
Tags
International impact, Reviewed
Změněno: 18/1/2023 09:18, JUDr. Sabina Krejčiříková
Abstract
V originále
Antimicrobial resistance is a public health threat and the increasing number of multidrug-resistant bacteria is a major concern worldwide. Common antibiotics are becoming ineffective for skin infections and wounds, making the search for new therapeutic options increasingly urgent. The present study aimed to investigate the antibacterial potential of prenylated phenolics in wound healing. Phenolic compounds isolated from the root bark of Morus alba L. were investigated for their antistaphylococcal potential both alone and in combination with commonly used antibiotics. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were determined by microdilution and agar method. Synergy was investigated using the checkerboard titration technique. Membrane-disrupting activity and efflux pump inhibition were evaluated to describe the potentiating effect. Prenylated phenolics inhibited bacterial growth of methicillin-resistant Staphylococcus aureus (MRSA) at lower concentrations (MIC 2-8 mu g/ml) than commonly used antibiotics. The combination of active phenolics with kanamycin, oxacillin, and ciprofloxacin resulted in a decrease in the MIC of the antimicrobial agent. Kuwanon C, E, T, morusin, and albafuran C showed synergy (FICi 0.375-0.5) with oxacillin and/or kanamycin. Prenylated phenolics disrupted membrane permeability statistically significantly (from 28 +/- 16.48% up to 73 +/- 2.83%), and membrane disruption contributes to the complex antibacterial activity against MRSA. In addition, kuwanon C could be considered an efflux pump inhibitor. Despite the antibacterial effect on MRSA and the multiple biological activities, the prenylated phenolics at microbially significant concentrations have a minor effect on human keratinocyte (HaCaT) viability. In conclusion, prenylated phenolics in combination with commonly used antibiotics are promising candidates for the treatment of MRSA infections and wound healing, although further studies are needed.
Links
MUNI/A/1279/2021, interní kód MU |
| ||
MUNI/C/0036/2021, interní kód MU |
|