Detailed Information on Publication Record
2022
Allantoin overaccumulation enhances production of metabolites under excess of metals but is not tightly regulated by nitric oxide
DRESLER, Slawomir, Jozef KOVACIK, Ireneusz SOWA, Magdalena WOJCIAK, Maciej STRZEMSKI et. al.Basic information
Original name
Allantoin overaccumulation enhances production of metabolites under excess of metals but is not tightly regulated by nitric oxide
Authors
DRESLER, Slawomir, Jozef KOVACIK (703 Slovakia, guarantor), Ireneusz SOWA, Magdalena WOJCIAK, Maciej STRZEMSKI, Anna RYSIAK, Petr BABULA (203 Czech Republic, belonging to the institution) and Christopher D. TODD
Edition
Journal of Hazardous Materials, Amsterdam, Elsevier Science BV. 2022, 0304-3894
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
30105 Physiology
Country of publisher
Netherlands
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 13.600
RIV identification code
RIV/00216224:14110/22:00128415
Organization unit
Faculty of Medicine
UT WoS
000807244200004
Keywords in English
Antioxidants; Flavonoids; Malic acid; Reactive oxygen species; Ureides
Tags
International impact, Reviewed
Změněno: 31/1/2023 08:29, Mgr. Tereza Miškechová
Abstract
V originále
The aln-3 mutant overaccumulating allantoin and respective wild type (WT) strain of Arabidopsis thaliana were exposed to cadmium (Cd) or mercury (Hg) with or without nitric oxide (NO) donor (sodium nitroprusside, SNP) to study crosstalk, metabolic and oxidative changes between these nitrogen sources (organic vs. inorganic). The aln-3 accumulated over 10-fold more allantoin than WT with the effect of Cd and Hg differing in leaf and root tissue: aln-3 contained more ascorbic acid and phytochelatins when treated with Cd or Hg and more Cd in both organs. SNP depleted leaf Cd and root Hg accumulation in aln3 but had a positive impact on the amount of metabolites typically in WT plants, indicating potentially negative relation between allantoin and NO. In agreement, aln-3 roots showed lower NO signals in control or metal treatments, but higher ROS signal, and SNP had more pronounced impact in WT roots. Flavonol glycosides were more abundant in aln-3 and were affected more by metals than by SNP. Malate was the most affected Krebs acid with strong reaction to SNP and Hg treatment. Data indicate that allantoin overaccumulation influences the accumulation of specific metabolites but nitric oxide has a greater impact on the metabolite profile in WT.