J 2022

Genome Wide Identification and Annotation of NGATHA Transcription Factor Family in Crop Plants

SALAVA, Hymavathi, Sravankumar THULA, Adria SANS SÁNCHEZ, Tomasz NODZYNSKI, Fatemeh MAGHULY et. al.

Basic information

Original name

Genome Wide Identification and Annotation of NGATHA Transcription Factor Family in Crop Plants

Authors

SALAVA, Hymavathi, Sravankumar THULA (356 India, belonging to the institution), Adria SANS SÁNCHEZ (724 Spain, belonging to the institution), Tomasz NODZYNSKI (616 Poland, guarantor, belonging to the institution) and Fatemeh MAGHULY

Edition

International Journal of Molecular Sciences, Basel, Multidisciplinary Digital Publishing Institute, 2022, 1422-0067

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10608 Biochemistry and molecular biology

Country of publisher

Switzerland

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 5.600

RIV identification code

RIV/00216224:14740/22:00128573

Organization unit

Central European Institute of Technology

UT WoS

000822132700001

Keywords in English

transcription factor; NGATHA (NGA); phylogenetic analysis; evolution; plant development

Tags

Tags

International impact, Reviewed
Změněno: 3/4/2023 10:52, Mgr. Pavla Foltynová, Ph.D.

Abstract

V originále

The NGATHA (NGA) transcription factor (TF) belongs to the ABI3/VP1 (RAV) transcriptional subfamily, a subgroup of the B3 superfamily, which is relatively well-studied in Arabidopsis. However, limited data are available on the contributions of NGA TF in other plant species. In this study, 207 NGA gene family members were identified from a genome-wide search against Arabidopsis thaliana in the genome data of 18 dicots and seven monocots. The phylogenetic and sequence alignment analyses divided NGA genes into different clusters and revealed that the numbers of genes varied depending on the species. The phylogeny was followed by the characterization of the Solanaceae (tomato, potato, capsicum, tobacco) and Poaceae (Brachypodium distachyon, Oryza sativa L. japonica, and Sorghum bicolor) family members in comparison with A. thaliana. The gene and protein structures revealed a similar pattern for NGA and NGA-like sequences, suggesting that both are conserved during evolution. Promoter cis-element analysis showed that phytohormones such as abscisic acid, auxin, and gibberellins play a crucial role in regulating the NGA gene family. Gene ontology analysis revealed that the NGA gene family participates in diverse biological processes such as flower development, leaf morphogenesis, and the regulation of transcription. The gene duplication analysis indicates that most of the genes are evolved due to segmental duplications and have undergone purifying selection pressure. Finally, the gene expression analysis implicated that the NGA genes are abundantly expressed in lateral organs and flowers. This analysis has presented a detailed and comprehensive study of the NGA gene family, providing basic knowledge of the gene, protein structure, function, and evolution. These results will lay the foundation for further understanding of the role of the NGA gene family in various plant developmental processes.

Links

GJ20-20860Y, research and development project
Name: Odhalení nových regulátorů vnitrobuněčného transportu zapojených do stresové reakce rostlin.
Investor: Czech Science Foundation