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Background: Biological aging and particularly the deviations between

biological and chronological age are better predictors of health than

chronological age alone. However, the predictors of accelerated biological

aging are not very well understood. The aim was to determine the role of

birth outcomes, time of puberty onset, body mass index (BMI), and body fat in

accelerated biological aging in the third decade of life.

Methods: We have conducted a second follow-up of the Czech part of

the European Longitudinal Study of Pregnancy and Childhood (ELSPAC-CZ)

prenatal birth cohort in young adulthood (52% male; age 28–30; n = 262)

to determine the role of birth outcomes, pubertal timing, BMI, and body

fat on biological aging. Birth outcomes included birth weight, length, and

gestational age at birth. Pubertal timing was determined by the presence of

secondary sexual characteristics at the age of 11 and the age of first menarche

in women. Biological age was estimated using the Klemera-Doubal Method

(KDM), which applies 9-biomarker algorithm including forced expiratory

volume in one second (FEV1), systolic blood pressure, glycated hemoglobin,

total cholesterol, C-reactive protein, creatinine, urea nitrogen, albumin, and

alkaline phosphatase. Accelerated/decelerated aging was determined as the

difference between biological and chronological age (BioAGE).

Results: The deviations between biological and chronological age in young

adulthood ranged from −2.84 to 4.39 years. Accelerated biological aging was

predicted by higher BMI [in both early (R2
adj = 0.05) and late 20s (R2

adj = 0.22)],

subcutaneous (R2
adj = 0.21) and visceral fat (R2

adj = 0.25), puberty onset

(ηp2 = 0.07), birth length (R2
adj = 0.03), and the increase of BMI over the 5-year

period between the two follow-ups in young adulthood (R2
adj = 0.09). Single

hierarchical model revealed that shorter birth length, early puberty onset, and

greater levels of visceral fat were the main predictors, together explaining 21%

of variance in accelerated biological aging.
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Conclusion: Our findings provide comprehensive support of the Life History

Theory, suggesting that early life adversity might trigger accelerated aging,

which leads to earlier onset of puberty but decreasing fitness in adulthood,

reflected by more visceral fat and higher BMI. Our findings also suggest that

reduction of BMI in young adulthood slows down biological aging.
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1. Introduction

We live in an era of unprecedented aging (1). The percentage
of people aged 65 and higher worldwide was 9% in 2019 and
is expected to rise to 12% by 2030 and to 16% by 2050 (2).
This increase in lifespan brings a proportional increase in age-
related disease (3, 4). Previous research suggested that age-
related changes in the organism accumulate well before the
onset of disease and that even early life factors contribute to
the speed of aging (5–7). In order to intervene early, a better
understanding of the age-related changes and early detection of
the altered aging trajectory is crucial (8).

To measure the aging process, US National Health
and Nutrition Survey (NHANES) studied participants aged
30–75 years and developed a 10-biomarker-based measure of
“Biological Age”, which was more successful in predicting
mortality in the 20-year follow-up than chronological age (9).
Using the NHANES algorithm, Belsky et al. (8) calculated
the Biological Age of Dunedin Study members and found
variations in biological aging in young individuals of the same
chronological age. While all participants were 38 years old, their
biological age varied from 28 to 61 years (8). Higher biological
vs. chronological age was associated with poorer physical fitness,
appearance, and cognitive decline (8). The current study aims to
find predictors of such accelerated biological aging.

Growing evidence in the last decade suggests that higher
Body mass index (BMI) can have detrimental effect on life
expectancy (10–12). Obesity has been linked to multiple chronic
diseases, reduced functional capacity and lower quality of life
(11–14). It is thus of no surprise that anti-aging strategies
proposed to extend lifespan focus on caloric restriction (15).
Promising results have been reported in primates, but their
effectiveness is yet to be verified. However, shared epigenetic
signatures (e.g., histone modification, DNA methylation, non-
coding RNAs, and chromatin remodeling) have been reported
in obesity and aging (16), suggesting BMI might be a possible
predictor of biological aging.

Higher BMI in adulthood was associated with earlier onset
of puberty (17, 18), another important predictor of all-cause
and cardiovascular mortality (19, 20). According to Belsky (21,
22) early pubertal maturation and accelerated biological aging

are part of the same evolutionary-developmental process, i.e.,
Life History Theory. Recent research supported this theory
by demonstrating accelerated epigenetic aging in women with
earlier onset of puberty (5, 23).

According to Belsky and Shalev (22, 24), earlier pubertal
maturation is the result of faster biological aging that stems
from adverse/stressful events early in life. Further research on
aging and timing of puberty reported that child maltreatment
(sexual, physical, or emotional abuse) predicts earlier onset
of puberty in women (25) and is associated with accelerated
epigenetic aging (5). Earlier pubertal maturation was also found
in women who reported more risky and uncertain environments
early in life (26) and in the offspring of mothers who reported
depression symptoms, marital conflict, and financial stress
during pregnancy (27). Consistently, an independent line of
research associated higher mortality with preterm birth (28)
and small body size indicated by small ponderal index (29),
suggesting that birth outcomes might be among the key
predictors of biological aging.

This emerging evidence suggests that higher mortality in
adulthood is associated with accelerated biological aging, which
might have its roots in early life. The current study aims to
use data from the European Longitudinal Study of Pregnancy
and Childhood (ELSPAC-CZ) prenatal birth cohort (30) and its
two follow-ups in young adulthood [VULDE, Health Brain Age
(7)] to determine the role of birth outcomes, time of puberty
onset, BMI, and body fat in accelerated biological aging in the
third decade of life. Since earlier pubertal development has been
reported in women compared to men (31) and previous studies
showed different trajectory of fat distribution between men
and women during pubertal development (32) that continue
with aging (33), we also considered potential sex differences in
the relationships.

2. Materials and methods

2.1. Participants

A total of 262 young adults (52% men, 28–30 years of
age; all of European ancestry) participated in the Health Brain
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Age project at the Central European Institute of Technology,
Masaryk University (CEITEC MU), a follow-up of the Czech
part of the European Longitudinal Study of Pregnancy and
Childhood (ELSPAC-CZ) (30), a prenatal birth cohort born in
the South Moravian Region of the Czechia between 1991 and
1992. A subset of these participants (n = 110, 51% men) also
took part in the first follow-up of this prenatal birth cohort
at the age of 23–24 years, entitled Biomarkers and Underlying
Mechanisms of Vulnerability to Depression (VULDE; n = 131)
(7), and thus have a within-subject design data regarding
anthropometrics in young adulthood. A diagram illustrating the
sample size of the different studies as well as the final sample
of the current study is provided in Supplementary Figure 1.
Men and women did not differ in any of the demographic
variables; detailed characteristics of the Health Brain Age sample
can be found in Table 1 and descriptive statistics and sample size
included in the different analyses can be found in Table 2. All
participants gave written informed consent for participation in
Health Brain Age and VULDE (when applicable) and agreed to
merge their historic data from ELSPAC-CZ and the subsequent
studies. Informed consent was approved by the ELSPAC Ethics
Committee.

2.2. Procedures

2.2.1. Anthropometric measures
Weight and height were measured once at birth and twice

in young adulthood (age 23–24, age 28–30). BMI in young
adulthood was calculated as the ratio of the participant’s weight
(kg) and height (m2). Total body fat and amount of visceral
fat in young adulthood were estimated by bio-impedance
using the scale Tanita BC-545 N. The bio-impedance scale
was used in a standardized manner for all participants; the
procedure followed the collection of fasting blood sample,
and all participants were provided water during the consent
procedure. All participants were also instructed not to drink
alcohol the day before. Subcutaneous fat in young adulthood
was measured with skinfold calipers at four locations (biceps,
triceps, suprailia, and under scapula) using a standard procedure
and the mean of these four measures (in millimeters) was used
in the subsequent analyses.

2.2.2. Gestational age
Gestational age was calculated as the difference between the

date of birth and the ultrasound-based date of conception.

2.2.3. Puberty development and onset of
puberty

At the age of 11, pediatricians assessed the development
of secondary sexual characteristics (breasts in women, penis
in men, and pubic hair in both sexes) on a scale from 1
(least developed) to 4 (most developed). Participants with less

developed secondary sexual characteristics at the age of 11 were
classified as the early puberty onset group. In women, the age of
menarche served as an additional predictor of puberty onset.

2.2.4. Biomarkers in young adulthood
In the late 20s, forced expiratory volume in one second

(FEV1) was calculated using MIR Smart One Spirometer.
Systolic and diastolic blood pressure were assessed according
to standard protocols. Blood samples were taken in the
morning before the first meal. Cholesterol, C-reactive protein
(CRP), glucose, albumin, creatinine, urea nitrogen serum levels
(mg/dL) as well as alkaline phosphatase activity in serum
(U/L) were measured on ROCHE analyzer (Cobas Integra 400,
Roche diagnostics). The percentage of glycated hemoglobin
was calculated based on glucose levels according to published
equations and recommendations of the international consensus
statement (34–37).

2.2.5. Calculation of biological age and BioAGE
in young adulthood

Biological age was calculated using Klemera-Doubal
Method (KDM), available through the R package “Bio-
Age” (9) that applies a 9-biomarker algorithm including
forced expiratory volume in one second (FEV1), blood
pressure (systolic), glycated hemoglobin, total cholesterol,
C-reactive protein, creatinine, urea nitrogen, albumin,
and alkaline phosphatase (see Supplementary Table 1 for
descriptive statistics of biomarkers). The difference between
biological age and chronological age (BioAGE) thus reflects
accelerated/decelerated aging.

2.3. Statistical analysis

All statistical analyses were performed in SPSS version 28.0.0
(IBM SPSS Statistics). First, we assessed the distribution of
data, and variables that did not follow a normal distribution
were transformed using logarithmic transformation. Outliers
that were greater than three standard deviations were removed
from the analysis.

Measures of secondary sexual characteristics were fed into
Two-Step Cluster Analysis (separate for both sexes) using
Schwarz’s Bayesian Criterion to automatically detect clusters.
Linear regression was used to assess the predictors of BioAGE.
In each model where men and women were treated as one
group, sex and the interaction between sex and the predictor
were treated as covariates. The significant predictors were then
used in a hierarchical multiple linear regression to assess the
multiple predictors of BioAGE within a single model. Predictors
entered the model following the order of the lifetime: 1. Birth
length, 2. Puberty onset, 3. Fat measures in adulthood (visceral
and subcutaneous simultaneously). Two analogous models were
estimated: one for the whole group with sex as a covariate,
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TABLE 1 Demographic information.

Demographics Men Women Between group differences

(N = 136) (N = 126)

Ethnicity

White Caucasian 100% 100% n/a

Age

in years M = 28.96 (±0.67) M = 28.99 (±0.69) t(260) = 0.34, p = 0.732

Education

Not completed high school 2% 2% χ2(3) = 5.94, p = 0.110

Completed high school 29% 18%

Completed university 66% 79%

Completed postgradual education 2% 1%

Missing 0% 0%

Maternal education

Not completed high school 12% 18% χ2(4) = 7.59, p = 0.108

Completed high school 34% 33%

Completed university 26% 23%

Completed postgradual education 4% 1%

Missing 25% 25%

Materinal smoking

Not smoking during pregnancy 66% 67% χ2(1) = 0.10, p = 0.748

Smoking during pregnancy 9% 10%

Missing 25% 22%

and another one for women only, where the year of the first
menarche was used as a more precise measure of puberty onset.
Simple group differences were analyzed using an independent
samples t-test. Group by puberty onset interaction was assessed
using two-way ANOVA. Multiple comparisons were corrected
using the False Discovery Rate (FDR) method and thus FDR-
corrected p-values larger than 0.05 were considered significant.

3. Results

3.1. Biological aging in late 20s

While all participants were 28–30 years old, their current
biological age ranged from 26.07 to 34.20 years, and thus their
BioAGE ranged from −2.84 to 4.39 years (Figure 1).

3.2. Does BMI and body fat in the late
20s predict biological aging in the late
20s?

BioAGE in the late 20s (Figure 2A) was predicted by higher
BMI [R2

adj = 0.22, F(3,256) = 25.03, β = 0.10, p < 0.001], overall

body fat [R2
adj = 0.17, F(3,256) = 19.22, β = 0.07, p < 0.001],

subcutaneous fat [R2
adj = 0.21, F(3,256) = 23.35, β = 0.08,

p < 0.001] and visceral fat [R2
adj = 0.25, F(3,256) = 30.44,

β = 0.16, p < 0.001]. In addition, we found an interaction effect
between sex and BMI (for every unit of BMI increase, BioAGE
in women increased 0.08 years more than in men, β = 0.79,
p = 0.022) and between sex and visceral fat (for every percent
increase in visceral fat, BioAGE in women increased 0.2 years
more than in men, β = 0.35, p < 0.001).

Post-hoc regressions in each sex revealed that BioAGE in
late 20s was predicted by BMI in both women [R2 = 0.33,
F(1,123) = 61.20, β = 0.58, p < 0.001] and men [R2 = 0.10,
F(1,133) = 15.13, β = 0.32, p < 0.001], and by visceral fat in both
women [R2 = 0.35, F(1,123) = 68.09, β = 0.60, p < 0.001] and
men [R2 = 0.15, F(1,133) = 23.92, β = 0.39, p < 0.001].

3.3. Does BMI and body fat in the early
20s predict biological aging in the late
20s?

BioAGE in the early 20s (Figure 2B) was significantly
associated with higher BMI [R2

adj = 0.05, F(3,105) = 3.09,
β = 0.04, p = 0.037], overall body fat [R2

adj = 0.09,
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TABLE 2 Biological aging and its predictors–descriptive statistics.

Descriptive Statistics Women Men

Measure N Min Max Mean SD N Min Max Mean SD N Min Max Mean SD

Biological aging

BioAGE 260 −2.84 4.39 0.00 1.19 125 −2.84 4.20 −0.03 1.27 135 −2.36 4.39 0.03 1.12

Current biological age 260 26.07 34.20 28.98 1.37 125 26.07 34.20 28.95 1.42 135 26.17 33.39 29.00 1.33

BMI and body fat in late 20s

BMI 262 16.3 40.3 24.26 4.03 126 16.3 40.3 23.54 4.15 136 16.8 38.8 24.93 3.80

Overall body fat 262 5.0 47.4 23.04 9.07 126 7.9 47.4 29.35 7.34 136 5.0 35.2 17.20 6.14

Subcutaneous fat 262 3.9 33.8 13.14 5.95 126 6.1 33.8 14.72 6.07 136 3.9 33.1 11.68 5.46

Visceral fat 262 1.0 15.5 3.86 2.62 126 1.0 11.5 3.13 2.11 136 1.0 15.5 4.53 2.87

BMI and body fat in early 20s

BMI 110 15.1 37.2 23.12 3.39 54 15.1 28.0 22.01 2.81 56 18.5 37.2 24.20 3.56

Overall body fat 109 14.7 45.0 28.30 6.49 54 14.7 45.0 29.79 6.62 55 17.4 40.0 26.84 6.06

Subcutaneous fat 110 5.5 28.5 13.57 5.33 47 6.3 28.5 14.25 4.91 63 5.5 27.8 13.07 5.61

Change in BMI and body fat (early–late 20s)

BMI 110 −10.8 8.2 0.84 2.41 54 −4.8 8.2 0.77 2.24 56 −10.8 7.7 0.90 2.58

Overall body fat 110 −55.70 22.70 −5.93 8.59 54 −18.70 22.70 −1.66 6.30 56 −55.70 1.40 −10.06 8.53

Subcutaneous fat 110 −18.13 17.13 −1.38 5.62 47 −15.63 13.50 −1.04 5.28 63 −18.13 17.13 −1.63 5.90

Puberty development

First period (years) 117 10 15 12.79 1.12 117 10 15 12.79 1.12

Women: breast 62 1 4 2.10 0.84 62 1 4 2.10 0.84

Women: pubic hair 62 1 4 1.94 1.02 62 1 4 1.94 1.02

Men: genital 71 1 3 1.77 0.68 71 1 3 1.77 0.68

Men: pubic hair 69 1 3 1.39 0.57 69 1 3 1.39 0.57

Birth outcomes

Birth weight (g) 256 1780 4600 3316 502 123 1780 4600 3159 476 133 1850 4600 3461 483

Bright length (cm) 256 40.0 56.0 50.25 2.36 123 40.0 54.0 49.46 2.45 133 43.0 56.0 50.98 2.01

Gestation (weeks) 133 37.43 42.43 39.97 1.12 66 37.43 42.00 39.88 1.08 67 37.43 42.43 40.05 1.17
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FIGURE 1

Distribution of chronological age, current biological age, and BioAGE.

F(3,104) = 4.54, β = 0.04, p = 0.009] and subcutaneous fat
[R2

adj = 0.05, F(3,105) = 2.78, β = 0.02, p = 0.049]. There were
no interactions with sex (p = 0.022).

3.4. Does the change in BMI and body
fat from the early to late 20s predict
biological aging in the late 20s?

Decrease of BMI [R2
adj = 0.09, F(3,105) = 4.39, β = 0.08,

p = 0.009] and subcutaneous fat [R2
adj = 0.07, F(3,105) = 3.77,

β = 0.04, p = 0.018], but not of overall body fat (p = 0.431) over
the 5-year period in young adulthood were associated with lower
BioAGE in late 20s (Figure 2C). There were no interactions with
sex (p = 0.189).

3.5. Does the timing of puberty onset
predict biological aging in the late 20s?

The puberty data were classified into two categories based on
the development of secondary sexual characteristics at the age of
11 in both women (late onset of puberty: n = 17, early onset of
puberty, n = 45) and men (late onset of puberty: n = 26, early
onset of puberty: n = 43).

Two-way ANOVA revealed a significant effect of puberty
timing on BioAGE, BMI as well as body fat. Early puberty
onset group had more accelerated BioAGE [ηp

2 = 0.07,
F(1,125) = 10.01, p = 0.004], higher BMI [ηp

2 = 0.12,
F(1,127) = 17.90, p < 0.001], overall body fat [ηp

2 = 0.07,
F(1,127) = 10.05, p = 0.004], subcutaneous fat [ηp

2 = 0.12,
F(1,127) = 17.99, p < 0.001] as well as visceral fat [ηp

2 = 0.09,
F(1,127) = 12.11, p = 0.003] in late 20s than the late puberty onset
group (Figure 3A). There was no significant interaction between
puberty timing and sex on any of the dependent variables
(p = 0.053).

Sex-specific post-hoc analyses showed that the effects
of puberty onset were driven by women (Supplementary

Figure 2). In women, early puberty onset group had more
accelerated BioAGE [ηp

2 = 0.11, F(1,125) = 16.06, p = 0.001],
higher BMI [ηp

2 = 0.13, F(1,127) = 18.62, p = 0.001], higher
overall body fat [ηp

2 = 0.07, F(1,127) = 9.85, p = 0.009],
subcutaneous fat [ηp

2 = 0.11, F(1,127) = 16.33, p = 0.001] and
visceral fat [ηp

2 = 0.08, F(1,127) = 10.83, p = 0.007] than late
puberty onset group (Supplementary Figure 2). No similar
effects of puberty onset were found in men (p = 0.261). Complete
statistics is reported in Supplementary Table 3.

Women with earlier onset of puberty experienced earlier
first menarche [Cohen’s d = 1.03, t(56) = 3.93, p < 0.001]
(Figure 3B) and earlier first menarche predicted higher
BioAGE [R2 = 0.04, F(1,114) = 6.13, β = 0.26, p = 0.015]
(Figure 3C).

3.6. Does birth weight, length, or
gestational age predict accelerated
biological aging in the late 20s?

Shorter birth length was associated with higher BioAGE
[R2

adj=0.03, F(3,250)=3.61, β=−0.08, p = 0.042], but no
significant relationship emerged between birth weight
(p = 0.127) or the duration of gestation (p = 0.843) and
BioAGE (see Figure 4). There were no interactions with sex
(p = 0.382).

3.7. Single model of accelerated
biological aging combining predictors
from birth to adulthood

Multiple regression evaluating the effects of birth length,
puberty onset, and visceral and subcutaneous fat in the late
20s on BioAGE in the whole sample showed that all the
predictors together explained 21% of the variance in biological
aging [R2

adj = 0.21, F(5,119) = 7.59, p > 0.001]. While
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FIGURE 2

BMI and body fat in young adulthood as predictors of biological aging. Accelerated biological aging in the late 20s was predicted not only by
BMI and body fat measured in the late 20s (A), but also by BMI and body fat in the early 20s (B), as well as the change in BMI and body fat over
the 5-year period between the measurements (C).

birth length explained 3.7% of the variance [F(122,1) = 6.49,
p = 0.012], early puberty onset explained additional 5.2%
[F(121,1) = 8.00, p = 0.005], and visceral fat another 12.1%
[F(119,2) = 10.28, p < 0.001]. For every cm of birth length,
BioAGE decreased by 0.119 years (β = −0.236, p = 0.012).
Participants with early puberty onset had on average 0.56 years

more advanced BioAGE than those with late puberty onset
(β = −0.244, p = 0.005). For every% of visceral fat, BioAGE
increased by 0.167 years (β = 0.361, p = 0.006). The effect
of subcutaneous fat did not reach significance in the multiple
regression (p = 0.737). Complete statistics with all regressors are
in Supplementary Table 4A.
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FIGURE 3

Pubertal timing. Differences between early and late onset of puberty based on secondary sexual characteristics in relation to accelerated
biological aging, BMI, and fat measures in late 20s within whole sample (A) and in relation to age of first menarche in women (B). Accelerated
biological aging (BioAGE) in women predicted by earlier age of first menarche (C).

FIGURE 4

Accelerated biological aging in the late 20s was predicted by birth length but not birth weight or duration of gestation.

Similar multiple regression in women, where we could
use the age of menarche as a more accurate measure of
puberty timing, showed that the whole model explained
even 30% of the variance [R2

adj = 0.30, F(4,108) = 13.01,
p > 0.001]. While birth length explained 6.9% of the
variance [F(111,1) = 9.26, p = 0.003], adding year of first
menarche explained additional 0.9% although not significant
[F(110,1) = 2.11, p = 0.149], and body fat another 22.2%
[F(1008,2) = 18.47, p < 0.001]. For every cm of birth length,
BioAGE decreased by 0.137 years (β = −0.28, p < 0.003).
For every% of visceral fat, BioAGE increased by 0.247 years
(β = 0.445, p < 0.001). The effect of first menarche (p = 0.149)
and subcutaneous fat (p = 0.634) did not reach significance in
the multiple regression. Complete statistics with all regressors
are in Supplementary Table 4B.

4. Discussion

We studied biological aging in young adults from the
ELSPAC-CZ prenatal birth cohort and demonstrated that
accelerated biological aging in young adulthood was associated

with higher BMI as well as higher overall, subcutaneous,
and visceral body fat, with visceral fat showing the strongest
association. Moreover, we showed that the effects of BMI
and body fat on biological aging are stable–present in both
early and late 20s–and reach a greater effect size in women
as compared to men. Most importantly, we demonstrated
that reduction of BMI over the 5-year period between the
measurements was associated with decelerated biological aging,
suggesting that reducing weight over a relatively short period
of time during adulthood can possibly slow down the pace of
biological aging.

These findings extend previous prospective cohort studies,
which linked higher BMI (10–12) and body fat (38) with
increased mortality. They also support research by others
reporting associations between higher BMI and accelerated
epigenetic aging (39–43). While the mechanisms explaining the
relationships between higher BMI and accelerated epigenetic
aging remain to be clarified, the associations suggest the
existence of a shared developmental mechanism (16).

The relationships between accelerated biological aging and
higher BMI in both the late and early 20s demonstrate the
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stability of the effect. But interestingly, a reduction of BMI
over the 5-year period predicted lower BioAGE, suggesting that
we might be able to slow down the speed of our biological
aging by relatively accessible management options. This is
in agreement with previous research suggesting dieting (44)
and caloric restriction (15) as means to increase lifespan.
Consistently, exercise was found to affect epigenetic changes in
DNA methylation (45), histone modification (46), chromatin
modifications (47), and non-coding RNAs (48) that are
associated with aging (16). Further research is needed to assess
the link between exercise and BioAGE.

Early puberty onset was another key predictor of accelerated
biological aging, particularly in women. This is in agreement
with previous studies that found a relationship between earlier
menarche and accelerated epigenetic aging in women (5, 23).
While Binder et al. (23) reported a relationship between
epigenetic aging and menarche but not breast development, we
found the effects of both menarche and breast development
(together with pubic hair development). These divergent
findings might be attributed to differences in methodology:
first, our measure of aging is composed of wider selection
of biomarkers; second, compared to the onset of breast
development used by Binder et al. (23), we measured the degree
of development at the age of 11.

We found only limited evidence for the hypothesized early
life origins of biological aging. In particular, newborns who were
shorter (but not lighter or younger) at birth were aging faster
in their late 20s. This might be related to the fact that all our
participants fell within the healthy range and the low variance
in gestational age and birth weight might not have allowed us
to detect any significant relationships with biological aging in
young adulthood.

Finally, combining predictors of BioAGE from birth to
adulthood allowed us to explain up to 21% of the variance
in the whole sample and up to 30% of the variance in the
women’ group. Interestingly, visceral but not subcutaneous fat
was a significant predictor of BioAGE. While both types of fat
have been associated with increased morbidity (49, 50), there
are indications that visceral fat is a more relevant predictor
of cardiometabolic diseases than subcutaneous fat (51–53).
Our findings suggest that higher levels of visceral fat might
have important health consequences not only for the risk of
cardiometabolic diseases but also aging and that high levels
of visceral fat have particular negative impact on women. The
puberty timing measured by secondary sexual characteristics
was another significant predictor of accelerated aging in both
the whole sample as well as women only. However, the timing
of puberty measured by the first menarche did not constitute a
significant predictor of BioAGE in women, when birth length
and measures of visceral and subcutaneous fat in adulthood
were accounted for. It must be noted that the effect of the
first menarche was rather small even when considered alone

and its lack of effect in the multiple regression model might be
attributed to the limited sample size.

Overall, our findings support the Life History Theory,
according to which early pubertal maturation can be accounted
for accelerated biological aging (21). The rationale behind the
theory is that the adaptation of an organism to early live
adversity is reflected in accelerated aging. This leads to earlier
pubertal maturation which increases the organism’s chance of
reproduction before dying. However, the payoff for the earlier
pubertal maturation is decreased health in adulthood which
is associated with aging, leading to increased morbidity and
premature mortality.

Our study has several limitations that need to be
acknowledged. First, the sample size is considerably small, which
can be, at least in part, attributed to the longitudinal design
of our study. Second, members of our prenatal birth cohort
were not born preterm and had a healthy birth weight, limiting
the possibility to study the impact of birth outcomes. Third,
while our study uses longitudinal data for the predictors, the
blood sample to estimate biological age was collected only at
a single point at the late 20s. Further research is needed to
assess the stability of the biological age gap (BioAGE) across
the lifespan. Fourth, potential confounders such as lifestyle and
dietary behavior might have affected the results and should be
considered by future studies. Finally, this is a correlational study
and therefore does not allow us to prove causal relationships
between BioAGE and its predictors.

In conclusion, using longitudinal data on the ELSPAC-
CZ prenatal birth cohort, we demonstrated that birth length,
puberty timing, and visceral fat predict biological aging in
young adulthood. In particular, the results of our study provide
comprehensive support for the Life History Theory, suggesting
that early life adversity might trigger accelerated aging, which
in turn leads to earlier pubertal timing but decreasing fitness in
adulthood, reflected by higher visceral fat and BMI. Moreover,
we discovered that a reduction of BMI in young adulthood
might slow down biological aging.
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