
mol = Molecule("Water.xyz")

reax_settings = Settings()
reax_settings.input.ReaxFF.ForceField = "Water2017.ff"
dftb_settings = Settings()
dftb_settings.input.DFTB.Model = "GFN1-xTB"

with AMSWorker(reax_settings) as reax, \
AMSWorker(dftb_settings) as dftb:
opt_results = reax.GeometryOptimization("waterGO", mol)
optimized = opt_results.get_main_molecule()
dftb_results = dftb.SinglePoint("waterSP", optimized)
print(dftb_results.get_energy())

calc = ase.calculators.eam.EAM(potential="Al99.eam.alloy")
engine = scm.amspipe.ASEPipeWorker(calculator=calc)
engine.run()

Engine ASE
Type Import
Import ase.calculators.eam.EAM
Arguments

potential="Al99.eam.alloy"
End

EndEngine

AMSCallPipe call_pipe;
AMSReplyPipe reply_pipe;

while (true) {
auto msg = call_pipe.receive();

if (msg.name == "Solve") {
AMSPipe::SolveRequest request;
bool keepResults;
std::string prevTitle;

call_pipe.extract_Solve(msg, request, keepResults, prevTitle);

AMSPipe::Results results;
std::vector<double> grads;
results.energy = LJ_potential(coords, grads);
if (request.gradients) {

results.gradients = grads.data();
results.gradients_dim[0] = 3;
results.gradients_dim[1] = grads.size()/3;

}

reply_pipe.send_results(results);
reply_pipe.send_return(AMSPipe::Status::success);

}
}

{"results": {"energy": -0.6074090031328319}}

{i\007results{i\006energyD\xbf\xe3\x6f\xe5\x01\x78\x0c\x14}}

D: double precision floati: 1-byte integer

 Images by katemangostar and pch.vector on Freepik.com 

master worker

SetSystem
…

Op�mize
request
 �tle: "GeoOpt1"
 hessian: True
 …
method
maxItera�ons
…

Run a geometry op�miza�on,
then calculate the Hessian

results
messages
xyzAtoms
energy
hessian
…

Receive final coordinates
and requested proper�es

return
status: success

Return from Op�mize

Op�mize
request
 �tle: "GeoOpt2"
 hessian: True
 …
op�mizeLa�ce: True
…

SetLa�ce
vectors: []

return
status: logic_error
method: "Op�mize"
argument: "op�mizeLa�ce"
message: 
"La�ce op�miza�on 
requested for a non-periodic 
system"

Now try something foolish:
Remove periodicity, then ask
for a la�ce op�miza�on

master worker

SetSystem
atomSymbols
coords
totalCharge
la�ceVectors
…

Set up a new chemical system

Solve
request
 �tle: "Step1"
 gradients: True
 stressTensor: True
 …
keepResults: True

Run a single-point calcula�on

return
status: success

Return from the Solve call

SetLa�ce
vectors

SetCoords
coords

Efficiently replace coordinates
and la�ce vectors

Solve
request
 �tle: "Step2"
 gradients: True
 stressTensor: True
 …
keepResults: True
prevTitle: "Step1"

Run another evalua�on, 
restar�ng from stored Step1

results
messages
energy
gradients
stressTensor
hessian
charges
…

Worker sends results
and remembers them

master worker

GenerateVeloci�es
�tle: "MD1"
temperature: 298.15
…

return
status: success

RunMD
�tle: "MD1"
nSteps: 100
…

SetSystem
…

Prepare a system for MD

RunMD
�tle: "MD1"
nSteps: 100
…

Run an MD simula�on

state
step: 10
�me
xyzAtoms
la�ceVectors
poten�alEnergy
temperature
…

state
step: 20
…

Worker sends snapshots
as the simula�on progresses

Run another MD segment,
con�nuing the trajectory

return
status: success

state
step: 100
…

state
step: 110
…

⋮

Efficient Pipe Interface Between the Amsterdam 
Modeling Suite and External So�ware

1 So�ware for Chemistry & Materials B.V., Amsterdam, The Netherlands
2 Na�onal Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia

trnka@scm.com

Example Conversa�ons

Single Points Geometry Op�miza�on Molecular Dynamics

Tomáš Trnka1,2, Robert Rüger1, Ivo Durník2 and Ma� Hellström1

AMS is a comprehensive so�ware package for computa�onal chemistry and material science 
across all scales and levels of theory:
 • Common driver module for geometry op�miza�on, advanced molecular dynamics and 
Monte Carlo methods, automated PES explora�on and reac�on discovery, …
 • Computa�onal engines for molecular and periodic DFT, �ght binding and semiempirical 
methods, reac�ve and non-reac�ve force fields, and machine learning poten�als
 • Integrated graphical user interface for job prepara�on, management, and analysis
 • PLAMS (Python Library for Automa�ng Molecular Simula�ons): an open-source package 
for preparing, managing, and analyzing computa�onal chemistry calcula�ons

About the Amsterdam Modeling Suite

Mul�scale modelling o�en requires coupling algorithms and poten�als from different so�ware 
packages:
 • Communica�on through files slow due to I/O and process startup costs
 • Direct linking of all modules into a single program o�en infeasible for technical reasons

Solu�on: Universal, high-performance communica�on protocol as a common interface between 
independently developed programs.

Two independent processes exchanging messages over a communica�on channel ("pipe"):
 • Pipe master launches the worker and submits method calls with appropriate arguments
 • Pipe worker executes the requested methods and returns any results

method
arguments

method
arguments

method
arguments

call pipe

reply reply reply

reply pipe

Pipe master Pipe worker

Introduc�on

Architecture

Key Features of the AMSPipe Protocol

AMS as the Pipe Worker AMS as the Pipe Master

Python/ASE Workers C/C++/Fortran/… Workers

Low-level Message Format

Open-source amspipe library offers bindings for C, C++ 
and Fortran, ready to be plugged into third-party SW.

Used by AMS to integrate QuantumESPRESSO, 
integra�on into LAMMPS planned.

The AMSWorker class in PLAMS enables any Python script to serve as 
the pipe master, offering a convenient high-level API for single points, 
geometry op�miza�ons and MD simula�ons.

Example: GFN1-xTB energy of a ReaxFF-op�mized structure

 • AMS driver controls the simula�on, offering advanced MD and MC methods, automated PES explora�on and discovery of reac�on 
networks, mul�level paralleliza�on of numerical (second) deriva�ves, proper�es like phonons and elas�c tensors, and full GUI support
 • Worker supplies an arbitrary poten�al

Any poten�al available as an Atomic Simula�on 
Environment (ASE) Calculator can be readily used 
through the ASEPipeWorker class.

Used by AMS for many machine learning poten�als.

Example:
Use ASE to run simula�ons using the EAM poten�al with AMS.

The same defined directly in AMS input (no scrip�ng required):

APPLE&P

h�ps://github.com/SCM-NV/PLAMS

Portability
• Works on all major pla�orms and across a variety of programming languages

Flexibility
• No need to implement all methods and features, only the relevant ones

Extensibility
• Methods, arguments, and reply types can be freely added without breaking compa�bility

Performance
• Minimal overhead, data sent in binary, just one round trip per evalua�on

Reliability
• Protocol errors are recoverable and easy to detect

Openness
• Open-source interface modules, public protocol specifica�on

Messages are encoded using Universal Binary JSON (UBJSON).

UBJSON is:
 • simple, making encoders/decoders easy to implement
 • self-describing, unknown messages can s�ll be parsed correctly
 • widely supported with libraries for many languages
 • somewhat human-readable, which simplifies debugging

Example message in JSON and UBJSON:


