Efficient Pipe Interface Between the Amsterdam
Modeling Suite and External Software

Tomas Trnka'#, Robert Riiger?, Ivo Durnik? and Matti Hellstrom*

g&bﬂor I\/I U I\I I ! Software for Chemistry & Materials B.V., Amsterdam, The Netherlands

Chemistry & S C :[2 National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia

Materials

trnka@scm.com
About the Amsterdam Modeling Suite Example Conversations
AMS is a comprehensive software package for computational chemistry and material science
2teress il sczlizs e levels eif iisaly: o | Single Points Geometry Optimization Molecular Dynamics
e Common driver module for geometry optimization, advanced molecular dynamics and

Monte Carlo methods, automated PES exploration and reaction discovery, ... master worker master worker master worker

e Computational engines for molecular and periodic DFT, tight binding and semiempirical

Set up a new chemical system Prepare a system for MD

methods, reactive and non-reactive force fields, and machine learning potentials SetSystem
. SetSystem SetSystem
e Integrated graphical user interface for job preparation, management, and analysis AtomSymbols . L.
e PLAMS (Python Library for Automating Molecular Simulations): an open-source package coords Run ometry optimization
for preparing, managing, and analyzing computational chemistry calculations totalCharge unage y optimization, —
latticeVectors then Calculate the HeSS’an GenerateVe|0CItleS
— title: "MD1" —
. Optimize temperature: 298.15
Introduction request N

Run a single-point calculation
Solve

request [
title: "Step1"
gradients: True
stresslensor: True

title: "GeoOpt1"
hessian: True

Multiscale modelling often requires coupling algorithms and potentials from different software
packages:

e Communication through files slow due to |/O and process startup costs

e Direct linking of all modules into a single program often infeasible for technical reasons

return

=1 status: success

method
maxlterations

keepResults: True Run an MD simulation

Receive final coordinates

.Solutlon: Universal, high-performance communication protocol as a common interface between and requested properties RunMD
independently developed programs. Worker sends results —— title: "MD1" —
and remembers them n>teps: 100
™ =1 messages
® resu xyzAtoms
Architecture
renne:;fes i Worker sends snapshots
Two independent processes exchanging messages over a communication channel ("pipe"): aradients as the simulation progresses
e Pipe master launches the worker and submits method calls with appropriate arguments ;trGS,STe”SOF state
) essian ..
e Pipe worker executes the requested methods and returns any results charges Return from Optimize — step: 10
b : B ” return S:;Ztoms
IP€ master IP€ worker —| status: success latticeVectors
Return from the Solve call potentialEnergy
method method method temperature
, arguments arguments arguments return
=] status: success
ﬁ state
Now try something foolish: — step: 20
Remove periodicity, then ask
reply reply reply : : or a lattice optimization .
: Efficiently replace coordinates i . P -
and lattice vectors >etlattice state
_ vectors: [] [
SetCoords —| step: 100
Images by katemangostar and pch.vector on Freepik.com coords — . .
Optimize
Sotlath request N return
- etLattice title: "GeoOpt2")
Key Features of the AMSPipe Protocol e I essiars Troe —]_status: success

Porta b|||ty 0|;t.'imizeLattice: True
e Works on all major platforms and across a variety of programming languages

Flexibility

Run another evaluation,
restarting from stored Step 1

Run another MD segment,

e No need to implement all methods and features, only the relevant ones Solve return SO (e e Eeion)

Extensibility regﬁes,t,St N i = Staiﬁsrcjof?(')c_grr?r " RunMD
e: "Step method: "Optimize tle: "MD1" _—

e Methods, arguments, and reply types can be freely added without breaking compatibility gradients: True argument: "optimizeLattice" :;teeps; 100

Performance stresslensor: True 'rlrliets:hs.age: N
attice optimization

e Minimal overhead, data sent in binary, just one round trip per evaluation keepResults: True requested for a non-periodic
Reliability prevTitle: "Step1" system" state

e Protocol errors are recoverable and easy to detect — | ste:110
Openness

e Open-source interface modules, public protocol specification H

AMS as the Pipe Worker AMS as the Pipe Master

The AMSWorker class in PLAMS enables any Python script to serve as e AMS driver controls the simulation, offering advanced MD and MC methods, automated PES exploration and discovery of reaction
the pipe master, offering a convenient high-level API for single points, networks, multilevel parallelization of numerical (second) derivatives, properties like phonons and elastic tensors, and full GUI support

geometry optimizations and MD simulations. e Worker supplies an arbitrary potential

Python/ASE Workers // \\ C/C++/Fortran/... Workers

Any potential available as an Atomic Simulation Open-source amspipe library offers bindings for C, C++
Environment (ASE) Calculator can be readily used and Fortran, ready to be plugged into third-party SW.
through the ASEPipeWorker class.

https:/github.com/SCM-NV/PLAMS

Used by AMS to integrate QuantumESPRESSO,
integration into LAMMPS planned.

Used by AMS for many machine learning potentials.

AMS Examp|e: AMSCallPipe call_pipe

driver) .) i i AMSReplyPipe reply_pipe
Use ASE to run simulations using the EAM potential with AMS.
while (true
ADF " ReaXFF calc = ase.calculators.eam.EAM(potential="A199.eam.alloy") auto msg = call_pipe.recetve
engine scm.amspipe.ASEPipeWorker(calculator=calc) _
engine.run() i1f (msg name "Solve"
) BAND GFN_FF ﬁMSIiLEe golvﬁequest request
P4 ool keepResults
The same defined directly in AMS input (no scripting required): std: :st..ﬁ,,g orevTitle
DFTB » & MLPOt Engine ASE call_pipe.extract_Solve(msg, request, keepResults, prevTitle
. Type Import
Import ase.calculators.eam.EAM AMSPipe: :Results results
Arguments std: :vector<double> grads
q MOPAC APPLE&P potential="A199.eam.alloy" results.energy LJ_potential(coords, grads
End if (request.gradients
EndEngine results.gradients grads.data
results.gradients_dim
results.gradients_dim grads.size

Example: GFN1-xTB energy of a ReaxFF-optimized structure
nol - Molecule("Water .xyz") Low-level Message Format reply_pipe.send_results(results

reply_pipe.send_return(AMSPipe: :Status: :success

reax_settings = Settings() . . .
reax_settings.input.ReaxFF.ForceField = "Water2017.ff" Messages are encoded using Universal BmaryJSON (UBJSON)-

dftb:settings Settings()
dftb_settings.input.DFTB.Model "GFN1-xTB"

UBJSON is: ,
with AMSWorker(reax_settings) reax, . . . Example messSage In JSON and UBJSON:
AMSWorker (dftb settings) as dftb: e simple, m?k!ng encoders/decoders easy to implement : — "
opt_resuéts reaX-GcleometryOptimiza{ion{"v(vf;\terGO", mol) e self-describing, unknown messages can still be parsed correctly {"results": {"energy": }}
optimize opt_results.get_main_molecule 5 . . .]]
d?tb_results P aftb.Sing%ePaint(FwaterSP“, optimized) e widely supported with libraries for many languages {1 results{i energyD +}
print(dftb_results.get_energy()) e somewhat human-readable, which simplifies debugging

i: 1-byte integer D: double precision float

