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Metastases are the most common
cause of cancer-related death. Although
cancer survival rates have significantly
improved over the years owing to better
diagnostic processes and cytotoxic
therapies, novel approaches targeting
metastases are still needed.

Because the migration machinery has
been shown to promote metastatic dis-
semination, a successful migrastatic
Most cancer-related deaths among patients with solid tumors are caused by
metastases. Migrastatic strategies represent a unique therapeutic approach to
prevent all forms of cancer cell migration and invasion. Because the migration
machinery has been shown to promote metastatic dissemination, successful
migrastatic therapy may reduce the need for high-dose cytotoxic therapies that
are currently used to prevent the risk of metastatic dissemination. In this review
we focus on anti-invasive and antimetastatic strategies that hold promise for
the treatment of solid tumors. The best targets for migrastatic therapy would
be those that are required by all forms of motility, such as ATP availability,
mitochondrial metabolism, and cytoskeletal dynamics and cell contractility.
therapy administered simultaneously
with standard therapy could show a syn-
ergistic effect and therefore may reduce
the need for aggressive high-dose
cytotoxic therapies that are currently
used to prevent the risk of metastatic
dissemination.

The major advantage of migrastatic ther-
apy is that selection pressures caused
by this type of therapymay not cause re-
sistance to conventional therapies based
on antiproliferative or cytotoxic effects
because the mechanisms targeted are
of a completely different nature.

The best targets for migrastatic therapy
are probably those that are required by
all forms ofmotility, such asATPavailabil-
ity, mitochondrial metabolism, cytoskele-
tal dynamics, and cell contractility.

An increase in energy consumption is
needed for migration through more de-
manding environments, and changes in
intracellular ATP/ADP levels are directly
tied to changes in cell migration speed.
Mitochondria-targeting strategies caus-
ing ATPdepletion can be complemented
by approaches that force cells to use
more energy-consuming types of move-
ment or that prevent them from moving
in less energy-consuming ways.
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The importance of cell migration during metastatic cascade as a basis for
migrastatic therapy
Tumor invasion and metastasis are ground-breaking events that transform a localized primary tumor
into a severe systemic and life-threatening disease. Consequently, most cancer-related deaths
among patients with solid tumors are caused by metastases. Because the migration machinery
has been shown to promote metastatic dissemination, there is a strong correlation between the mo-
lecular mechanisms of cell migration and the progression of metastatic disease [1,2].

Cell migration can be classified into single-cell migrationmodes (mesenchymal, amoeboid, osmotic
engine) and collective migration modes (Figure 1). Each mechanism of cell migration requires
energy that is consumed by a different set of molecules for conversion tomechanical power [3]. Mi-
gration modes are closely associated with the structure andmolecular composition of the extracel-
lular matrix (ECM), cellular energy status [4–6], the characteristic structure of the cytoskeleton, and
the use of specific integrins, matrix-degrading enzymes, cell–cell adhesion molecules, and signal-
ing pathways. In response to the gain or loss of these key molecular determinants, cells can flexibly
modify their shape and migration mechanism [7,8]. Migrastatic strategies represent a unique ther-
apeutic approach to prevent all forms of cancer cell migration and invasion through the ECM. A
successful migrastatic therapymay reduce the need for high-dose cytotoxic therapies that are cur-
rently used to prevent the risk of metastatic dissemination. The term 'migrastatics' is used here for
drugs interfering with cancer cell migration or invasion.

Invasive cells use diverse strategies to invade through ECM barriers. Nevertheless, there are some
important similarities. All known strategies need to increase ATP production within invading cells
(enhanced glucose uptake, creatine–phosphagen system, specific mitochondria localization)
[6,9–11]. This ATP must be converted to mechanical power through cytoskeletal dynamics, cell
contractility, or osmotic engine mechanisms. The importance of ATP reserves during migration is
evidenced by the fact that extracellular ATP can enhance the motility and invasion of cancer cells
[12]. Cells also usually migrate in the direction of least confinement to minimize energy costs.
Trends in Cancer, April 2023, Vol. 9, No. 4 https://doi.org/10.1016/j.trecan.2023.01.001 293
© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://orcid.org/0000-0003-1172-7195
http://crossmark.crossref.org/dialog/?doi=10.1016/j.trecan.2023.01.001&domain=pdf
https://doi.org/10.1016/j.trecan.2023.01.001
http://creativecommons.org/licenses/by/4.0/
CellPress logo


TrendsTrends inin CancerCancer

Figure 1. Cancer cell migration can be classified into single-cell and collective migration modes. Amoeboid
migration is characterized by low adhesion forces and uses either a high-contractility myosin II-dependent mode driven by
membrane blebbing (A2 type) or a protrusion-based mode (A1 type) that occurs under low cell contractility. Mesenchymal
cell migration is characterized by high cell polarization, and in the case of spaces in the extracellular matrix (ECM) that are
too small for cell passage, by proteolytic ECM remodeling by matrix metalloproteases and serine proteases. The osmotic
engine model predicts that migration can occur regardless of actomyosin contractility through a process of polarized
uptake and expulsion of water. Epithelial collective cell migration involves cohesive groups of cells maintaining stable cell–
cell connections. Partial epithelial–mesenchymal transition (EMT) in the leader cells (LCs; depicted in red) can preserve
stable cell–cell adhesion and allow epithelial sheet migration. Mesenchymal cells or cells after full EMT (functional transition
of polarized epithelial cells into mobile mesenchymal cells) migrate directionally as a collective, but only form transient cell–
cell adhesions. The motility of individual cells is increased but LCs are also needed for mesenchymal collective migration to
maintain the stable direction of movement.
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The energy needed to generate force for ECM displacement increases with the degree of spatial
confinement and with increasing cell or ECM resistance to deformation (stiffness) [5]. Agents that
can increase cellular stiffness in some cancer cells include, for example, cisplatin or docetaxel
[13]. The low energy levels probably also disrupt the collective cell migration mode because of
the lack of leader cells (LCs) [4]. Consequently, the best targets for migrastatic therapy would be
those that are required by all forms of motility, such as ATP availability, mitochondrial metabolism,
cytoskeletal dynamics, and cell contractility.

In this review we focus on anti-invasive and antimetastatic strategies that show promise in the
treatment of solid tumors. We explain why migrastatic strategies must not be focused on mech-
anisms occurring in only one mode of migration and that the migratory plasticity of cancer cells
must also be considered. We also discuss potential universal targets that hold promise for
migrastatic therapy.

Targeting the mechanisms involved in the mesenchymal type of migration may
not be sufficient
Mesenchymal cell migration is accompanied by high cell polarization that generates a leading
edge with actin-rich protrusions that allow adhesive interactions followed by contractile retraction
of the cell rear. This motility process depends on regulators such as Cdc42 (cell division control
protein 42 homolog), Rac1, ROCK (Rho-associated protein kinase), and RhoA [14]. The main
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forces driving the cell forward are actin polymerization and actomyosin contractility in cooperation
with integrins β1 or αvβ3 [15,16]. To migrate through the complex ECM, two main strategies can
be adopted by cancer cells: ECM degradation or shape deformation that allows cells to squeeze
through narrow gaps in ECM [15]. The rate-limiting role in migration is played by the nucleus,
which is the stiffest cellular component. In collagen gels, tumor cell arrest occurs at pore sizes
smaller than ~7 μm2, which corresponds to ~10% of the nuclear cross-sectional area. Below
this pore size threshold, the cells cannot migrate in the absence of ECM remodeling [17]. How-
ever, knockdown of lamin A, one of the key components of the nuclear envelope, can decrease
nuclear stiffness and enhance the migration of cancer cells through pores smaller than ~7 μm2.
However, these cells can be more prone to apoptosis [18].

For these reasons, therapeutic targeting of the enzymes that remodel the ECM, such as matrix
metalloproteases (MMPs) or serine proteases, seems to be reasonable. Surprisingly, inhibition
of these enzymes did not prevent tumor cell invasion and showed weak benefit in some animal
cancer models as well as in clinical trials in humans [19–21]. The hydroxamate-typeMMP inhibitor
batimastat even promoted liver metastasis in mice [22]. Phase 3 clinical trials using marimastat,
prinomastat (AG3340), and BAY 12-9566 alone or in combination with standard chemotherapy
in patients with advanced cancers (lung, prostate, pancreas, brain, gastrointestinal tract) showed
no clinical efficacy [21]. The failure of MMP inhibitors can be explained for example by modes of
cellular migration that are independent of structural matrix remodeling (amoeboid migration could
be even triggered by MMP inhibition) or by the presence of the pre-existing physiological
microtracks in the ECM that enable MMP-independent migration.

Cell migration through preformed ECMmicrotracks may be effectively inhibited by targeting cyto-
skeletal dynamics because this type of migration is driven by polarized protrusions and elonga-
tions at the leading edge which are mediated by actin polymerization and enhanced by the
microtubules [23]. Interestingly, actomyosin contractility, but not traction generation, was needed
for effective microtrack migration. Microtrack migration exhibited elements of both mesenchymal
and amoeboid motility because cells adapted their migration mode after integrin blocking and cell
contractility inhibition (cells exhibited stable mesenchymal-to-amoeboid transition following treat-
ment with integrin and MMP inhibitors in a 3D matrix) [23]. Furthermore, inhibitors of β1-integrins,
myosin, Rho, or ROCK do not impair confined migration through channels 3 μm in width even
though these treatments repress unconfined migration. Confined migration persists even when
F-actin is disrupted, but in this case depends largely on microtubule dynamics [24]. It was
shown that microtubules can act as proprioceptive sensors that control cell shape and actomy-
osin retraction to sustain cellular cohesion during amoeboid migration [25]. Thus, amoeboid mi-
gration appears to involve mechanisms that bypass tissue barriers independently of ECM
degradation. Amoeboid single-cell migration can also result from collective cell migration after
treatment with adhesion-disrupting agents such as anti-β1-integrin antibodies or cadherin antag-
onists. By interfering with cell–cell junctions, as well as adhesion to collagen fibers, single cells de-
tach and migrate by β1-integrin-independent amoeboid mechanisms. Similar transitions might
also occur spontaneously during cancer progression [26]. However, the failure of agents targeting
the mechanisms of mesenchymal migration should not be considered a final defeat. These
agents can probably be used in combination with agents targeting other types of migration.
These combinatorial approaches based on synergistic effects may subsequently lead to a reduc-
tion in the migratory plasticity of cancer cells.

Targeting the migratory plasticity of cancer cells
The mesenchymal-to-amoeboid transition is a manifestation of migratory plasticity that not only
promotes tumor cell dissemination but also helps tumor cells to escape medical treatment.
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However, some molecules, such as NEDD9, seem to be needed for both types of movement.
NEDD9 seems to be necessary for both mesenchymal and amoeboid individual cell
migration/invasion in triple-negative breast cancer. NEDD9 deficiency results in the acquisition
of an amoeboid morphology but severely limits all types of cell motility. Simultaneous depletion
of NEDD9 or inhibition of aurora kinase A in combination with inhibition of the amoeboid driver
ROCK resulted in an additional decrease in cancer cell migration/invasion [27]. Combined
blockade of extracellular proteases and ROCK negates the ability of tumor cells to switch be-
tween modes of motility and synergizes to prevent tumor cell invasion [28]. Nevertheless,
ROCK inhibitors should be used with caution. Indeed, Rho/ROCK inhibitors such as Y27632
and fasudil (HA-1077) decreased the migration and invasion capacities of several cancer cell
types [29–32]. However, it was also shown that Y27632, which impairs amoeboid-like inva-
sion, restores cell-surface expression of α2β1-integrin, enhances focal adhesion kinase
(FAK) autophosphorylation, and therefore can promote mesenchymal invasion [32–36]. In
these cases, FAK inhibitors and/or FAK displacement from focal adhesions can be useful
[37,38]. Furthermore, ROCK inhibition promoted NaV1.5 sodium channel-dependent SW620
colon cancer cell invasiveness [39], and ROCK1 signaling has been implicated in the regulation
of Beclin1-mediated autophagy during metabolic stress, where inhibition of ROCK1 activity in-
creases Beclin1–Bcl-2 association, thus reducing autophagy [40].

KD-025 (or SLx-2119) is a novel selective ROCK2 inhibitor that is 200-fold more selective for
ROCK2 than ROCK1. KD-025 enhances the efficacy of conventional chemotherapeutic
drugs in ABCG2-overexpressing leukemia cells by restraining the efflux activity of ABCG2
and obstructing ATPase activity [41]. However, ROCK2 inhibition triggered the initial induction
of LC formation and induced collective invasion from cysts in colorectal cancer [42]. Moreover,
the presence of ROCK inhibitors reduced the actomyosin contractility required for entotic cell
death, resulting in promotion of tumor growth in some types of cancer [43]. Some hopes
were raised by the ATP-competitive AKT kinase inhibitors AT13148 and CCT129254 that
also inhibit the Rho kinases ROCK1 and ROCK2 because they impaired both amoeboid and
mesenchymal modes of invasion in cell cultures [44]. CCT129254 was well tolerated in mice
when dosed daily at up to 200 mg/kg [45]. Nevertheless, hypotension, pneumonitis, skin
rash, and elevated liver enzymes were associated with AT13148 treatment. The narrow thera-
peutic index and the pharmacokinetic profile of AT13148 led to the recommendation not to
develop this compound further [46].

Targeting the cytoskeleton
All three cytoskeletal networks – actin microfilaments, microtubules, and intermediate filaments –
closely cooperate to control migration and they share some targetable regulatory proteins [47].
For example, Ser/Thr casein kinase CK2 is required for the proper assembly and function of mi-
crofilaments and microtubules, and is directly involved in the regulation of actin polymerization
(through WASP proteins and formin) and its dynamics (through coronin, PACSIN-1, or CKIP-1).
CK2may also affect the structure and function of microtubules by direct phosphorylation of tubu-
lin and a wide range of microtubule-associated proteins [48]. CK2 is a well-established therapeu-
tic target in cancer, but only one small-molecule inhibitor has reached clinical trials – CX-4945
[49,50]. Another CK2 inhibitor, the indeno[1,2-b]indole derivative 5-isopropyl-4-methoxy-7-
methyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (5a-2), was recently tested on cell
lines. Whereas CX-4945 showed a strong proapoptotic effect on tumor cells, 5a-2 was more ef-
fective in inhibiting tumor cell migration. This can be explained by the different subcellular distribu-
tions of these compounds leading to different sites of CK2 inhibition. For 5a-2, 71% was
detectable in the cytoplasm, whereas 49% of intracellular CX-4945 was localized in the nuclear
fraction [50].
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The actin cytoskeleton is indeed a potentially vulnerable feature of cancer cells, but the therapeu-
tic potential of actin-targeting agents has been impeded by high toxicity because the tested anti-
actin agents are unable to discriminate between the actin cytoskeleton of tumor cells and muscle
actin filaments. Although actin-targeting drugs such as cytochalasin D and jasplakinolide have
shown great promise, neither has made it to clinical trials. The possibility of targeting cancer-
specific isoforms of tropomyosin, a core component of actin filaments, was tested in the
study of Stehn et al. where compound TR100 inhibited tumor growth in melanoma and neuro-
blastoma mice models [51]. An effect on the actin cytoskeleton was also observed with the
widely used cytostatic cisplatin [52]. This may be one of the reasons for the efficacy of cisplatin
in preventing metastasis [53,54]. When administered at a higher dose (6 mg/kg), cisplatin
inhibited both cancer growth and metastasis in a mouse model, but with strong side effects,
whereas a lower dose (2 mg/kg) of cisplatin prevented cancer metastasis without visible cyto-
toxic effects [55]. Nevertheless, the tumor-suppressive actin-remodeling effect of cisplatin [13]
is probably cancer type-dependent because cisplatin-treated melanoma cells exhibit a signifi-
cant upregulation of FAK-and MAPK-mediated signaling that promotes the chemoresistance
and invasiveness of these cells. Accordingly, cisplatin is not effective against melanoma
[56,57].

As mentioned previously, confined migration can persist even when F-actin is disrupted, but this
depends largely on microtubules [24]. Furthermore, the microtubule-targeting agent (MTA) pac-
litaxel is 100-fold more effective at blocking migration in a 3D matrix than on 2D matrices [58].
This fact demonstrates that cells use different migration modes depending on physical confine-
ment. MTAs (paclitaxel, docetaxel, cabazitaxel, and vinca alkaloids) are widely used in the clinic
but their toxicity is often dose-limiting. Interestingly, themigrastatic effects of MTAs have been ob-
served at lower concentrations than those required for cytostatic effects. The subtoxic concen-
trations seem to be sufficient to inhibit cell migration [59–65]. Toxic side effects of MTAs can
also be, at least partly, eliminated by synergy with other anticancer drugs. Such synergy was
shown with compounds that target a specific population of actin filaments containing the
cancer-associated tropomyosin Tpm3.1 (ATM-3507 and TR100) [66,67]. Other toxic side effects
of MTAs can be eliminated, at least partially, by conjugation of the drugs with various carriers or
nanoparticles.

Nanocarriers targeting migration
Nanocarriers can often improve the delivery of conventional therapeutic drugs. As previously
stated, integrins are closely involved in cancer cell migration. Among inorganic nanomaterials,
gold nanoparticles (AuNPs) functionalized by Arg-Gly-Asp peptide (RGD motif) were found to re-
press cell migration by targeting integrins. In particular, integrin αvβ3, that is highly overexpressed
in cancer cells, can bind to the RGD motif, which makes it a promising target for nanotherapy ei-
ther for tumor detection or for enhanced specificity of drug delivery [68]. Accordingly, molybde-
num dioxide (MoS2)/gadolinium (Gd) particles containing RGD sequences showed potential as
contrast agents for magnetic resonance imaging [69]. Other effects of AuNPs include changes
in the cytoskeletal networks of treated cells, especially a reduction of filopodia and lamellipodia.
Furthermore, broad perturbations were observed in Rho GTPases, microtubule, actin, and ki-
nase-regulated signaling pathways downstream of integrins [70]. This antimetastatic effect of
AuNPs can be enhanced by activating AuNPs with near-IR light (808 nm) which generates heat
that can be further used for photothermal therapy (PTT) [71]. AuNRs in combination with PTT
were successfully used in the treatment of mammary gland tumors in dogs and cats. No metas-
tasis or cancer relapse was observed 1 year after treatment [72]. Upon nuclear targeting of
AuNPs by a nuclear localization signal, ovarian cancer cell motility decreased significantly due
to overexpression of lamin A/C and enhanced nuclear stiffness [73]. Silicon dioxide (SiO2),
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titanium dioxide (TiO2), and hydroxyapatite nanoparticles strengthened intracellular tension and
retarded collective cell sheet migration of TR146 cells. This could be caused by destabilization
of the microtubule network, leading to a drastic change in the magnitude and spatiotemporal dis-
tribution of cell traction [74]. In another study, high concentrations of iron oxide nanoparticles
within cells affected the cytoskeleton and focal adhesion kinase [75].

Magnetic nanoparticles (MNPs), in particular those comprising polyethylenimine (PEI)-coated
superparamagnetic iron oxide nanoparticles (SPIONs), showed their potential to reduce the ex-
pression of the cell migration-associated genes MMP9 and MMP14 and to alter actin polymeri-
zation. In vivo experiments conducted on MDA-MB-231 xenograft tumors in mice inhibited
formation of blood vessels and increased macrophage infiltration, indicating the potential use of
SPIONs as antiangiogenic agents [76]. Vascular endothelial growth factor (VEGF, a marker of an-
giogenesis), MMP2, andMMP9were successfully downregulated by tangeretin-zinc oxide quan-
tum dots (Tan-ZnO QDs). Tan-ZnO QDs studied on H358 metastatic lung cancer cells were
shown to decrease cell migration and proliferation, promote G2/M cell-cycle arrest, and induce
nuclear fragmentation and apoptosis [77]. In mice bearing 4T1 metastatic breast cancer tumors,
downregulation of MMP2 and MMP9 activity and expression was observed by using nanosized
lysolipid-containing thermosensitive liposomes transporting the MMP inhibitor marimastat.
Antimetastatic effects of such liposomes were demonstrated by a reduction in lung metastatic
nodules as well as a decrease in the number of tumor site microvessels [78]. Solid lipid nanopar-
ticles (SLNs) are another group of lipid-based nanomaterials. Docetaxel-loaded SLNs (DTX–
SLNs) were investigated in 4T1, MCF7, and NIH-3T3 cells, as well as in BALB/c mice bearing
4T1 tumors. In this study, DTX-SLNs were reported to induce microtubule damage and apopto-
sis, and decreased Bcl-2 and Ki-67 expression or IL-6 production, leading to lung metastasis
prevention as well as overall inhibition of tumor progression [79].

Therapeutic drugs with repurposing potential for migrastatic therapy in clinical trials or animal
studies are summarized in Table 1. Some of these drugs failed in clinical tests focused on cancer.
However, tumor size or advanced metastatic disease is unlikely to be influenced by migrastatic
therapy, and this can lead to the false assumption that a given therapy is ineffective.

ATP availability and mitochondrial metabolism influence cell migration
Both cytoskeletal reorganization and ECM remodeling and/or deformation require ATP-
dependent processes such as actin polymerization and actomyosin contractility. Maintaining an
adequate supply of ATP is crucial for cellular motility, and migrating cells thoroughly tune their en-
ergy utilization relative to the structure and mechanics of their microenvironment. An increase in
energy consumption is needed for migration through more demanding environments, and
changes in intracellular ATP/ADP levels are directly tied to changes in cell speed [80]. Collectively
migrating cells migrate more effectively than single cells. The leading edge of the group is occu-
pied by specialized front cells, the LCs [81]. Some evidence suggests that alternative metabolic
pathways are activated in LCs to fuel the metastatic process [82]. LCs probably require more en-
ergy than follower cells because they generate the pushing and pulling forces that are necessary
for migration through the ECM. The energy levels of LCs (as revealed by the intracellular ATP/ADP
ratio) must be high to exceed a threshold for invasion. Forward movement of an LC gradually ex-
hausts the available ATP reserves until the exhaustion reaches a threshold level under which it can
no longer invade. The LC is then replaced by the follower cell with sufficient energy supplies.
When placed in a denser collagen matrix, LC durability decreases [4]. Some studies also showed
that functional mitochondrial oxidative phosphorylation (OXPHOS) is crucial for metastatic
spreading. Pharmacological inhibition of pyruvate dehydrogenase (the enzyme linking glycolysis
to the tricarboxylic acid cycle in mitochondria), removal of mitochondrial DNA, or dihydroorotate
298 Trends in Cancer, April 2023, Vol. 9, No. 4
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Table 1. Therapeutic drugs with repurposing potential for migrastatic therapya,b

Pathway Targeted molecule Compound Status Refs

Cell adhesion αvβ3 and αvβ5 integrins Cilengitide Clinical trials (Phase 3; glioblastoma);
NCT00689221

[145]

Integrin α5β1 Volociximab Clinical trials (Phase 2; lung cancer);
NCT00278187

[146,147]

Integrin α5β1 ATN-161 Clinical trials (Phase 1; malignant glioma);
NCT00352313

[148]

Focal adhesion kinase (FAK) PF-00562271 Clinical trials (Phase 1; pancreatic, head and
neck, and prostatic neoplasms);
NCT00666926

[149,150]

Focal adhesion kinase (FAK) Defactinib Clinical trials (Phase 2; metastatic
melanoma); NCT04720417

[151]

Focal adhesion kinase (FAK) GSK2256098 Clinical trials (Phase 2; progressive
meningioma); NCT02523014

[152,153]

αvβ3, α3β1, and α5β1
integrins

Gold nanorods (AuNRs) Animal studies [70,73]

Cell polarization Rac1 and Cdc42 R-enantiomer of ketorolac Animal studies [154]

PI3K/mTOR NVP-BEZ235 Clinical trials (Phase 1; breast cancer);
NCT00620594

[155–157]

ECM remodeling MMP Marimastat Clinical trials (Phase 3; lung cancer);
NCT00003011

[21]

MMP Prinomastat Clinical trials (Phase 3; lung cancer);
NCT00004199

[21]

MMP BAY 12-9566 Clinical trials (Phase 3; advanced ovarian
cancer); NCIC CTG

[21,158]

MMP9 and MMP14 PEI-SPIONs Animal studies [76]

MMP2 and MMP9 Lysolipid-containing
thermosensitive liposomes

Animal studies [78]

Actomyosin contractility ROCK Y27632 Animal studies [32,159]

ROCK Fasudil Animal studies;
clinically approved for the treatment of
cerebral vasospasm

[32,159,160]

ROCK H-1152 Animal studies [161]

ROCK RKI-1447 Animal studies [162]

ROCK Wf-536 Animal studies [163]

ROCK2 KD-025/SLx-2119 Clinical trials for psoriasis vulgaris and
idiopathic pulmonary fibrosis
(NCT02106195, NCT02317627,
NCT02688647)

[41]

ROCK/AKT CCT129254 Animal studies [44]

Assembly and function
of microfilaments or
microtubules

CK2 CX-4945 Clinical trials (Phase 1; cholangiocarcinoma);
NCT02128282

[164]

β-Tubulin Paclitaxel FDA-approved [60]

β-Tubulin Docetaxel FDA-approved [60]

β-Tubulin Cabazitaxel FDA-approved [60]

αβ-Tubulin dimer Vinca alcaloids (vincristine,
vinblastine, vinorelbine,
vindesine, vinflunine)

FDA-approved [60]

β-Tubulin Docetaxel-loaded SLNs Animal studies [79]
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dehydrogenase (DHODH) inhibition reduced the ability of cancer cells to invade [82–84].
Commander et al. also defined a pyruvate dehydrogenase dependency of LCs that can be ther-
apeutically exploited with mitochondria-targeting alexidine dihydrochloride [82].

Many studies showed that, in migrating cancer cells, mitochondria localize at the leading edge
(along microtubules) to support enhanced cell motility and invasion by providing local sources
of energy [85,86]. The leading edge is fueled by OXPHOS and mitochondrial ATP, rather than
by glycolysis [86]. OXPHOS is also needed for mitochondria repositioning because pharmacolog-
ical inhibition of mitochondrial complex I (by rotenone), complex III (by antimycin A), complex V
(by oligomycin), or a mitochondrial uncoupler (carbonyl cyanide m-chlorophenyl hydrazine)
inhibited mitochondrial repositioning to the cortical cytoskeleton. Gamitrinib, a mitochondrial-
targeted Hsp90 (heat-shock protein 90) inhibitor that induces degradation of the mitochondrial
complex II subunit SDHB (succinate dehydrogenase complex iron–sulfur subunit B), successfully
prevented the accumulation of mitochondria in FAK-containing focal adhesions [87].

Energy demand and consequently AMPK (AMP-activated protein kinase) activity are elevated in
the leading edge of the migrating cell. This localized activation of AMPK increases mitochondrial
repositioning [86]. Mitochondrial Rho-GTPase 1 (Miro1), a mediator of microtubule-based
mitochondrial motility, is involved in this process. Mitochondrial repositioning, focal adhesion as-
sembly, and stability are decreased in Miro1−/− mouse embryonic fibroblasts. Consequently,
Miro1−/− cells migrated more slowly during both collective and single-cell migration [88]. Cancer
cells often reprogram mitochondrial dynamics managed by syntaphilin (SNPH), kinesin KIF5B,
and GTPase Miro1/2 to localize mitochondria to the cortical cytoskeleton and power the machin-
ery of cell motility [89]. High SNPH expression can reduce the velocity and distance covered by
individual mitochondria by suppressing mitochondrial dynamics, and consequently may inhibit
chemotaxis and metastasis. siRNA silencing of the anterograde kinesin KIF5B or Rho-GTPase
Miro1 suppressed tumor cell invasion induced by loss of SNPH. By contrast, silencing of Miro2
did not reduce tumor cell invasion in SNPH knockdown cells [89]. The asymmetric distribution
of mitochondria within migrating cells can be also disrupted by interfering with mitochondrial fu-
sion (Opa1) or fission (Drp1) proteins. Such interference significantly reduces the number of
cells with anterior localization of mitochondria, and significantly decreases the velocity and direc-
tional migration of the fastest moving cells [90]. Silencing of Drp1, overexpression of Mfn1 (fusion
protein), or treatment with a mitochondrial uncoupling agent or ATP synthesis inhibitor reduced
lamellipodia formation and decreased breast cancer cell migration and invasion, suggesting
that mitochondria play a functional role in breast cancer metastasis [91]. Functional mitochondria
also seem to be necessary for LC activity and collective migration [4]. Inhibition of mitochondrial
ATP synthesis can influence all known types of migration because actomyosin contractility,
actin treadmilling, and active solute pumping are driven by energy-consuming processes. Even
an osmotic engine – that does not require ATP for actomyosin contractility or actin treadmilling –

requires ATP as a direct activator of NHE1 and other solute carriers or ion channels [92]. Therefore,
targeting mitochondria can be a rational strategy for the development of migrastatic and
antimetastatic agents for cancer treatment.
Notes to Table 1:
aAbbreviations: AKT, Rac-α serine/threonine protein kinase; Cdc42, cell division control protein 42 homolog; CK2, Ser/Thr casein kinase; ECM, extracellular matrix; MMP,
matrix metalloprotease; mTOR, mammalian target of rapamycin; NCIC CTG, National Cancer Institute of Canada Clinical Trials Group; PEI, polyethylenimine; PI3K,
phosphoinositide 3-kinase; Rac1, Ras-related C3 botulinum toxin substrate 1; ROCK, Rho-associated protein kinase; SLNs, solid lipid nanoparticles; SPIONS,
superparamagnetic iron oxide nanoparticles.
bStatus: 'Clinical trials' means that the drug was involved in any type of clinical trial (not necessarily a clinical test for cancer). We only considered agents that have been
tested in animals or in clinical trials because their future therapeutic potential is higher and their repurposing is easier. The references cited refer to the use of these drugs in
cancer therapy.
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Mitochondria-targeting drugs with potential for cancer therapy
Many mitochondria-targeting drugs with potential as cancer therapeutics target electron
chain (ETC) transport complexes. This results in a drop in ATP production and consequent
activation of AMPK and inhibition of mTORC1 (mammalian target of rapamycin complex 1).
Rotenone is a potent inhibitor of mitochondrial complex I (CI) because it inhibits the transfer
of electrons from iron–sulfur centers in CI to ubiquinone. Rotenone is highly lipophilic, easily
crosses the blood–brain barrier, and accumulates in subcellular organelles including the mito-
chondria [93]. It also inhibits microtubule assembly [94] and restrains colon cancer cell motility and
epithelial–mesenchymal transition in nude mice [95]. Nanomolar concentrations of rotenone signifi-
cantly reduced the migration/invasion of A549 and H1650 cells and their cisplatin-resistant counter-
parts. Because rotenone at tested nanomolar concentrations did not cause cell death, the
decreased migration of the treated cells was not a consequence of reduced viability. Although
many ETC inhibitors including rotenone are toxic, therapeutic windows may exist for their low-
dose use in cancer therapy [96].

Metformin, nontoxic CI inhibitor, was found to suppress in vivo invasion andmetastasis of esoph-
ageal squamous cell carcinoma [97–99], breast carcinoma [100,101], non-small cell lung cancer
[102], cervical cancer [103], liver cancer [104], pancreatic cancer [105], and ovarian cancer [106].
It was found that metforminmay be used as adjuvant therapy in cancer treatment [107] because it
can increase the sensitivity of conventional chemotherapy drugs, making it a successful example
of drug repurposing for anticancer and antimetastatic treatment. In addition, several clinical stud-
ies have confirmed that it can improve patient prognosis, which may be achieved by inhibiting
cancer invasion and migration [108]. However, there is a concern about the resulting concentra-
tions of metformin in tumor tissues and their ability to inhibit CI. This has led to the development of
mitochondria-targeted analogs of metformin [109]. Another CI inhibitor, IACS-010759, is cur-
rently being evaluated in Phase 1 clinical trials in relapsed/refractory acute myeloid leukemia
and solid tumors [110]. Other CI inhibitors such as BAY87-2243, AG311, and kalkitoxin can in-
hibit cell migration and invasion through deactivation of hypoxia-inducible factor 1α (HIF-1α) sig-
naling that causes hypoxia-induced motility and invasiveness [111]. Inhibition of mitochondrial
oxygen consumption by these inhibitors was found to reduce HIF-1α stabilization by increasing
oxygen tension under hypoxic conditions [112–114]. Despite the lack of toxicity in mice, an initial
Phase 1 trial of BAY87-2243 in human (NCT01297530) needed to be terminated owing to unex-
pected toxicity and safety issues [115].

Tamoxifen (TAM), an established agent for the treatment of estrogen receptor (ER)-positive
breast cancers, was shown to inhibit CI at the flavin site [116]. Some results indicate
that TAM can enhance Twist1 degradation and consequently suppress cancer cell invasion
and metastasis, suggesting that TAM can be used not only to treat ER-positive breast
cancers but also to reduce Twist1-mediated invasion and metastasis in ER-negative breast
cancers [117].

The fact that cancer cells exhibit a higher mitochondrial membrane potential (Δψmt) compared
to normal cells has allowed selective targeting of cancer cell mitochondria and conjugation of
mitochondria-targeting molecules, such as triphenylphosphonium (TPP), mitochondrial-
penetrating peptide, rhodamine 123, and SS peptides, with FDA-approved anticancer drugs
[118]. TPP-tagged TAM (MitoTam) suppressed not only the primary tumor growth but also
the metastatic burden in blood, lung, and liver in the experimental 4T1 model of human
epidermal growth factor receptor 2 (HER2)-high metastatic breast carcinoma in mice [119].
MitoTam has been tested in a Phase 1 trial with encouraging outcomes and is entering
Phase 2 trials [118].
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Promising migrastatic properties are also exhibited by arsenic trioxide (As2O3), an FDA-approved
complex IV inhibitor used for the treatment of acute promyelocytic leukemia that is being investi-
gated in other cancer types. As2O3 reduces the invasive and metastatic properties of cervical
cancer cells both in vitro and in vivo [120], and mitochondrial cardiolipin-binding
panthamethinium salts (PMSs) [121], which accumulate in the mitochondria of cancer cells,
are reported to diminish their motility, migration, and invasive potential [122]. Furthermore,
PMSs cause the retraction of mitochondria from the leading edge of the cell, which can dimin-
ish the ability of cancer cells to migrate [86]. Liver metastatic colonization and metastatic poten-
tial of colorectal cancer was also strongly impaired by dihydroorotate dehydrogenase (DHODH)
inhibition by leflunomide [123]. DHODH converts dihydroorotate to orotate, and the resulting
two electrons are transferred to ubiquinone in the respiratory chain. DHODH-driven pyrimidine
biosynthesis is probably one of the key pathways linking respiration to cancerogenesis
[84]. Leflunomide also inhibited transendothelial migration of peripheral blood mononuclear
cells [124].

Some compounds, such as second-generation isoflavone ME-344, can inhibit several
mitochondrial complexes simultaneously. ME-344 has a recent history of both preclinical
and early clinical testing (NCT01544322) [125]. The drug has unusual cytotoxicity profiles,
where cancer cell lines can be either intrinsically sensitive or resistant. In addition to inhibition
of respiratory complexes I–V, the mechanisms of action also include inhibition of tubulin
polymerization, reduction in ATP production, activation of AMPK leading to induction of autoph-
agy, increased production of mitochondrial reactive oxygen species (ROS), inhibition of heme
oxygenase-1, and induction of its translocation to mitochondria [126]. ME-344 showed anti-
cancer activity in HER2-negative breast tumors, particularly after vascular normalization and
tissue reoxygenation induced by bevacizumab [125].

Another group of drugs that can interfere with electron flow along the ETC are substances that
disrupt mitochondrial metal homeostasis, such as elesclomol (STA-4783; the active form is a
deprotonated copper chelate) [127,128] and mitochondria-targeted deferoxamine (mitoDFO)
[129]. Such interference leads to the inhibition of ETC activity and oxidative phosphorylation
followed by elevated levels of electron leakage and ROS formation [128,129]. In a Phase 3
clinical trial, elesclomol showed a promising effect in the treatment of metastatic melanoma
(in combination with paclitaxel). However, this effect was limited to patients with low serum lac-
tate dehydrogenase (LDH) levels [130]. High serum levels of LDH are thought to reflect a type of
melanoma with decreased reliance on OXPHOS [131]. Deferoxamine (DFO) represents an
FDA-approved iron chelator that is widely used for the treatment of iron overload diseases.
Several clinical studies have shown that DFO also exhibits antitumor effects in patients with
neuroblastoma and hepatocellular carcinoma [132,133]. MitoDFO represents a way to deprive
cancer cells of biologically active iron in mitochondria, which can stop their proliferation, migra-
tion, and metastatic processes without disrupting systemic iron metabolism. MitoDFO signifi-
cantly suppressed tumor growth and metastasis in vivo [129]. Another iron chelator,
deferasirox (DFX), causes partial uncoupling and dramatic swelling of mitochondria but without
membrane depolarization or opening of the mitochondrial permeability transition pore [134].
DFX was shown to suppress the motility of cancer cells by reducing Cdc42 and Rac1 activation
in pancreatic cancer cell lines [135]. Furthermore, orally administrated DFX potently inhibited
lung carcinoma (DMS-53) xenograft growth in nude mice, with preservation of normal tissue
histology in other tissues [136]. Although the iron chelator VLX600 looked promising during
in vitro experiments [137], the Phase 1 clinical trial of this chelator (NCT02222363) was termi-
nated because of lack of efficacy. The clinical failure may be caused by poor drug accumula-
tion, which can be addressed by mitochondrial targeting [118].
302 Trends in Cancer, April 2023, Vol. 9, No. 4

CellPress logo


Trends in Cancer
OPEN ACCESS
Some substances originally developed for other purposes, such as inhibitors of Hedgehog
signaling, also have mitochondria-targeting effects. Cyclopamine tartrate and SANT1 strongly
interfere with mitochondrial function and suppress aerobic respiration in lung cancer cells
[138]. Inhibition of mitochondrial respiration interferes strongly with the proliferation, colony
formation, migration, and invasion in these cells. It also delays the growth and progression
of non-small cell lung cancer in subcutaneous as well as orthotopic lung tumor xenografts
[139,140].

However, targeting mitochondria has some limitations. Cancer cells are flexible and can compen-
sate for the loss of mitochondrial ATP production by exogenous mitochondrial transfer from host
cells in the tumor microenvironment. By this mechanism compromised respiratory function can
be reestablished [83,141]. Because mitochondrial transfer via tunneling nanotubes (TnTs) can
play a role in this horizontal transfer [142], drugs that inhibit TnT formation such as metformin
and everolimus [143] can be synergistic with mitochondria-targeting agents. Inhibition of
OXPHOS also induced mitochondrial fission and increased the numbers of functional mitochon-
dria in acute myeloid leukemia cells [141]. Therapeutic drugs targeting ATP availability and mito-
chondrial metabolism with potential for repurposing towards migrastatic therapy are summarized
in Table 2.
Table 2. Therapeutic drugs targeting ATP availability and mitochondrial metabolism with the repurposing potential for migrastatic therapya,b

Pathway Targeted molecule Compound Status Refs

Mitochondrial respiration Mitochondrial complex I Metformin Clinical trials (Phase 2 and 3; ovarian and breast cancer);
NCT01579812, NCT01101438

[108,165]

Mitochondrial complex I Rotenone Animal models [95]

Mitochondrial complex I IACS-010759 Clinical trials (Phase 1; advanced cancers, AML);
NCT03291938, NCT02882321

[110]

Mitochondrial complex I AG311 Animal models [113]

Mitochondrial complex I Tamoxifen FDA-approved (breast cancer) [116]

Mitochondrial complex I MitoTam Clinical trials (Phase 1/1b; metastatic cancers); EudraCT
2017-004441-25

[118,166]

Mitochondrial complex II
subunit SDHB

Gamitrinib Clinical trials (Phase 1; advanced cancers); NCT04827810 [167]

Mitochondrial complex IV Arsenic trioxide FDA-approved (acute promyelocytic leukemia) [120]

DHODH Leflunomide FDA-approved (rheumatoid arthritis) [123]

Mitochondrial complexes ME-344 Clinical trials (Phase 1; solid cancers); NCT01544322 [125]

Hedgehog signaling Cyclopamine tartrate Animal models [139,140]

Mitochondrial motility Miro1 Miro1 reducer Animal models [168]

Mitochondrial metal
homeostasis

Copper Elesclomol Clinical trials (Phase 2 and 3; ovarian cancer, melanoma);
NCT00888615, NCT00522834

[130]

Iron Deferoxamine FDA-approved (iron overload) [132,133]

Iron MitoDFO Animal models [129]

Iron Deferasirox Clinical trials (Phase 3; iron overload); NCT00171821 [136]

aAbbreviations: AML, acute myeloid leukemia; DHODH, dihydroorotate dehydrogenase; EudraCT, EU Drug Regulating Authorities Clinical Trials Database; MitoDFO,
mitochondria-targeted deferoxamine; MitoTam, mitochondria-targeted tamoxifen.
bStatus: 'clinical trials' means that the drug was involved in any type of clinical trial (not necessarily a clinical test for cancer). We only considered agents that have been
tested in animals or in clinical trials because their future therapeutic potential is higher and their repurposing is easier. The references cited refer to the use of these
drugs in cancer therapy. The term 'solid cancer' refers to a solid mass of cancer cells that grows in vital organs, whereas 'liquid cancers' occur in the blood, bone
marrow, or lymph nodes.
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Outstanding questions
Studies on tumor cell kinetics indicate
that even small tumors can have the
capacity to generate metastases.
Consequently, is tumor shrinkage
observed in preclinical studies an
adequate marker of the future clinical
benefit of the tested anticancer drugs?

Because the molecular mechanisms
that enable cellular proliferation differ
from those that enable cell migration
or invasion, should we not evaluate
candidate anticancer drugs for their
ability to stop the invasion or migration
of cancer cells even if they are not
cytotoxic to cancer cells and do not
have a high antiproliferative effect?

Can migrastatic strategies that
complement conventional therapy
decrease the risk of adverse effects
of anticancer treatment?

Several studies have shown that
cancerogenesis is accompanied
by changes in the content and
composition of cardiolipins
(mitochondrial phospholipids that
constitute ~20% of the inner
mitochondria membrane). Can
mitochondrial targeting of therapeutic
agents be improved by using cancer-
specific cardiolipin-binding molecules?
Concluding remarks and future perspectives
Although systemic metastases are responsible for ~90% of cancer deaths, most clinical trials
in cancer currently do not involve direct targeting of the metastatic process. Studies of tumor
cell kinetics indicate that even small tumors can have the capacity to generate metastases.
Consequently, the tumor shrinkage observed in preclinical studies may not be an adequate
marker of the future clinical benefit of the tested anticancer drugs, and greater emphasis
should be placed on the migrastatic and anti-invasive potential of the studied therapeutic
drugs.

Given the preventive action of migrastatics, the effectiveness of migrastatic strategies cannot eas-
ily be evaluated in clinical trials with cancer patients who already have an advanced form of the
disease. Furthermore, tumor size, cancer cell proliferation, and cell death markers are unlikely
to be influenced by migrastatic therapy, which can lead to the false assumption that a given ther-
apy is ineffective. This premature elimination of drugs from further research should be avoided in
the future, and selection of proper clinical endpoints for antimetastatic treatment such as
metastasis-free survival should be adopted.

Despite these obstacles, we believe that migrastatic therapy holds great promise in the future.
The big advantage of migrastatic therapy is that selection pressures caused by this type of ther-
apy may not cause resistance to conventional therapies based on antiproliferative effects be-
cause the targeted mechanisms are of a completely different nature [144]. Migrastatic
therapy can also support active surveillance approaches, restrict infiltration of adjacent tissues
and local invasion, and block further dissemination of cancer cells in patients with advanced
cancer. Limiting cancer cell motility may also reduce evolution towards progressively metasta-
tic phenotypes [2].

In conclusion, migrastatic strategies represent a unique approach that could prevent the devel-
opment of systemic cancer disease and limit cancer-related death. A successful migrastatic
therapy administered simultaneously with standard therapy could show a synergistic effect
and therefore reduce the need for aggressive high-dose cytotoxic therapies that are currently
used to combat metastatic dissemination. The best targets for migrastatic therapy seem to
be those that are required by all forms of motility, such as ATP availability and mitochondrial
metabolism, as well as cytoskeletal dynamics and cell contractility. ATP-depletion strategies
can be complemented by approaches that force cells to use more energy-consuming ways
of moving or that prevent them from moving in less energy-consuming ways. The fields of mo-
lecular biology and oncology should tightly cooperate to explore the evolution of tumors and
the exact mechanisms underlying metastatic dissemination. This type of research could pro-
vide innovative and exciting new ways to think about therapeutic combinations for treating me-
tastatic disease (see Outstanding questions).
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