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In 2022, we celebrated 200 years since the birth of Johann Gregor Mendel. Although his contributions to science went
unrecognized during his lifetime, Mendel not only described the principles of monogenic inheritance but also pioneered the
modern way of doing science based on precise experimental data acquisition and evaluation. Novel statistical and algorithmic
approaches are now at the center of scientific work, showing that work that is considered marginal in one era can become a
mainstream research approach in the next era. The onset of data-driven science caused a shift from hypothesis-testing to
hypothesis-generating approaches in science. Mendel is remembered here as a promoter of this approach, and the benefits of big

data and statistical approaches are discussed.

European Journal of Human Genetics; https://doi.org/10.1038/s41431-023-01303-1

JOHANN GREGOR MENDEL AND THE BIRTH OF BIOLOGICAL
STATISTICS

Mendel was born on 20 July 1822 in Hyncice (Heinzendorf), Moravia,
which was then a province of the Austro-Hungarian Empire (now
part of the Czech Republic). He was baptized Johann and took the
name Gregor in 1843 when he entered the Augustinian Monastery
of St. Thomas at Brno. The role of a monk extended far beyond the
care of men'’s souls at that time. Monasteries were centers of deep
interest in science, culture, and trade. After his ordination, Mendel
devoted himself to pastoral duties but found himself totally
unsuitable for the job because of his shyness. Then, he started to
teach in a secondary school in Znojmo (Znaim). However, he failed
to gain his teacher’s certificate and was sent to the University of
Vienna for further education. In Vienna, he studied several subjects,
including physics under Professor Christian Doppler (the discoverer
of the famous Doppler effect), chemistry, paleontology, and plant
physiology with Franz Unger, who introduced him to the most
recent scientific ideas, such as the newly developed cell theory [1].
During his studies, Mendel became an excellent experimenter and
gained familiarity with the doctrine of discrete units (atoms and
molecules) as the essence of physical and chemical processes.
Mendel returned to Brno in 1853, and he continued in the position
of the secondary school teacher despite lacking full qualifications. In
1856, he again failed the exam to become a qualified teacher. Abbot
Cyril Napp rescued Mendel's career by authorizing a program of
experimental hybridization at the St. Thomas monastery.

At that time, growers and breeders were puzzled that they could
not fully elucidate the rules of heredity. For generations, they had
produced detailed records of features such as the characteristics of
cattle, the color of flowers, or the number of kernels in an ear of
maize, but the hereditary process still seemed to be random.

Sometimes, characteristic features were missing for several
generations and then reappeared, and sometimes they disap-
peared completely. To get to the bottom of these issues, Mendel
decided that it was necessary to first isolate clearly defined
phenotypic traits. He did not try to track all phenotypic traits at
once but chose a few clearly defined features (characteristics such
as plant height, flower color, or seed shape). Although he began
his research using mice, he later switched to plants because his
bishop (Anton Ernst Schaffgotsch) found studying animal sexuality
offensive and inappropriate for the status of a monk. Hence,
Mendel decided to use garden peas as his primary experimental
model. Luckily, garden peas turned out to be a practical and
suitable model, as they took up little space, were cheap, and
produced offspring quickly. Between 1854 and 1856, Mendel
cultivated and tested thousands of pea plants because he assumed
that the more independent measurements he made, the more
likely it would be that he could rule out random phenomena. His
exhaustive study included tests of 34 varieties of garden peas for
trait consistency over several generations. He eventually developed
22 varieties of pea plants with consistent characteristics. Mendel
also repeated his experiment to verify his results [2]. Based on his
famous experiments, he proposed that discrete units referred to as
factors determine the appearance of a trait and that for each
physical trait, each factor has two contributing forms. He analyzed
the transmission of studied traits by using statistical models of
probability. Thus, Mendel began to apply statistics in biological
research, which was a pioneering approach. It must also be
emphasized that Mendel discovered his laws without any
hypotheses about the mechanism of heredity.

The fact that he did not try to discover the universal
evolutionary laws and mechanisms of heredity was probably
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responsible for the failure of his work in the scientific world.
Perhaps “Mendel’s way of thinking was more like a farmer’s than a
biologist’s” [3]. Mendel was obviously considered an outsider by
the scientific community. Reputable plant physiologist Carl
Wilhelm von Négeli, with whom Mendel had a long correspon-
dence (from 1866 to 1873), was competent enough to understand
the significance of Mendel's work but did not give it much
attention [1]. Moreover, he thought that Mendel’'s conclusions
were wrong. He obviously distrusted amateur scientists as he
added the derogatory note “only empirical.... cannot be rationally
proven” to his first letter to Mendel, as if experimentally
discovered laws were somehow inferior to those based on
rational thinking and imagination [4].

BIG DATA, WHY IMAGINATION IS NOT ENOUGH

Nageli's position has not aged well. Today’s science is based on
carefully validated experimental data, and a hypothesis is some-
times not put forth before obtaining valid experimental data;
instead, a large amount of data can first be collected, and a
hypothesis can be developed based on those data. Currently, it is
completely impossible for scientists to review large datasets and
evaluate their data themselves, as important patterns in these data
are mainly unrecognizable by the human brain. The shift toward
data-driven science caused a subsequent shift from hypothesis-
testing to hypothesis-generating scientific approaches. The speed
of data generation is increasing. The completion of the Human
Genome Project took approximately 13 years and cost more than
£2 billion. Today, next-generation sequencing (NGS) can produce a
whole genome in 24 hours for a thousand pounds [4]. Rapid NGS
allowed genome-wide association studies to be performed, in
which thousands of genomes from people with or without a given
disease can be considered. Consequently, an algorithm is needed
to compare genomes, identify differences, and then determine
which genes are linked to the disease without having to consider
either candidate genes or genes in general, as changes in
noncoding DNA may also be involved in a disease. While tracing
the relationship between genotype and phenotype is relatively
straightforward in the case of monogenic diseases, it is a pressing
problem in the case of multifactorial diseases. Importantly, socially
significant diseases such as cardiovascular diseases, diabetes
mellitus, or oncologic diseases are almost all complex and are
associated with tens or sometimes hundreds of genes or sections
of noncoding DNA in combination with environmental and lifestyle
factors, such as exercise, diet, or pollutant exposure.

One of the most difficult cases in tracing the link between
genotype and phenotype is cancer. Cancer cells are evolving
systems and can change their genetic background under selection
pressure. Accordingly, finding the connection between such
complex genetic background and the emergence of the cancer
phenotype may be difficult and almost impossible without using
computational methods. Intensive efforts to identify cancer-
contributing factors lead to the generation of big data. Novel
algorithmic methods such as artificial intelligence (Al) and
machine learning (ML), which can be used to identify patterns
and trends in the data that may not be intuitively evident, were
introduced to enable scientists to process big data generated
under international efforts such as the Pan-Cancer Analysis of
Whole Genomes (PCAWG) and the International Cancer Genome
Consortium (ICGC) projects. The ICGC project involves interna-
tional large-scale cancer genome studies addressing 50 different
clinically important cancer types and/or subtypes. More than
25,000 cancer patients were systematically studied at the
genomic, epigenomic, and transcriptomic levels [5]. A major
discovery arising from these big data was the confirmation of
the significant complexity of cancer genomes. Despite sharing the
same type of malign condition, each patient exhibits a unique
set of mutations, single nucleotide polymorphisms (SNPs), or
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chromosomal changes. Such diversity in the genetic landscape
can explain differences in treatment resistance and patient
outcomes. Furthermore, the NGS of tumors has disproved the
idea that tumors are a mass of genetically identical, cloned cells.
On the contrary, one tumor can contain dozens of different cell
types, each with different combinations of genetic changes
conferring vulnerability to different drugs or treatment regimens
[6]. On the other hand, NGS has also revealed some unexpected
similarities between cancers. There can be tumors at different
anatomical sites that share more in common with each other than
with tumors at the same anatomical site. Consequently, some
therapeutic drugs can be effective against histologically different
cancers. For example, pembrolizumab (humanized monoclonal
antibody that blocks the interaction between Programmed death-
1 (PD-1) and its ligands) may be beneficial to any cancer patient
harboring mismatch repair deficiency [7]. Despite the complexity
of cancer, deriving meaningful clinical predictors from genomic or
proteomic data can be achieved but requires sustainable updating
of databases and comprehensive clinical characterization of tens
of thousands of patients [8]. As these sample sizes are too large for
any single agency or institution to collect, extensive international
collaboration and data sharing is needed. It is also necessary to
use supercomputing to tailor personalized treatments based on
big data on the genome, proteome (sets of proteins that are
expressed by cells or tissues at a certain time and physiological
state), or interactome (whole set of molecular interactions in a
particular cell) and the etiology of the disease because the scale of
the data and the elucidation of possible connections will far
exceed human imagination.

(DO NOT) BE AFRAID OF BLACK BOXES

As Mendel had no idea of the existence of chromosomes or genes,
he focused on the input and output data represented by the plant
phenotypes. The mechanism of heredity was a black box to him.
However, he correctly concluded that a specific unit factor exists
for each trait (now known as an allele) and that each diploid
individual has two of these unit factors, one inherited from each
parent.

The development of diseases also represents a black box
between the genotype and the resulting pathological phenotype.
We are not yet able to understand all mechanisms involved in the
production of phenotypes from genotypes, but we can make some
sensible predictions based on the available data. Moreover, a good
prediction model does not need to provide an understanding of
the exact molecular mechanisms involved in developing specific
phenotypes or disorders. Deep learning (DL), a subdomain of
machine learning, significantly increases the capabilities of the
relevant prediction models. The prediction model only provides
output information based on the available input data. However,
when there is a large amount of input data (such as a combination
of genomic, proteomic, metabolomic, or patient clinical data, and
theoretically many others), simple models may fail; preferably,
deep learning-based methods can be used [9]. This approach has
been successfully applied in various genomics applications, such as
the prediction of responses to cancer therapy [10] or the inference
of gene relationships from single-cell expression data [11]. In these
applications, DL provided superior performance over previous
methods, and we can expect increasing significance of DL as its
performance increases with increasing amounts of training data
[9]. Nevertheless, the flip side of well-classified neural networks is
the nonintuitive interpretation of their architecture, a problem that
is again referred to as a black box. This lack of straightforward
interpretability in clinical applications is perceived as a disadvan-
tage of DL. Understanding network decision making can convince
a physician that a diagnosis is legitimate [12]. Multiple approaches
have been adopted to make deep learning networks explainable.
For instance, a “reverse-engineered” DL network was shown to aid
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in the identification of aggressive melanoma cancers based on
imaging data: by creating in silico images of cells that had never
been observed experimentally, the morphological features of
aggressive melanoma cells were identified [13]. Similar approaches
may also enable DL expansion into other fields of diagnosis.

BIG DATA AND STATISTICAL APPROACHES

The statistical approaches that were first implemented in Mendel's
study really paid off, as they have practical relevance for medicine
and biological sciences. Bioinformatics has been one of the key
scientific disciplines in the fight against COVID-19. These
approaches allowed the successful inference of the genomic
architecture of the SARS-CoV-2 virus, and in silico studies involving
NGS, genome-wide association studies, and computer-aided drug
design have been effectively applied in the fight against COVID-19
[14]. One of the best examples of the achievements of bioinfor-
matics is found in the realm of HIV treatment. HIV is characterized
by rapid mutation, which allows it to evade antiretroviral drugs.
The standard process for predicting the level of resistance relies on
known mutations conferring resistance to various antiretroviral
therapies. However, ML methods can now be used to address this
problem [15]. The design of new medicinal products is another
benefit of algorithmic approaches. ML methods have been
successfully introduced for the prediction of drug-target interac-
tions, which was made possible by the large amounts of drug and
target data available in existing databases [16]. The field of cancer
genomics has perhaps seen the most exciting developments,
mainly in relation to leukemia. Inclusive, multistage statistical
models can accurately predict the likelihood of remission, relapse,
and mortality in patients with leukemia. The comparison of long-
term survival probabilities under different treatments can provide
therapeutic decision support (available online) [8]. It is also possible
to discriminate age-related clonal hematopoiesis from stages
preceding acute myeloid leukemia many years before malignant
transformation [17]. The application of bioinformatic computa-
tional approaches together with the whole-genome sequencing
analysis of 2,658 cancers allowed the reconstruction of the life
history and evolution of mutational processes and driver mutation
sequences in 38 types of cancer [18].

The study of human cells as a system requires a near-complete
list of all cellular components (genes, methylation, noncoding
RNA, proteins, transcripts, organelles, etc.) and comprehensive
maps (interactomes) of how these factors interact with each other
to mediate cellular functions. An integrated strategy that could
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revolutionize genetic research lies in combining interactome big
data with ML, which allows the mining of information hidden in
data to identify the genetic models or networks that control
various phenotypic traits [19]. In multi-omic settings (different
proteomic, genomic data or knowledge about interactome are
combined during this type of analysis), the power of DL has
been demonstrated in many areas, including miRNA-encoding
sequences identification and miRNA target gene prediction by
DeepMirGene (miRNA precursor prediction algorithm) and Deep-
Target (end-to-end machine learning framework for miRNA target
prediction) [20, 21], the inference of target gene expression from
the expression of landmark genes by D-GEX [22], and gene
expression prediction based on histone modifications by Deep-
Chrome [23]. Furthermore, DeepVariant can call genetic variation
in aligned NGS read data [24], and the DeepFIGV model has
successfully predicted locus-specific signals for alternative alleles
from four epigenetic assays using only DNA sequences as the
input [25]. In work closer to clinical applications, we see the
predictive potential for survival analyses, as shown by DeepSurv,
DeepHIT, or DeepOmix networks [26-28]. With the last tool, it is
possible to extract relationships between survival and multi-omics
data. These applications are supervised networks, and most of
them use unified data; however, in most of these applications, DL
significantly outperforms other methods.

DEEP LEARNING LIMITATIONS AND FUTURE PERSPECTIVES
Given the boom in biotechnological innovations that will lead to
new high-throughput measurements and accelerate the genera-
tion of big data at the cellular and molecular levels (currently, the
amounts of these data are increasing exponentially and are
already too large and complex for visual investigation [29]), it can
be expected that the importance of ML and DL to basic and
applied life sciences will increase considerably in the future [30].
Nevertheless, we need to be aware of the limitations of these
methods. Their greatest success lies in their prediction accuracy;
however, we are often more interested in discovering biological
mechanisms than in black box prediction accuracy [31]. ML uses
handcrafted features for prediction, while DL is typically applied to
raw data, and feature extraction is performed by the model, which
further decreases interpretability. If these tools have been
available to Mendel, he would not have chosen the seven pea
plant characteristics that he studied (height, pod shape, seed
shape, pea color, and others) manually but would have relied on
feature extraction via DL networks (for illustration see Fig. 1; this

Fig. 1 Demonstration of the possibilities of data processing using deep learning. Artificially generated images using keywords: ,8k
photograph of Johann Gregor Mendel in his gothic monastery laboratory with pea plants, working with deep learning on his computer”.

Generated with Stable Diffusion 2.1.
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Fig. 2 Application of deep learning to the prognosis, diagnosis,
and treatment of multifactorial diseases. Multi-omic strategies
generating big data accompanied by deep learning may select a
meaningful subset of biomarkers and/or genomic alterations to
support clinically relevant decisions.

image was artificially generated by using a deep learning text-to-
image model). For example, a computational approach would
have helped Mendel to select features that are encoded in
separate chromosomes and therefore always segregate indepen-
dently. The discovery of crossing over and resulting recombination
occurred approximately 100 years after Mendel's experiments.
However, Mendel was lucky; he chose characteristics encoded by
genes that were located either far from each other on the same
chromosome or on different chromosomes, which enabled the
postulation of Mendel’s law of segregation.

ML (and especially DL) models are very successful in
supervised tasks based on large amounts of labeled training
data with a clearly defined input and output of the model;
however, omics data include heterogeneous features of various
types (numerical and categorical features and signals or images),
and labels (e.g. clinical outcomes) include large amounts of
randomness and noise, which makes the application of DL
problematic [32, 33]. Nevertheless, this approach can still handle
multimodal data, albeit at the cost of lower interpretability
[30, 34]. Another great advantage of DL methods is end-to-end
learning: DL does not require a feature extraction preprocessing
step, which is time consuming and error prone because of the
large variety of multi-omic data sources [30]. Even though the
most successful applications of DL in multi-omics are supervised,
generative models, such as generative adversarial networks
(GANSs), the use of two neural networks, comparing them against
each other, has shown the potential of these models in various
fields [31, 34].

The greatest successes of DL have been achieved in text and
image processing, where the largest amounts of data are
available. With a sufficient amount of data and model size, DL
models can be developed from single-purpose models (e.g.,
classification of specific types of images or text) into general
multipurpose models, such as GPT-3 [35] for text or CLIP/DALL-E
for images [36]. These models are mainly based on self-supervised
learning with enormous amounts of data; however, in various
specific tasks, these general models have outperformed proce-
dures specifically designed for them: although GPT-3 is trained to
predict the next word in text, it is also capable of language
translation or question answering. As the amount of data
generated in biological and, especially, genomic fields grows,
the importance of DL methods will continue to increase in the
future, as is also the case in other fields.
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CONCLUSIONS

In 2022, we celebrated 200 years since the birth of Johann Gregor
Mendel. Although his contributions to science went unrecognized
during his lifetime, Mendel pioneered our modern way of doing
science based on acquisition of experimental data and their
statistical evaluation. The example provided by Mendel shows that
what is considered marginal work in one era can become a
mainstream research approach in the next era. An integrated
strategy that could revolutionize genetic research lies in combin-
ing big data with ML or Al, which allows the mining of information
hidden in data to identify the genetic models or networks that
control various phenotypic traits such as multifactorial diseases. It
is also an important tool for developing more effective therapeutic
strategies for complex diseases (see Fig. 2).
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