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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Monthly historical LUR models were 
developed for air pollutants in Central 
Europe. 

• Model performance was moderate. 
• Exposures assigned to ELSPAC partici-

pants showed temporal and spatial 
variability.  
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A B S T R A C T   

Vulnerable windows in child development in utero and after birth are critical time points for uncovering the links 
between environment and health. Particular attention is paid to the first 1000 days of life from conception to the 
second year of life. 

The ELSPAC (European Longitudinal Study of Pregnancy and Childhood) birth cohort, launched in the early 
1990s, is a rich source of longitudinal data about health and life events, based mainly in Brno, Czechia. There are 
currently no air quality concentration maps that can be used to assess exposure to air pollutants for this period of 
the 1990s in Central Europe. Simply transferring current models to the 1990’s is burdened with the error 
introduced by the temporal change in emission sources and land use of the area. Therefore, Czech air quality 
monitoring data were used to develop monthly land use regression (LUR) models, which combine collected 
spatial variables with monitoring data to predict the variation in exposures to pollutants. Monthly pollutant 
concentrations were regressed against the GIS-based potential predictor variables to develop LUR models, 
following a supervised forward linear regression, with several predefined constraints. 

We constructed 180 LUR monthly models for sulphur dioxide (SO2), nitrogen oxides (NOx) and suspended 
particulate matter (SPM) for 1990–1994, that completely cover the first 1000 days for all ELSPAC study par-
ticipants. The final models showed, on average reasonably good performance (adjusted R2 = 0.59 with hold-out 
validation (HOV) R2 = 0.40 for SO2; adjusted R2 = 0.75 with HOV R2 = 0.35 for NOx; and adjusted R2 = 0.61 
with HOV R2 = 0.31 for SPM; with a mean number of stations of 74, 38 and 41, respectively). For these models, 
roads and greenness were predominantly selected as the best predictors. 
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The modelled exposures will serve in many subsequent ELSPAC epidemiological studies, but our models may 
be also used in other Czech and possibly other Central European cities in that period.   

1. Introduction 

Air quality is considered to be a major environmental factor affecting 
human health (WHO, 2013). Both short-term and long-term exposures 
to air pollution are associated with health impacts (Dalecká et al., 2020; 
Manisalidis et al., 2020). Air pollution has a particularly negative effect 
on the elderly, children and those with pre-existing health problems 
(European Environment Agency, 2018a). 

Both the magnitude and timing of exposure to air pollution play a 
crucial role in the development of many diseases (Gulliver et al., 2018; 
Luo et al., 2021; Wright, 2017). This is of particular importance in 
developing fetuses (Baïz et al., 2011; Kajekar, 2007; Klepac et al., 2018; 
Smarr et al., 2013) and newborns, where many organs and mechanisms 
(including those acting against toxic factors) are developing (Hogg et al., 
2012; Kajekar, 2007). Exposure in pregnancy can also alter immune 
competence and result in asthma or allergies (Baïz et al., 2011). Studies 
regarding such timing of exposure refer to this period as “vulnerable 
windows” (Etzel, 2020; Selevan et al., 2000). Particular attention is paid 
to the first 1000 days of life from conception to the second year of life 
(Darling et al., 2020). Insight into much more detailed time scale of 
exposures can help studies that seek to search for disease origins, these 
exposure estimates should often be as short as months (Wright, 2017). 

Models are needed to estimate past exposures, as monitoring 
generally lacks sufficient spatial resolution. This becomes highly rele-
vant when longitudinal health data from cohort studies need to be 
evaluated in the context of potential environmental exposures (Chen 
et al., 2010a; Gulliver et al., 2013; Levy et al., 2015; Muttoo et al., 2018). 

Land use regression (LUR) models are used in many areas, usually 
with outputs in annual concentrations in different cities and in spatial 
resolutions, allowing researchers to compare participants’ exposures in 
epidemiological studies (Gulliver et al., 2011; Hoek et al., 2008, 2015). 
LUR models are developed using air quality data from a limited number 
of monitoring stations in association with surrounding geospatial char-
acteristics as potential predictor variables (i.e. population density, road 
classes, usage of the land) estimated using geographic information sys-
tems (GIS) (Beelen et al., 2013; Eeftens et al., 2012). The models are then 
applied to locations (e.g. residential addresses), where no measurements 
are available (Hoek et al., 2015). LUR models are relatively robust, with 
lower data requirements than dispersion models (Hoek et al., 2008). 

Several studies have used back-extrapolation of the most recent LUR 
models to cover earlier measurement periods (Chen et al., 2010a; Eef-
tens et al., 2011; Wang et al., 2013). However, extrapolations relying 
only on past-to-present ratios may not be valid for earlier years, as may 
correlations between population, road density and pollutants, and the 
distribution of emissions may change significantly over time. 

LUR models have been used to study the association between birth 
outcomes and maternal air exposure in many recent studies (Ahmed 
et al., 2022; Bettiol et al., 2021; Luo et al., 2021; Manisalidis et al., 
2020). Unfortunately, most studies have been conducted in Europe, 
North America, Australia, and a few in East Asia. All European studies 
are exclusively from Western/Southern/Northern Europe and none from 
Central or East Europe. 

In 1991–1992 a prospective birth study was conducted as part of the 
European Longitudinal Study of Pregnancy and Childhood (ELSPAC) in 
the districts of Brno and Znojmo (Piler et al., 2016). A proper environ-
mental assessment for this birth cohort is still lacking. 

The aim of this study is to develop spatially and temporally detailed 
historical LUR models for sulphur dioxide (SO2), nitrogen oxides (NOx) 
and suspended particle matter (SPM) covering 1000 days of life for all 
ELSPAC children. We focus on the city of Brno, where most participants 

lived and where at least some monitoring stations were located. Models 
for SO2 and SPM are often missing in the literature, and these pollutants 
were the ones measured at the most stations in the early 1990s. This 
research addresses a critical gap in our understanding of the impact of 
air quality on acute and long-term children’s health in the understudied 
Central European region. By providing comprehensive estimates, it will 
be significant resource for future assessments of air pollutant exposures 
and related health impact analysis of ELSPAC cohort. In addition, the 
results of this study may apply to even broader Central European region 
than this study. 

2. Methods 

The Czech part of the European Longitudinal Study of Pregnancy and 
Childhood (ELSPAC) is one of six prospective birth cohort studies 
initiated by the World Health Organization (WHO). In the Czech Re-
public, the target population was all eligible pregnant women who were 
residents of two South-Eastern districts of the country – Brno and 
Znojmo – and who were due to deliver between March 1st, 1991 and 
June 30th, 1992 (Piler et al., 2016). At the outset 5151 mother-child 
pairs consented to participate out of 7589 births in the study regions. 
The cohort has so far been assessed for diet, household chemicals, and 
life stress events (Grulichová et al., 2020; Mikeš et al., 2019; Stepani-
kova et al., 2021), but a proper environmental assessment is still lacking. 
The period of our research overlaps with the socio-economic trans-
formation of the Central European region that occurred after the end of 
the communist regime. Post-communist Central European countries 
were transitioning from central planning to market economies. Decrease 
in industrial productivity on the order of tens of percentages and the 
introduction of the first air protection laws also dramatically altered 
pollutant emissions in the region (Fig. S1) (Kunc and Tonev, 2022). 

In contrast to the more common annual models, we decided to 
develop monthly LUR models because of the application to the birth 
cohort. Other reasons for developing monthly models were the expected 
large seasonal differences in emissions from different sources in a given 
period. 

2.1. Monitoring stations and study area 

Air quality monitoring in the Czech Republic started in the late 1960s 
with SO2 and SPM. Since the 1990s, NOx has also been measured. The 
number of air quality (AQ) monitoring stations changed from year to 
year and by pollutant measured. The methods predominantly used were 
UV-fluorescence, West-Gaek spectrometry and coulometry for SO2, 
chemiluminescence and spectrophotometry-triethanolamine method for 
NOx, and gravimetry and radiometry for SPM. 

Monthly averaged concentration data were obtained for selected 
monitoring stations present in the period 1990–1994 for the Czech Re-
public from Czech Hydrometeorological Institute (CHMI) (Fig. 1). As 
there were insufficient stations in Brno and close surroundings, we 
initially included all Czech stations, and then filtered the stations ac-
cording to three selection criteria to derive a model relevant to the Brno 
urban area and to improve the specificity of the model. First, stations in 
urban and sub-urban areas, that are relevant to our LUR model for larger 
cities were selected. Rural stations were also included if located in the 
South Moravian Region or officially assigned as Czech background 
monitoring stations to increase the contrast for modelling and provide a 
regional background. The second criterion originates from the situation 
in the 1990s in the Czech Republic (then Czechoslovakia), where the 
coal mining industry and associated coal processing facilities were a 

O. Mikeš et al.                                                                                                                                                                                                                                   



Atmospheric Environment 301 (2023) 119688

3

large source of SO2 and SPM pollution (see Fig. S1). Coal mining was 
predominantly present in the northwest and northeast of the country 
(marked in shading on Fig. 1). Stations from these areas were excluded 
from our analysis, as they represent an exposure scenario not relevant 
for our cohort. Third, months where stations had less than 75% valid 
measurements were also excluded from the analysis. In total, 181 sta-
tions were used where at least one valid monthly average value was 
available. The position of the monitoring stations and the percentage of 
valid monthly averages in the area of interest is summarized in Fig. 1. A 
basic description of monitoring stations is provided in Table S1. 

2.2. Geographical and meteorological data 

We have collected the maximum available data, used in LUR models, 
for the period in question, although this is quite challenging with 30- 
year-old data. 

All spatial data derivations were processed in ArcGIS Pro software 
(ver. 2.5.0 and later) in predefined buffers for each monitoring site. 
Buffers were constructed taking into account known dispersion patterns 
(Beelen et al., 2013; Eeftens et al., 2012; J. G. Su et al., 2009). First, 1990 
estimates from the Global Human Settlement database in a spatial res-
olution of 250 × 250 m were used to obtain population and percentage 
of the built-up area. As there was insufficient local spatial data, we had 
to use this global dataset. The data were resampled to a 10 × 10 m raster 
and converted to points. Buffer statistics were calculated for each point 
(according to Table 1). The total population was calculated in buffers of 
100, 300, 500, 1000 and 3000 m around each site (Florczyk et al., 2019). 

Landcover was obtained from the CORINE database (European 
Environment Agency, 2018b); we used Corine Land Cover (CLC) 1990 
(Version, 2020_20u1) as the most appropriate for our study. To reduce 
the number of classes we merged some similar categories (i.e. continuous 

urban fabric and discontinuous urban fabric into urban area). The 
following land cover areas were derived: Urban, Industrial, Ports and 
Airports, Mines and dumpsites, Urban green, Nature, Agriculture and 
Water. Intersection areas were calculated for each buffer separately. The 
surface area (in m2) of each land use was calculated in buffers of 100, 
300, 500, 1000 and 5000 m. 

The 2016 digital elevation model (ARCDATA, 2016) was used, 
following the reasonable assumption that terrain does not change 
significantly over the years. The mean elevation was extracted for each 
buffer to reflect the effect of the altitude on the results, as well as the 
range of heights, which can serve as a proxy for terrain roughness. 

While traffic intensities data are generally more desirable in LUR, 
this feature was not available for all monitoring stations in our study. In 
the absence of traffic data, several LUR studies have successfully used 
the length of specific road types without traffic intensity data (Ahmed 
et al., 2022; Novotny et al., 2011; Wang et al., 2013). Road data were not 
available in a reliable digitised historical map and thus we have used 
Open Street maps (OSM) and a historic road atlas (1990) and manually 
updated the road network around monitoring stations and in the city of 
Brno from 2020 OSM to the state as in 1990. All the motorway, primary 
and trunk class roads with their links were included in the first class to 
include fast, national, and international connection roads. The second 
class was defined to include important and quite heavily trafficked roads 
(in OSM depicted as secondary, secondary link, tertiary, tertiary link). 
The third class included more minor roads including categories of living 
street, residential, service roads, and tracks grade 1–5. We calculated the 
length of all road types within specific buffers. The influence of the road 
segment on the surrounding air concentrations often follows an expo-
nential decrease with increasing distance (Zhu et al., 2002). Therefore, 
we have included the inverse distance and the quadratic inverse distance 
to the nearest road as variables. 

Fig. 1. Map of all monitoring stations from Czech Republic included in the LUR model building for years 1990–1994. In red, city of Brno is depicted where ELSPAC 
cohort is located. The bar graphs show the percentage of measurements that each station contributed to the models. Major coal regions excluded from the study are 
depicted as dashed polygons. 
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For the monthly meteorological data, we used the official monitoring 
stations closest to the air quality station. If the data from the nearest 
station were not reported, the next closest meteorological station was 
used. The locations of all monitoring stations have been checked and 
converted to the World Geodetic System 1984 (WGS84). All sources and 
resolutions of parameters and measurements used are summarized in 
Table 1. 

2.3. Model development and evaluation 

Model development was performed in the program RStudio (R 
version 4.1.0 (2021-05-18). Average monthly pollutant concentrations 
were regressed against the GIS-based potential predictor variables to 
develop LUR models, following a supervised forward linear regression 
approach described before (Beelen et al., 2013; Chen et al., 2019; Eef-
tens et al., 2012; Muttoo et al., 2018). Considering the nature of the 
variables, we predefined negative slopes for the following potential 
predictor variables: urban green, agricultural areas, natural spaces 
(other than urban green), water bodies, temperature, and wind speed. 

Firstly, a univariate linear regression model was built for each potential 
predictor variable to find the best predictor that explained the maximum 
variance in the measurements. Secondly, at each subsequent step, the 
significant predictor variable (P < 0.1) that added most to the model 
adjusted coefficient of determination (adjusted R2) was added to the 
model. Predictors only entered the model if they adhered to the pre-
defined direction of effect (e.g., positive slopes for roads and negative 
slopes for nature spaces). Predictor variables were added to the model 
until the model adjusted R2 could not be increased anymore. In the final 
step, predictor variables with a variance inflation factor (VIF) larger 
than three were removed from the model to avoid multicollinearity. All 
final models were checked for influential observations (Cook’s D > 1) 
and residuals of the concentrations were tested for spatial autocorrela-
tion using Moran’s I to assess the independence assumption. The model 
was re-run using all but the influential observation(s). If the model co-
efficients changed largely (>5%), we retained the new model (Sanchez 
et al., 2018). 

Five-fold hold-out validation (HOV) was performed to evaluate each 
model. The full set of measurements was randomly divided into five 

Table 1 
Variables used in the modelling with description, time characteristics, units, source of the data and defined buffer sizes.  

Name Type of the data Time Variable Units Type/ 
Resolution 

Source Reference Time 
access 

Buffers 
(meters) 

Global human 
settlement 

Population and 
building density 

1990 Population 
density 

Absolute 
number of 
inhabitants 

Raster/ 
250mx250m 

https://ghsl.jrc.ec. 
europa.eu/do 
wnload.php? 
ds=bu 

Florczyk et al. 
(2019) 

19.12.2020 100, 300, 
500, 
1,000, 
3000 Density of 

inhabitants by 
square 
kilometre 

Pop/km2 

Built area 0–100% Raster/ 
250mx250m 

https://ghsl.jrc.ec. 
europa.eu/do 
wnload.php? 
ds=bu 

Florczyk et al. 
(2019) 

19.12.2020 100, 300, 
500, 
1,000, 
3000 

Digital elevation 
model 

Elevation 2016 Mean elevation m above sea 
level 

Raster/ 
50mx50m 

https://www. 
arcdata.cz/produk 
ty/geograficka-da 
ta/arccr-500 

(ARCDATA, 
2016) 

19.12.2020 100, 300, 
500, 
1,000, 
3000 

Elevation range 

Corine Land Cover Land use data 1990 Urban m2 Vector/ 
accuracy 
100 m 

https://land.coper 
nicus.eu/pan-eur 
opean/corine- 
land-cover/clc- 
1990?tab=me 
tadata 

European 
Environment 
Agency 
(2018b) 

10.1.2021 100, 300, 
500, 
1,000, 
5000 

Industrial 
Port 
Mines and 
dumpsite 
Agricultural 
Urban green 
Nature 
Combination of 
Urban green 
and Nature 
Water 

Open Street Map 
with 
modifications 
from historical 
road atlas 

Road classes 2020, 
1991 

Length of road 
classes 

meters Vector https://www.ge 
ofabrik.de 
/data/download. 
html  

9.6.2020 25, 50, 
100, 300, 
500, 
1000 

Inverse 
distance to the 
nearest road 

m− 1 

Squared 
inverse 
distance to the 
nearest road 

m− 2 

Coordinates Longitude, 
Latitude in 
WGS84 
coordination 
system 

2020  Decimal 
degrees 

– https://www. 
arcdata.cz/produk 
ty/geograficka-da 
ta/arccr-500 

(ARCDATA, 
2016) 

19.12.2020 – 

Monitoring 
stations 

Concentration 
data 

Monthly/ 
1990-94 

SO2 μg/m3 Points www.chmi.cz  19.12.2020 – 
NOx 
SPM 

Meteorological 
data 

Meteorological 
conditions 

Monthly/ 
1990-94 

Temperature ◦C Points http://portal.ch 
mi.cz/historicka 
-data/pocasi/me 
sicni-data/mesic 
ni-data-dle-z.-12 
3-1998-Sb  

10.1.2021 – 
Humidity % 
Wind speed m/s  
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groups (20% each). Five additional HOV models were developed 
following the same process described above, each based on 80% of the 
monitoring stations, with the remaining 20% for validation. HOV R2 and 
RMSE were computed by comparing the stacked predictions at the five 
HOV test sets to the corresponding measurements. 

The resulting models were adjusted to concentrations measured 
directly in Brno in a given month to best fit the exposures in the ELSPAC 
study; this method was also applied in other LUR models (Beelen et al., 
2013). 

The above-described regression models allowed the derivation of 
estimated air concentration values for a rectangular grid with 25 m 
resolution, covering the area of Brno. All steps related to the extraction 
and calculation of variables for regression modelling, as well as visual-
ization of results in the form of maps, were done using ArcGIS PRO 
software. 

To finalize the map bases for non-urban areas (e.g. forests, water 
reservoirs) which do not correspond to the scope of model use, con-
centrations from the rural monitoring station were used. None of these 
extrapolated values are related to the addresses of our participants. 
Background data were also used in other studies to estimate non-urban 
locations (Beelen et al., 2013; Gulliver et al., 2018; Muttoo et al., 2018). 

3. Results 

3.1. Air monitoring data 

181 stations in total (Table S1) were included in the analysis based 
on the selection criteria described above (number of valid measure-
ments, outliers) within a given period. The number of stations with valid 
data used to develop specific monthly models was on average highest for 
SO2 (74) than for SPM (41) and lowest for NOx (38). 

The mean monthly values ranged from 10.73 μg/m3 to 102.25 μg/m3 

for SO2, from 17.79 μg/m3 to 67.60 μg/m3 for NOx, and from 41.90 μg/ 
m3 to 117.52 μg/m3 for SPM. For all pollutants the highest concentra-
tions were within the heating season between November and March, 
peaking in February. This was most evident for SO2, as this pollutant is 
most associated with coal burning for heating. The highest measured 
average monthly concentrations in the study period were 243.61 μg/m3 

for NOx, 309.13 μg/m3 for SO2 and 228.65 μg/m3 for SPM. The monthly 
average measured concentrations from the selected stations in the study 
period are summarized in Fig. 2. Detailed statistics for all stations 
included in our analysis are summarized in the Supplementary materials 
(Table S1). 

3.2. Modelling results and validation 

In total, 180 models were constructed (5 × 12 months for three 
pollutants). All models are summarized in the Supplementary material 
(Table S2). The explained variability (average adjusted R2) of models 
were 0.59 (SD = 0.10) for SO2, with an average HOV R2 = 0.40 (SD =
0.12); 0.71 (SD = 0.13) for NOx, with an average HOV R2 = 0.35 (SD =
0.12) and 0.61 (SD = 0.13) for SPM, with an average HOV R2 = 0.31 (SD 
= 0.12). Five-fold HOVs showed the highest stability for SO2>SPM >
NOx. The lowest stability was observed in particular where a low 
number of stations was used. In instance where there was insufficient 
monitoring data available for particular month, we were unable to 
construct a valid model. In such cases, we utilized a model from the 
following year and the same month. Such model was adjusted to the 
meteorological conditions and monitoring data specific to that month 
and year. This approach was not required for SO2; however, it was 
necessary for NOx for 15 months, 12 of which were in 1991; and for SPM 
for 19 months, 12 of which were also in 1991. Notably in 1991, NOx was 
only monitored on average in 50% of monitoring stations compared to 
other years and in the case of SPM it was 70%. This recalculation 
consistent with other studies such as the SAVIAH (Small-Area Variations 
In Air Quality and Health) study, where models were even transformed 

from different sites (Briggs et al., 2000), or with other European LUR 
models (Beelen et al., 2013; Eeftens et al., 2012). Models with low sta-
tion numbers were generally less robust, as can be seen from the HOV 
results. 

All model performances are in detail described in Table S3; here 
yearly summary descriptive can be found in Table 2. 

RMSE values were on average 10.22 μg/m3 (SD = 6.18) for SO2; 
10.15 μg/m3 (SD = 4.69) for NOx and 9.29 μg/m3 (SD = 4.46) for SPM. 
The Moran’s I spatial autocorrelation in residues was generally low and 
insignificant with just a few exceptions for several SO2 models and one 
for NOx and SPM. Multicollinearity was observed within the modelling 
process and some of the models were recalculated based on high VIF. 
After recalculations, all final models had VIF<3. 

The number of predictor variables in these models ranged from 2 to 
9. Of the total number of the variables used in all models (ntotal = 1022) 
roads and greenness variables were most frequent (27% and 25.8% 
respectively), followed by terrain and coordinates (13.5 and 10.3% 
respectively), and population characteristics (8.7%). In terms of buffer 
size, road length in 300 m was most frequently applied variable (33 
times for 2nd class roads and 25 times for 1st class roads); for greenness, 
the 5000-m buffer (91 times urban green and 41 times the combination 
of urban green with nature areas); for terrain, the range of elevations in a 
radii of 3000 m (42 times); and in 100 m buffer (24 times) for urban 
fabric land use variable. Some land use variables like agriculture or 
mines and dumpsites were rarely present as a significant variable in any 
models. The distribution of grouped variables is summarized below in 
Fig. 3. 

3.3. Estimated air concentrations in study area 

The models for the study area were constructed in a 25 m grid. Brno 
and its surroundings cover an area of about 453 km2, which translates 
into around 730,000 grid cells. Grid centroid was used for characteri-
sation of LUR parameters. The results are displayed here as annual av-
erages for all pollutants (Fig. 4). 

Air concentrations corresponding to all individual addresses in the 
pre- and post-natal life periods were spatially joined with calculated 25 
m grid concentration maps. Air concentrations for the residences of 
ELSPAC study participants are summarized in Table S4 and displayed in 
Fig. S3. Concentrations and their range were highest in winter months. 
The results also show that the distribution of concentrations in the study 
area varied depending on the month. 

4. Discussion 

We were able to construct monthly average LUR models for SO2, NOx 
and SPM for the years 1990–1994 in the Czech Republic to link to a birth 
cohort study. The final models on average showed fairly good perfor-
mance (adjusted R2 = 0.59 and HOV R2 = 0.40 for SO2; adjusted R2 =

0.70 with HOV R2 = 0.35 for NOx; and adjusted R2 = 0.61 with HOV R2 

= 0.31 for SPM. 
We found a sizable drop in HOV performance compared to training 

model R2. In a previous systematic comparison of the difference between 
model and HOV R2 (Wang et al., 2012), this difference was strongly 
influenced by the number of sites. Specifically, for 36, 48 and 72 sites the 
drop in R2 was 19, 18 and 13% respectively. Consistently, the drop in R2 

in our study was lower for SO2 for which more sites were available than 
for NOx and SPM. The drop in R2 in our study was modestly higher than 
the difference reported by Wang et al. (2012), where the NO2 concen-
trations were based on four weekly samples in the year 2007. The larger 
drop may be related to the period and development of monthly models. 
We did not find any papers on monthly models in the early 1990s to test 
that hypothesis. 

O. Mikeš et al.                                                                                                                                                                                                                                   



Atmospheric Environment 301 (2023) 119688

6

Fig. 2. Monthly mean from monitoring stations in μg/m3 and standard deviations for the whole study period. On the x-axis only Decembers (XII) are labelled for the 
sake of clarity. 
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4.1. Comparison with previous studies 

The performance of our models is broadly comparable to other 
studies. Performance statistics are difficult to compare across studies as 
the validation method differs (e.g. internal or external). Furthermore, 
our models are monthly models and most previous models were annual 
average models. Finally, our models were developed for a period for 
which it was challenging to obtain relevant predictors and monitoring 
data. LUR models have not been widely developed for SO2. In the 
published studies R2 was between 0.24 and 0.88 (Amini et al., 2014; 
Gulliver et al., 2011; Huang et al., 2017; Poirier et al., 2015), and with 
validation R2 0.26–0.71 where described. While our R2 ranged between 
0.42 and 0.84 (mean 0.59) with mean HOV R2 0.40. Of these models, 
only the Gulliver et al. (2011b) model dealt with a similar period, 
namely the annual model for 1991, where the adjusted R2 was 0.24 and 
the explanatory parameters were coordinates and variables describing 
the degree of urbanization. NOx is modelled less often than NO2, with R2 

between 0.63 and 0.91 (Giorgis-Allemand et al., 2017; Jason G. Su et al., 
2009; Wolf et al., 2017), and with validation R2 0.31–0.88 where 
described in the study; in our case R2 was 0.44–0.96 with a mean value 
of 0.71 and a mean HOV R2 of 0.35. PM10 is a fraction of particle matter 
in aerodynamic diameter smaller than 10 μm, for which some LUR 
models were also developed with an R2 ranging between 0.42 and 0.90 
(Amini et al., 2014; Dadvand et al., 2013; Giorgis-Allemand et al., 2017). 
In our study, R2 for SPM, which also includes bigger particles than PM10, 
ranged from 0.31 to 0.96 with a mean value of 0.61 and a mean HOV R2 

of 0.31. To our knowledge, only two studies developed an SPM LUR 
models. First study with R2 0.11 and the correlation between predicted 
and observed SPM concentrations of 0.25 (Kashima et al., 2009); in a 
second study, R2 was 0.55 and LOOCV R2 0.44 (Fukuo et al., 2018). 

4.2. Air pollution changes in studied period 

One of our challenges was to assess exposure levels in a transition 
period in Czech Republic with fewer data on concentrations and key 
sources than nowadays. The air pollution levels experienced in the 
Czech Republic in the 1990s were far higher than at present. Mean SO2 
concentrations ranged between 10.73 and 102.25 μg/m3, while the 
highest yearly mean concentration in 2020 from a station located in a 
heavy industry area was 8.8 μg/m3. Mean NOx concentrations ranged 
between 17.79 and 67.60 μg/m3, whereas nowadays monthly mean 
concentrations range from 2 μg/m3 in rural areas to 90.2 μg/m3 of NOx 
at a hot spot traffic station. The SPM monthly mean distribution was 
41.90–117.52 μg/m3. SPM is the fraction of aerosols sampled with high- 

volume samplers and it has a diameter of approximately <50–100 μm 
and thus cannot be directly compared with current measurements of 
PM10 (EEA, 1996). The range of the PM10 mean concentrations in the 
Czech Republic in 2020 was 7–33 μg/m3, where the highest mean values 
were measured on the industrial stations, which were not included in 
our modelling (CHMI, 2021). 

The two most important anthropogenic emission sources of SO2, NOx 
and SPM are typically transport and fossil fuel combustion (EEA, 2018). 
Although some efforts to reduce vehicle emissions in Europe started as 
early as 1970 with Directive 70/220/EC, a more coordinated emissions 
reductions started in 1993. Gradually, “Euro” emissions standards for 
NOx and particles, and other compounds were tightened. When 
sulphur-containing fuels are burned, sulphur, as a natural component of 
oil and coal, is released as SO2. However, the Directive on the sulphur 
content of certain fuels only came into force in 2001 (EEA, 2010). As 
shown in Fig. S1., there was a dramatic change in air pollutant emissions 
in the Czech Republic during the 1990s. Firstly, this was due to the 
economic transition towards a market economy, concurrent with a 
decline in heavy industry (Kunc and Tonev, 2022). Secondly, the law on 
the regulation of emissions from large sources was adopted in 1991 and 
has been in force since 1998. Thus, the 1990s had a gradual reduction in 
emissions from larger emission sources (CHMI, 2021). All participating 
children in ELSPAC study were born in 1991 and 1992. 

Because of these temporal changes in sources, we could not use 
simple back-extrapolated models. Back-extrapolated models assume a 
broadly stable spatial pattern with only the absolute level changing 
(Chen et al., 2010b; Knibbs et al., 2018). Most of the models contained 
greenness and road variables, as expected based on the similarities to 
other LUR models developed previously (Gulliver et al., 2013; Hoek 
et al., 2008; Saucy et al., 2018), but differed among years and months for 
each pollutant. These differences may reflect changes in the spatial 
patterns of pollutant levels and source contributions over time. This 
highlights the need to build these models for specific months and years 
to improve the accuracy of exposure estimates. A simple historical 
back-extrapolation may not be adequate, especially in periods of broad 
socioeconomic changes. 

4.3. Predictor variables 

Predictor variables were generally consistent with previous LUR 
models (Hoek et al., 2008). One or more road variables occurred in 
almost all models constructed for NOx and SPM, but somewhat less so in 
the models built for SO2. Transportation was a significant source of 
emissions in the 1990s, but to a somewhat lesser extent than industrial 

Table 2 
Summary description of model performances.  

SO2 mean adjusted R2 mean HOV R2 range of R2 range of HOV R2 mean N range N 

1990 0.598 0.334 0.397–0.727 0.198–0.525 72 31–91 
1991 0.618 0.382 0.405–0.811 0.148–0.636 65 33–76 
1992 0.687 0.458 0.454–0.831 0.245–0.598 72 60–88 
1993 0.628 0.452 0.405–0.735 0.202–0.614 81 66–119 
1994 0.591 0.402 0.400–0.705 0.205–0.529 79 66–95 
NOx 
1990 0.697 0.328 0.368–0.843 0.113–0.571 36 24–56 
1991a 0.808 0.309 0.516–0.951 0.187–0.567 29 20–43 
1992 0.808 0.309 0.516–0.951 0.187–0.567 29 20–43 
1993 0.731 0.362 0.539–0.919 0.210–0.737 43 29–69 
1994 0.719 0.422 0.577–0.816 0.289–0.589 53 42–80 
SPM 
1990 0.634 0.243 0.390–0.687 0.104–0.624 39 27–51 
1991b 0.637 0.311 0.390–0.715 0.111–0.624 43 35–52 
1992 0.605 0.303 0.278–0.715 0.111–0.624 45 35–64 
1993 0.716 0.367 0.278–0.949 0.160–0.526 36 31–64 
1994 0.727 0.315 0.478–0.882 0.164–0.395 40 27–58 

Mean adjusted R2-mean squared Pearson correlation of the adjusted model, HOV- fivefold hold-out validation, N- number of monitoring stations used for modelling. 
a models for NOx 1991 are taken from 1992. 
b models for SPM 1991 are taken from 1992 and 1990 for March. 
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Fig. 3. Number of occurrences of each category of variables in the LUR models for each pollutant and month.  
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and residential sources. 
Greenness in the cities can serve to dilute pollution or simply rep-

resents a lack of anthropogenic emission sources. All greenness-related 
variables were used in many models quite uniformly distributed be-
tween pollutants and months, although slightly more often in the 
growing season. Variables representing green spaces were most common 
in the 5000-m buffers, likely reflecting the broad influence of greenery 
on the surrounding area. 

Latitude, with predicted concentrations declining from north to 
south, was included in 99 models. We attribute this to the fact that the 
areas with the highest emissions were in the northern parts of the Czech 
Republic. Monitoring stations within highly industrialized localities 
were excluded from our analysis, but the north/south distribution was 
still observed in our data. Latitude appeared in all SO2 models. SO2 main 
emissions are primarily from coal-burning facilities, typically situated 
close to coal mines. Latitude does not have a significant effect on the 
modelled concentrations in our study area (Brno) but is important for 
the potential application of our models in other urban areas in the 
Central European region. 

Topography has been identified as a significant predictor in some 
LUR models, (Giorgis-Allemand et al., 2017; Schembari et al., 2015), 
and was also found to be important for our models as well. Terrain 
variables were most often used with the largest 3000-m buffers for all 
pollutants, both for average elevation and for the range of altitudes, 
which better defines the overall hilliness of the surrounding terrain. 

Housing and population densities are important parameters in many 
LUR models (Giorgis-Allemand et al., 2017; Wolf et al., 2017). 
Population-related variables were most frequently present in SPM (41 
cases) followed by NOx (33) and relevant for SO2 in only 15 cases. Urban 
land use as a variable was most common population description vari-
able. We expected the variables describing population to be more 
strongly associated with the heating season, but this was not the case in 
all months. However, it is also possible that more populated areas, while 

needing more heating, also have a more frequent central heat supply, 
which is the case, for example, in the study area of Brno. 

Industry can be an important source of air pollution and it has been 
used as a LUR predictor variable in several studies (Amini et al., 2014; 
Giorgis-Allemand et al., 2017; Gulliver et al., 2011). However, our 
modelling found that it was only effective predictor in 3.2% of cases. 
Industrial emissions typically originate from sources elevated above the 
ground, such as smokestacks. Therefore air dispersion for these emission 
sources have a great influence on air quality values measured at ground 
monitoring stations. More careful consideration of industrial variables 
(e.g. specific point emissions) may be required to better implement this 
variable into LUR modelling (Muttoo et al., 2018). 

4.4. Strengths and limitations 

Our study has a number of strengths, particularly the modelling of air 
pollution exposures in a period with sparse data on concentrations and 
predictor variables. We were able to develop LUR models for monthly 
averages, accounting for temporal variability. LUR models may not be 
easily transferable to different regions or countries, as the predictors and 
relationships between land-use and air pollution can vary across regions. 
In our case, we sought to create a model that would be applicable to the 
entire republic, but also to neighbouring countries, such as Slovakia, 
with which the Czech Republic at that time formed one state. 

Our study has clear limitations as well. The number of stations and 
the number of months with valid data varied considerably during this 
dynamic period. Using stations that had all valid data for all months, 
would have resulted to an inability to construct valid models. Only five 
stations had 100% values for SO2 and none for the other two pollutants 
(Table S1). 

Some of the predictor variables were available only from global 
databases and did not always refer to the period of interest. For the road 
data we used paper maps that were adapted to the recent 

Fig. 4. Final maps in 25 × 25 m resolution for annual average concentrations modelled for all pollutants. From top to bottom SO2 (in green), NOx (in orange) and 
SPM (in blue). From left to right 1990–1994 (μg/m3). 
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OpenStreetMap data. We did not have access to traffic volume data 
which likely contributed to the moderate performance of especially our 
NOx and SPM models. Finally, we had no information on emissions of 
key industrial point sources in the study period. We instead worked with 
industrial land use from the Corine database. 

We developed separate monthly models for the five years of the study 
period for the sake of simplicity. We did not use the more complex 
geographically-temporally weighted models (Shen et al., 2022) or other 
spatio-temporal models. Shen et al. (2022) found little difference in 
performance between 20 annual-specific and a single spatio-temporal 
model. A single model is computationally more efficient and benefits 
from neighbouring months. 

5. Conclusions 

We were able to construct monthly average LUR models for SO2, NOx 
and SPM for the years 1990–1994 in the Czech Republic for to be linked 
to a birth cohort study. Our models will be, with the same methodology, 
but time-specific variables, later extended also for other life periods. Our 
models will serve as the basis for exposure estimates in longitudinal 
environmental epidemiological studies for cohorts in an area where no 
similar models have been applied, particularly during the socio- 
economic transition of the region. 

Our results showed significant differences in exposures to air pol-
lutants during different trimesters and early-life vulnerable windows in 
children, as we were able to estimate monthly and spatially-resolved air 
concentrations in detail. These findings will be of great use for studying 
the impacts of air pollution on birth outcomes, respiratory diseases, and 
neurodevelopmental disorders in the prospective longitudinal cohort 
study ELSPAC. 

Furthermore, the models can be utilized in other Central European 
cities during the same period. 
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Wheeler, A.J., Labrèche, F., Ross, N.A., 2010b. Back-extrapolation of estimates of 
exposure from current land-use regression models. Atmos. Environ. 44, 4346–4354. 
https://doi.org/10.1016/J.ATMOSENV.2010.07.061. 

Chen, J., de Hoogh, K., Gulliver, J., Hoffmann, B., Hertel, O., Ketzel, M., Bauwelinck, M., 
van Donkelaar, A., Hvidtfeldt, U.A., Katsouyanni, K., Janssen, N.A.H., Martin, R.V., 
Samoli, E., Schwartz, P.E., Stafoggia, M., Bellander, T., Strak, M., Wolf, K., 
Vienneau, D., Vermeulen, R., Brunekreef, B., Hoek, G., 2019. A comparison of linear 
regression, regularization, and machine learning algorithms to develop Europe-wide 
spatial models of fine particles and nitrogen dioxide. Environ. Int. 130, 104934 
https://doi.org/10.1016/j.envint.2019.104934. 
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Wolf, K., Cyrys, J., Harciníková, T., Gu, J., Kusch, T., Hampel, R., Schneider, A., 
Peters, A., 2017. Land use regression modeling of ultrafine particles, ozone, nitrogen 
oxides and markers of particulate matter pollution in Augsburg, Germany. Sci. Total 
Environ. 579, 1531–1540. https://doi.org/10.1016/J.SCITOTENV.2016.11.160. 

Wright, R.O., 2017. Environment, susceptibility windows, development, and child 
health. Curr. Opin. Pediatr. https://doi.org/10.1097/MOP.0000000000000465. 

Zhu, Y., Hinds, W.C., Kim, S., Shen, S., Sioutas, C., 2002. Study of ultrafine particles near 
a major highway with heavy-duty diesel traffic. Atmos. Environ. 36, 4323–4335. 
https://doi.org/10.1016/S1352-2310(02)00354-0. 
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