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Abstract

The human brain is designed to perceive the surrounding world as associations. These associations between the individual
pieces of information allow us to analyze and categorize new inputs and thus understand them. However, the support for
association-based analysis in traditional network analysis tools is only limited or not present at all. These tools are mostly
based on manual browsing, filtering, and aggregation, with only basic support for statistical analyses and visualizations
for communicating the general characteristics. Yet, it is the relationship diagram that could allow the analysts to get a
broader context and reveal the associations hidden in the data. In this paper, we explore the possibilities of relational
analysis as a novel paradigm for network forensics. We provide a set of user requirements based on the discussion with
domain experts and introduce a novel visual analysis tool utilizing multimodal graphs for modeling relationships between
entities from captured packet traces. Finally, we demonstrate the relational analysis process on two use cases and discuss
feedback from domain experts.
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1. Introduction

Every organization and device connected to the net-
work constantly faces cyber threats against which they
are trying to defend. On the other side, the attackers
constantly react to such efforts by inventing new ways to
exploit weak points. When they are successful, it is cru-
cial to investigate the attack’s type, origin, impact, and
spread to prevent similar threats in the future (ENISA,
2010). For example, the investigator needs to understand
how the malware got on the device or if the device has
communicated with others in the network. Such investi-
gation can be effectively achieved through network traffic
analysis (also referred to as network forensics) (ENISA,
2018), which we focus on in this work. Even though many
automated network traffic analysis tools are available to
support the investigation (Sikos, 2020), the analyst often
has to perform the analysis manually to discover all crucial
information. He or she can be overwhelmed in the early
stages of analysis as it is unclear where to start since the
volume of data is so extensive (D’Alconzo et al., 2019).
The automated tools often provide a statistical overview,
intrusion detection functions, various visualizations, and
the ability to filter and browse the data. However, many
hidden relations in the data may remain undiscovered.

The human brain is used to perceive characteristics of
the surrounding world as associations (Zhang et al., 2020).
By linking different information, we can analyze a given
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problem and understand it. In the case of data analysis,
this approach can be reflected by modeling the associa-
tions through multimodal graphs (also known as relational
graphs), where nodes represent various modalities or types
of entities. For example, this technique is already used in
criminal investigation (Atkin, 2011; Zákopčanová et al.,
2021) or social network analysis (Tabassum et al., 2018)
to build situational awareness and explore broader con-
text. Nevertheless, in the case of network traffic analysis
and forensics, this approach is either not provided at all or
only in a limited form. In contrast to current methods fo-
cused only on network host relations, the relational analy-
sis of all significant attributes of the network traffic (e.g.,
hosts, applications, connections, and data) provides better
insights and helps to reveal otherwise hidden information.
To make this possible, it is necessary to face challenges
related to not only the processing and storing of large vol-
umes of network traffic data but also their visualization
and interactive exploration reflecting the analysts’ needs.

To explore the feasibility of relational analysis in net-
work traffic forensics, we have designed and implemented
an open-source toolkit Granef, introduced in our previ-
ous work (Cermak and Sramkova, 2021), that models at-
tributes of the network traffic as entities, and store them
in a graph database. This article extends this work and
focuses on the exploratory analysis of such data in a novel
user interface. We grounded the design requirements of
the interface based on analyzing commonly used tools for
network forensics and interviews with domain experts (cy-
bersecurity incident analysts). As a result, the presented
Granef User Interface (Granef UI) allows analysts to in-
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teractively analyze the network data by using predefined
queries or fetching the neighbors of selected nodes (depth
search). In addition, the displayed relational graph data
can be searched, clustered, tagged, or visually modified to
make it as easy as possible to navigate through the data.
We have prepared two use cases to demonstrate the capa-
bilities of Granef UI and evaluate it through a qualitative
user study with five domain experts. Although relational
analysis was a new paradigm for them, they were posi-
tive about the tool’s features and quickly learned the basic
principles of relational analysis.

The contributions of our work are threefold. First, we
define a set of design requirements for using relational
analysis in network traffic analysis. Second, we design
and implement a Granef UI and provide it as open-source.
Third, we demonstrate the proposed analysis approach on
two use cases and evaluate it using a qualitative user study.
This work can be leveraged by both cybersecurity special-
ists to explore the new approach to network traffic analysis,
as well as computer graphics and visualization specialists
who want to research the possibilities of using relational
graphs for data analysis.

2. State of the Art

This paper focuses on a combination of analysis ap-
proach and visual aspects of network data analysis. There-
fore, we divide this section into two parts. The first part
focuses on analyzing network traffic data and briefly intro-
duces current tools used to analyze such data and perform
network forensics. The second part focuses on relational
analysis and introduces relevant analytical tools applying
this approach to analyzing various data types and sources.

2.1. Network Traffic Analysis
Network traffic analysis is a key element in understand-

ing network events and hosts’ behavior while performing
network forensics. The crucial part is the analysis of col-
lected data (e.g., packets or IP flows), aiming to extract the
required information and gain a situational overview. Such
analysis can be partly automated using anomaly or intru-
sion detection tools (Fernandes et al., 2018). However,
these tools may not reveal details important to evidence
collection, and therefore manual exploratory network data
analysis plays an important role, allowing analysts to ver-
ify detected anomalies, examine contexts, or extract addi-
tional information. Since network data are considered to
be big data, their processing and analysis face challenges of
volume, velocity, variety, and veracity (D’Alconzo et al.,
2019). In the case of network forensics (Messier, 2017),
it is further emphasized by the requirement to manually
analyze all the data and preserve their origin, which also
limits the use of automated tools aggregating the data.

Typically, the analyst’s steps during network foren-
sics consist of listing some statistics and then focusing
more on investigating suspicious or significant observa-
tions (Šrámková, 2022). Therefore, automated tools and

statistical analysis are employed at the beginning of the
analysis to help point out such observations. If the ana-
lyst identifies some notable network event (e.g., communi-
cation with malware C&C or unusual peak in the volume
of transferred data), his or her objective is to identify the
event’s origin, its essence, and trace all related hosts and
connections. The same applies if the analyst initially re-
ceived information about the suspicious event from an ex-
ternal source (e.g., an intrusion detection system). In the
following list, we briefly introduce common tools that are
used today for network forensics and exploratory network
data analysis. Further details can be found either in the
tools documentation or in the survey by Sikos (2020).

• Wireshark1 – It is a de facto standard for packet
trace analysis widely used across many commercial
and non-profit enterprises. It provides a rich feature
set for in-depth analysis of network data and sup-
ports deep inspection of hundreds of network proto-
cols in a three pane-view (packets list, packet details,
and packet bytes as hex dump). In the case of TCP
or UDP traffic, Wireshark organizes the captured
data on a per-ethernet-frame basis and allows the
user to inspect different layers by filtering and dis-
playing the data or isolating the TCP/UDP stream.

• Arkime2 – It is a large-scale, open-source, indexed
packet capture and search tool with a web interface.
Its main feature is the ability to track and visual-
ize network connections and extract metadata. The
main page of Arkime is the Sessions page, which dis-
plays a timeline and a list of indexed communications
sessions for the filtered expression and allows the ex-
port of them as packet trace. To provide a broader
picture, the SPI (Session Profile Information) View
page shows aggregated statistics on different session
metadata and allows their direct filtering. The tool
also includes a Connection page that displays a sim-
ple relational graph of communicating hosts.

• Brim3 – An open-source tool for network forensics
and threat hunting, combining the Zeek network mon-
itoring tool (The Zeek Project, 2022) and Suricata
intrusion detection system (OISF, 2022). Both com-
ponents produce contextual data based on packet
captures, which an analyst reviews. Brim brings all
of this together, presents the analyst with a graph-
ical user interface, and provides its own query lan-
guage (called ZQL) supporting aggregation functions
to inspect the data. The user interface consists of
a timeline showing the number of connections, a list
of connections corresponding to the selection, and
a pane with selected connection details. It also pro-
vides a direct link to Wireshark, where the analyst
can further inspect selected network connections.

1https://www.wireshark.org/
2https://arkime.com/
3https://www.brimdata.io/
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• Elastic Stack4 – A universal tool for the storage
and analysis of various textual data. Although it is
not directly designed for network forensics, it can be
used for this purpose, but the network traffic needs
to be processed by another tool first (e.g., Zeek).
The Elastic Stack consists of multiple tools that can
work together or separately, whereas the main parts
are Elasticsearch, which is used to store the data,
and Kibana, providing a user interface offering many
data visualizations. In the case of network forensics,
Elastic Stack is mainly used to obtain a macro-view
through various visualizations of aggregated data.

In addition to standalone tools, the capabilities of mod-
ern web browsers initiated the development of tools pro-
viding network traffic analysis as a service. For exam-
ple, CapAnalysis (Costa, Gianluca, 2019) allows users to
review large PCAP files, parse the data streams, filter
out ports, protocols, or IP addresses, and associate them
with geographical areas. A-packets (A-Packets, 2022) and
PacketTotal (PacketTotal, 2022) provide multiple individ-
ual views on PCAP files through a set of dashboards fo-
cused on individual characteristics extracted from the data
(e.g., application, TLS certificates). NetCapVis (Ulmer
et al., 2019) and PCAPFunnel (Uhlár et al., 2021) pro-
vide both overview and support for explorative analysis
through step-by-step data filtering.

Although there is a wide variety of tools for network
data exploration that differ in features, visualization ca-
pabilities, and adoption, their focus is only on model-
ing relations between hosts (i.e., communications between
network nodes). None of them genuinely leverages the
paradigm of relational analysis.

2.2. Relational Analysis
Relational analysis has proven to be useful in vari-

ous contexts and domains. Notably in criminal investi-
gations, where this approach is traditionally used by crim-
inalists (Atkin, 2011) and being integrated into analytical
tools such as Visilant (Zákopčanová et al., 2021). In com-
puter science, Feijs et al. (Feijs et al., 1998) showed its po-
tential for analyzing software architectures. Ah-Pine and
Marcotorchino introduced a general framework for data
mining and decision making (Ah-Pine and Marcotorchino,
2010). In digital forensics, Chen and Malin (2011) used
the technique in anomaly detection based on the access
logs analysis. There are also general tools focused on rela-
tional analysis, such as Neo4j5, but they are not prepared
for exploratory analysis of network traffic data.

Granef is a pioneering example of applying relational
analysis in network forensics. To the best of our knowl-
edge, our approach brings a fresh perspective to tradi-
tional network analysis and introduces the principles of
association-based network traffic representation into the

4https://www.elastic.co/elastic-stack/
5https://neo4j.com/

visual analytics workflow. It is supposed to help the ana-
lysts think about the data in a way closer to the general
perception of how computer networks work.

3. Data Model

Proper data representation and storage are key prereq-
uisites for exploratory network traffic analysis using rela-
tional graphs. In our previous work, we addressed these ar-
eas, introduced data processing parts of the Granef toolkit,
and simplified the network traffic data model proposed by
Neise (2016) and Leichtnam et al. (2020). In general, the
model follows the format of Zeek logs, preserves their rela-
tion, and eases extension by other data sources. The base
model consists of the following four vertex types:

• Host – a device with an IP address observed in the
network traffic capture;

• [Host-data] – information related to the host ex-
tracted from network traffic (e.g., hostname, TLS
or e-mail certificates, downloaded files);

• Connection – general information about individual
network connections (e.g., protocol, ports, connec-
tion time, number of packets);

• [Application] – application data extracted from the
connection (e.g., DNS, HTTP, TLS data).

Edges between vertices represent their relations and
preserve the information about their origin. A simpli-
fied diagram of vertices and edges is shown in Figure 1.
All edges are bidirectional to allow reverse processing for
querying from an arbitrary node regardless of its type.
Formally, the model represents the entities in a multimodal
graph described by Ghani et al. (2013) as “the traditional
ordered pair G = (V,E) comprises of a set of vertices V
and edges E, but where vertices can be partitioned using
a modality equivalence relation ∼mod. This modality re-
lation ∼mod is defined using the notion of vertex type, and
the equivalence classes (partitions) defined by relation are
called modes. We can further define a modality relation
for edges based on a tuple of the modes of the two vertices
an edge connects.” The advantage of such an approach to
data representation is a simple extension by adding new
data sources (e.g., IDS alerts, OSINT data) as vertices and
analyzing them with network traffic data within a unified
visual environment.

originated
responded

[host-data]

Host

produced

Connection

[Host-data]

communicated

[host-data/uid] [Application]

Figure 1: Simplified diagram of the relational network traffic data
model (based on (Cermak and Sramkova, 2021)).
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To extract and store the network traffic data in a de-
fined data model, we use the transformation and data stor-
age modules of the Granef toolkit (Cermak and Sramkova,
2021). It provides the pipeline for extracting the data
from network traces and stores them in a graph database.
The main components of the pipeline are the Zeek net-
work security monitor and Dgraph6 database. Zeek is
used to extract information from a network packet trace
file, such as connection information, related metadata, sta-
tistical properties, and cleartext partitions of application
protocols (even encrypted ones). This extracted data is
transformed into the defined data model and stored in
the database. The database can be queried using Dgraph
Query Language (DQL) based on GraphQL, a modern
data query language providing high versatility. The toolkit
provides an abstract layer API with common analysis func-
tions such as neighbor discovery or data filtering to ease
the analysis. It is worth mentioning that the initial version
of the Granef toolkit provided simple graph visualization
of the stored data. However, it was intended for demon-
stration purposes and lacked functionality for an effective
exploratory analysis.

4. User Tasks and Requirements

The key requirement for exploratory analysis and data
visualization is to support analysts and provide them with
answers to the analytical questions as easily and fast as
possible. In general, it must not only allow them to browse
collected data (micro-view) but also provide an overview
and broader context (macro-view). To properly design and
develop such an analytical system, we have closely cooper-
ated with domain experts from an incident response team
and specialists focused on network forensics. Together
with them, we have identified typical questions for net-
work traffic analysis on which we defined requirements for
exploratory analysis using relational graphs.

4.1. User Tasks
In general, any security and forensics analysis tries to

answer the common questions: what, when, where, how,
and who. The purpose of the analysis then determines
how detailed answers are needed. In the case of analysis
during incident response, it is crucial to find information
as quickly as possible to recover from an incident and go
back to “business as usual”. In contrast, forensic analysis
is usually associated with law enforcement, and the goal
is to “solve the case” The analysis must therefore be more
thorough and focused on more details. In the following
sections, for simplicity, we will focus on the analysis of
network data performed as part of incident response, but
note that the principles and results we will present are
applicable in both domains.

6https://dgraph.io/

As a basis for defining common user tasks, we have
used recommendations by ENISA, 2010 and CISA, 2021
organizations that describe a typical analysis workflow in
incident response. We have further consulted our findings
through semi-structured interviews with domain experts
in network and cybersecurity analysis from our university
CSIRT, representing the target users of the tool. This
led to the definition of the following five typical analytical
questions, which are designed to verify incident severity,
understand its origin, and evaluate its impact.

• How was the host infected? – Determine the type of
attack and how it was performed.

• Did the attacker scan for open services or vulnerabili-
ties? – Determine if any vulnerability of an available
service has been exploited.

• Did the host communicate to a malware C&C or an-
other suspicious IP address? – Identify indicators of
compromise (IoC) and verify that there are no other
compromised machines.

• Did the host send a large amount of data outside the
local network? – Verify that no sensitive data has
been exfiltrated.

• Did the host communicate with other devices in the
local network? – Check whether the attacker in-
fected other network hosts.

4.2. Requirements
We have used defined typical analytical questions to

evaluate commonly used tools described in the State of the
Art section and identified the functionality they provide
to answer these questions. In addition, we have also ana-
lyzed the initial prototype of demonstration visualization
provided by the Granef toolkit. The result of this evalua-
tion is a set of functional and non-functional requirements,
which we generalized and formulated as the following five
key user requirements for exploratory analysis of network
traffic data using relational graphs.

• R1: Visualizing entities and their relation-
ships – The main attributes of the network traf-
fic data will be displayed using an oriented multi-
modal graph. The interactive relationship visual-
ization should allow the analyst to inspect details
about any selected node and gain new observations
through in-depth graph exploration. Basic statisti-
cal information (e.g., number of results, minimum,
maximum, and average values of entity attributes)
will be available for the displayed data.

• R2: Facilitating graph interaction – The user
will be able to customize the graph’s layout and other
interface elements, including aggregation. The tool
should facilitate getting initial insights about net-
work connections. It should also allow distinguishing
regular and suspicious network traffic at first glance
based solely on the resulting pattern.
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Figure 2: Granef UI’s visual analytics interface: a graph view with rendering oriented relational graph; b tools menu providing different
options to interact with the graph; c Detail child window providing various details related to the selected node(s) or edge(s) of the graph;
d Search dialog for structured filtering and data querying.

• R3: On-demand data enrichment – The ana-
lyst can enrich network traffic data with additional
information from external sources linked to displayed
nodes (e.g., asset management, shared threat intelli-
gence, device logs, notes). The tool should also allow
the analyst to include the results of anomaly detec-
tions in a visualization.

• R4: Visual and parametric filtering – The data
selection and filtering will be possible both by en-
tering into a form and by direct interaction with the
graph (i.e., visual query). The user will be able to fil-
ter the displayed data globally by time interval, node
attributes, and graph edges, as well as locally by re-
lationships to the selected node or group of nodes.

• R5: Scalability – The system must be able to dis-
play graphs with thousands of graph nodes seam-
lessly while keeping the high responsibility of the
user interface.

5. Visual Analytics Interface

Considering defined requirements and user tasks, we
have extended the Granef toolkit by Granef UI providing a
visual analytics interface for exploratory analysis of stored
data. The interface is designed as a web application to en-
sure compatibility across different systems. It is currently
provided as an integrated module for the Granef toolkit.

However, in the future, we plan to allow independent ap-
plication operation with a connection to different graphic
databases and user management. This section presents
Granef UI components, describes their functionality, and
discusses how they can be used during the investigation.

Since the analysts prefer working on desktop comput-
ers, the application layout is designed for a horizontal res-
olution of at least 1920 pixels. Graph view, rendering the
relational graph on a canvas (Fig. 2 a ), occupies the ma-
jority of the screen. Menus and dialog boxes are orga-
nized in a three-column layout as canvas overlays. The
top-left corner occupy Tools (Fig. 2 b ) for graph inter-
action. Child windows (Detail, Search, and Timeline) dis-
play in the middle and the left third of the screen. The De-
tail shows various details for the selected graph element(s)
(Fig. 2 c ), the Search enables the selection of visualized
data and loading new data based on queries (Fig. 2 d ),
and Timeline enables to filter visualized data based on
a time (not shown in the figure).

5.1. Graph View
The graph view is the key part of the analytical inter-

face. It provides an interactive representation of an ori-
ented graph that matches the visual encoding of Host ,
[Host-data] , [Application] , and Connection (i.e., graph
nodes) and relations between them (i.e., oriented edges)
(R1). Besides color encoding, nodes, and edges are accom-
panied by a short text label. Users can select one or more
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nodes or gather them into node clusters to avoid graph
cluttering. Selected nodes are encircled with a magenta
ring, and their properties are shown in the Detail child
window. Node clusters are represented as larger gray cir-
cles without any label, as shown in Fig. 2. When loaded,
the graph layouting algorithm provides an initial position-
ing that can be adjusted by the user later on, either man-
ually or using various layout algorithms.

Context menu. Users can interact with the chart through
the context menu (see Figure 3) that is invoked by a right-
click. Its content varies depending on a graph element
under the cursor. If there are some nodes in the selection,
the operations in the context menu apply to all selected
nodes. If the user clicks on a node, actions will be applied
to the node. However, the same items will be available for
the selection. If no selection is defined, the context menu
only offers the user to select all nodes.

Figure 3: Context menu with actions for a group of selected nodes.

5.2. Tools
The Tools menu provides direct access to the most fre-

quent interaction tasks (R2). Each action is represented
by a button with a unique icon, and its brief description
appears in a tooltip on mouseover. The related actions are
grouped into nine sections as shown in Figure 4:

• View manipulation contains Zoom in/out and Fit
buttons to adjusts the view of the graph.

• Node locks provide two modes for locking node po-
sitions. The global one locks the node position on
the canvas regardless of further modifications in the
graph. Graph-aware locking continuously recalcu-
lates and adjusts the position of the locked node due
to further graph changes caused by user interaction.

• Node hiding allows hiding the nodes to unclutter the
view and show them again.

• Graph actions section contains node removal feature,
invert selection, tag and color assigning showing cor-
responding child windows where the user can assign
nodes with one or more tags or colors. The last op-
tion shows the Detail window.

• Clustering actions allows the user to apply four graph
clustering operations to aggregate selected nodes and

unfold clustered (aggregated) nodes. The cluster-
ing actions include: clustering the outliers (nodes
with the node degree 1), manual clustering of se-
lected nodes, automated clustering of all nodes, and
clustering of selected edges. The last button per-
forms the cluster unfolding. The automated cluster-
ing is based on the Chinese Whispers algorithm (Bie-
mann, 2006) and is further described in Section 6.2.

• Export and Save tools allow users to export the cur-
rent graph as a serialized visualization in a JSON for-
mat or an image, or save the current analytical case,
including the visualization state (i.e., definitions of
nodes and edges, characteristics of the current view
and data necessary for cluster manipulation).

• Timeline controls displays Timeline child window
showing the number of the connections (y-axis) re-
lated to the time (x-axis).

• Selection mode allows changing the mode between
rectangular and lasso (freehand).

• Other actions display the Search child window, open
view configuration, and allow adding notes.

a) b) c)

d) e)

h) i)f) g)

Figure 4: Tools menu – actions are grouped into ten categories:
a) view manipulation, b) node locks, c) node hiding, d) graph ac-
tions, e) clustering actions, f) export and save, g) timeline controls,
h) selection mode, i) other.

5.3. Child Windows
The visual analytics interface of Granef UI provides

three types of child windows with a distinct focus. The
Detail offers additional information related to the selected
nodes (R3), Search allows the user to filter the data using
parametric querying (R4), and Timeline allows the user
to filter the data based on connection time.

5.3.1. Detail
The child window appears automatically if the user

holds the mouse over the node for at least 250 millisec-
onds or by selecting it with a double click. In such a case,
the child window remains on the screen, and the content
is locked to the selected node(s). If only one node is se-
lected, the child window displays only its attributes. If
multiple nodes are selected, it contains summarized in-
formation about them. Since the nodes’ metadata and
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attributes are extensive and it does not make sense to dis-
play them altogether, the Detail is therefore divided into
several tabbed views (R3). Such an organization also al-
lows us to extend the functionality with new views in the
future. Currently, Granef UI provides five of them: Types,
Statistics, Data, Timeline, and Chord.

Types. The tab displays a donut chart (see Figure 2 c )
summarizing the number of selected nodes by their type,
with the colors corresponding to the colors of the nodes
in the chart. At the bottom of the detail, there is a close
button and a button that copies to the clipboard the iden-
tifiers of selected nodes for which the detail was created.

Statistics. The summary statistics tab complements the
Data tab with charts summarizing the data obtained from
the Granef analytical interface. Statistics are calculated
only for some types and part of their attributes (e.g., com-
munication protocols, a payload of requests and responses,
or HTTP methods and response codes). The data is usu-
ally visualized using a bar chart or donut chart.

Data. The data tab allows the analyst to browse raw data
and attributes of selected nodes. For each type of node,
there is a table whose records are the individual nodes and
their attributes in columns.

Timeline. The timeline shows the Connection nodes dis-
tribution in the selection regarding the time of the con-
nection. The x-axis displays moments in time (5-minute
intervals by default). The y-axis then plots the number of
connections for each time instant using a bar chart. Be-
low the chart are options where the analysis can switch
between linear and logarithmic scales for the timeline bar
chart and the length of the intervals.

Chord. The last tab displays a chord diagram that shows
the number of connections between pairs of hosts, always
considering the number of connections initiated by a par-
ticular host. This tab is displayed only if Connection and
Host nodes are in the selection. The chord diagram was
chosen as a convenient way to visualize the volume of data
transferred between two hosts allowing the analyst to iden-
tify those who communicated heavily.

5.3.2. Search
The analyst can use two types of searches. The first

serves for selecting nodes in the current visualization (R4).
The analyst may search nodes based on their labels, tags
(if assigned), and intermediate or eigenvector centrality
values (similarly to Page-Rank). This search makes it
easy to select nodes even if the visualization becomes large
and less clear. The second search utilizes extended Granef
analysis API to query data from the graph database. The
analyst can either write queries in the Data Query Lan-
guage (DQL) or use predefined queries with user-defined
parameters (see Figure 2). When submitting a query, the

user can choose whether to clear the current visualization
or add a new result. In addition, the analyst can choose
whether the result should be clustered. There are two clus-
tering methods: a single cluster where all new result data
will be visualized as a single cluster, or timeline clustering
that clusters Connection nodes based on the connection
time. These options are beneficial when the query result
is expected to contain a large number of nodes that would
clutter the visualization (R5).

5.3.3. Timeline
The timeline shows the distribution of connections in

the visualization and allows to filter off the data using
a visual selection of the interval (R4). The main element
is a bar chart displaying the sum of connections (y-axis)
aggregated in sampled time intervals (x-axis). The connec-
tions are aggregated in the 5-minute interval by default,
but the user can change this value in the visualization
settings. The user can interact with the chart in two in-
teraction modes, either by selecting one time interval or
multiple intervals. In the first case, the user can select
only one moment by clicking on the graph. This comes
in handy in visualizing changes in the graph over time.
In the second case, it is possible to select multiple inter-
vals with gaps between them. Inactive intervals are gray
and active intervals, matching the color of the connection
nodes, are orange, as shown in Figure 5 2 . The timeline
only influences Connection nodes and clusters containing
that type. A cluster will only be hidden if none of the
contained Connection fall into active intervals.

Below the diagram are buttons for faster navigation:
to display the first and last interval, the next and previous
interval, and the next and previous non-empty interval
(i.e., containing at least one connection). In the multiple
intervals selection mode, there are buttons to show/hide
nodes in all intervals and an inversion of the selected ones.
Additionally, users may change visualization settings and
switch between linear and logarithmic scales for the bar
chart, the length of the intervals, and the time boundary
for which the timeline data will be recalculated.

6. Implementation

We have implemented the proposed approach of using
relational graphs for exploratory analysis of network traf-
fic data as an open-source module for the Granef toolkit
(publicly available at https://granef.csirt.muni.cz/).
The architecture of Granef UI is described in the first part
of this section. The second part describes the workflow of
graph nodes clustering since it is one of the key features
of the visual analysis interface.

6.1. System Architecture
We have designed Granef UI iteratively with several

versions, each reflecting the feedback from the domain ex-
perts who participated in user tasks and requirements for-
mulation. From the early phases of the design process, we
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aimed to create a client-server application using modern
web technologies and open-source frameworks. Granef UI
builds upon the Granef toolkit and extends it with an in-
terface for visual analysis. It provides REST API over
the Dgraph database with features allowing exploratory
browsing of stored data and retrieval of aggregated infor-
mation. This API is used by the server side of Granef UI,
which processes analytical queries and stores information
necessary for efficiently running the client side of the tool
provided as a web application.

Besides the visual analytics interface, which is the main
view of the tool where analysts work, the application con-
sists of three other pages. The home page contains the list
of cases (i.e., graph visualizations) stored in the database.
The user can create new or filter, search or delete existing
ones. Next, there are two configuration pages contain-
ing the global application preferences and user-defined tag
management, respectively. The latter is used for node la-
beling during the case investigation. In the future, we plan
to add a fourth page with a brief tutorial for novice users.

Both client and server sides of the application are writ-
ten in TypeScript language. The client uses React.js, with
Material-UI7 and Nivo libraries8 for GUI components and
charts. The key library for implementing graph visualiza-
tions is Cytoscape.js9 which was chosen due to its features
supporting the graph analysis, extensibility, and a live
community of developers. The server side is running on
Node.js. It uses the NestJS10 and TypeORM11 frame-
works and PostgreSQL database as storage. It provides
a REST API allowing to store and search the database
for visualizations, preferences, annotations, and annotated
nodes. We also used Docker to ease deployment and facil-
itate the configuration of backend and frontend parts.

6.2. Clustering of Graph Nodes
Node clustering addresses the scalability requirement

(R5) and overcomes the issues with decreasing graph clar-
ity, as well as performance degradation with the growing
number of graph elements. The logic of creating clusters is
based on selecting nodes that are grouped into one node,
preserving all adjacent edges. The computation starts by
identifying the nodes and edges, which will not directly
appear in the visualization because these will be replaced
by the cluster. Their definitions are stored with the cluster
definition, so they can be used when the cluster is opened.
When all the nodes and edges are identified, the new node
element representing the cluster appears colored in gray.
Its size is calculated based on the number of contained
nodes. Next, the computation proceeds by obtaining the
definitions of the new aggregated edges that will be adja-
cent to the cluster. The edges’ thickness corresponds to

7https://mui.com/
8https://nivo.rocks/
9https://js.cytoscape.org/

10https://nestjs.com/
11https://typeorm.io/

the number of base edges it replaces. Finally, the cluster-
ing index, which maps the base node identifiers (keys) to
the cluster identifiers (values), is updated.

The cluster can be opened to the original relational
diagram of nodes as follows. First, all edges adjacent to
the selected cluster are found in their base edges. Then the
cluster can be removed from the visualization and replaced
by the inner nodes. The clustering index is also updated.
Next, Granef UI maps the base edges to the cluster edges,
and then adds them to the visualization.

Basic node clustering algorithms find suitable nodes
mainly based on the numerical values computed from node
attributes. However, this is not always appropriate since
the logical graph topology needs to be considered. There-
fore, the Granef UI offers three clustering options. The
first is the Chinese Whispers (Biemann, 2006) algorithm –
a random graph-clustering applying the idea of the "Chi-
nese Whispers" game (also known as "Telephone"). Each
node in the graph is given an initial label, and the labels
are then iteratively updated based on the neighbors’ labels.
A node adopts the most common label among its neighbors
in each iteration until the labels converge or a maximum
number of iterations is reached. The second algorithm cre-
ates clusters by merging so-called outliers, i.e., nodes with
a single neighbor. The third algorithm was designed with
knowledge of the shared nature of network traffic data.
The analysts are often interested in links modeled as sin-
gle nodes and their contextualization in some time range.
Therefore, it was natural to cluster the connections just
by time stamps, which proved practical in practice.

Besides, the application also allows loading data in sep-
arate clusters. The idea behind the algorithm is first to
give the user the opportunity to inspect statistics and dia-
grams and thus quickly get an initial idea at a higher level
of abstraction than by looking at individual nodes in turn.
At the same time, this does not prematurely reduce the
clarity of the visualization. If the analyst is interested in
the cluster, he or she can open it and further explore it at
the level of individual nodes or smaller clusters.

7. Use Cases and Evaluation

To show how the analyst may utilize Granef UI, we
have proposed two use cases representing different aspects
of relational analysis. The analytical process for investi-
gating these use cases is described in the first part of this
section. We have also conducted a user study with domain
experts. The findings from this evaluation are summarized
in the second part of this section.

7.1. Use Cases
To illustrate Granef UI capabilities, we present two

scenarios focused on incident analysis based on real-world
scenarios. The first one deals with the intrusion detection
system (IDS) alert analysis and investigation of a malicious
host and shows the data enrichment capabilities, including
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Figure 5: Visualization of analysis steps for Case Study 2: 1 initial event analysis with node data details; 2 connections and application
data selection using timeline visualization; 3 clustered view of application data with details about the cluster content.

the use of external information from the threat intelligence
database MISP12. The second scenario aims to analyze
a web service attacks and documents Granef UI capabili-
ties to process large amounts of network traffic data.

7.1.1. Use Case 1: Malicious Domain Connection
This use case is based on the SAPPAN dataset (Cer-

mak and Obrecht, 2021) containing network traffic from
a local network with multiple infected hosts communicat-
ing with the command and control center. The dataset is
extended with the threat intelligence data from the MISP
database describing indicators of compromise related to
the used malware. The analysis starts with an IDS system
alert identifying communication with a malicious domain.
The goal is to verify the incident and determine its impact,
as described in Section 4.1.

The first step – the false positive verification of the alert
– is done by investigating related connections via the “Con-
nections by hosts and/or time” search. The displayed rela-
tional graph shows two Host nodes and three Connection
nodes, in whose detail we can see that they were normal
HTTPS connections. Selection of all Connection nodes
and fetching [Application] data using the context menu
option adds several SSL/TLS nodes to the graph. Load-
ing the next level of neighboring nodes (neighbors of the
[Application] nodes) revealed the relation of all these con-
nections to one hostname mentioned in the alert. Load-
ing of hostname node neighbors confirms this as IoC and
MISP nodes with details about the threat are added to the
graph. These nodes, representing an external data source,
are colored blue to be easily distinguishable.

To further investigate the incident, we continue to ex-
plore the relational graph by selecting neighbors of the ma-
licious host. Fetching [Host-data] reveals an association of
multiple hostnames and TLS certificates. Retrieving the
neighbors shows that these nodes are also present in the
MISP database, so we continue to check whether any other
hosts in the local network have communicated with the
malicious host. It shows to be a valid assumption, and by
fetching its neighbors, the graph visualizes another Host

12https://www.misp-project.org/

node communicating with the malicious one. We may fetch
connections between these nodes and investigate them fur-
ther. The resulting graph, shown in Figure 2, displays the
final result from which we can see all the communication
between the malicious host and other hosts in the network.

7.1.2. Use Case 2: Web attack
In the second scenario, we explore the dataset CSE-

CIC-IDS2018 (Sharafaldin et al., 2018), part Thurs-22-02-
2018. The analysis starts with an alert with a brute force
attack observed in a one-hour window. The investigation
aims to verify the incident and check whether the attacker
performed any other attacks. Figure 5 illustrates key steps
in the analytical process.

We follow the same approach as in the previous use
case using the “Connections by hosts and/or time” search.
However, the bigger time window of the alert leads to
a larger number of Connection nodes, making the visu-
alization cluttered. Therefore, we aggregate the connec-
tions into clusters based on 15-minute intervals by “Time-
line clustering”. The detail of Connection nodes in the
one opened cluster shows standard HTTP connections (see
Figure 5 1 ). We then fetch the [Application] data and
inspect them individually. The details of obtained HTTP
nodes reveal that all connections refer to the login page,
which confirms that the alert is a true positive.

To follow up on the analysis, we select the attacker
Host node (IP: 18.218.115.60) and fetch all neighboring
connection nodes (using “Timeline clustering”). As ex-
pected, more clusters will appear, so we use the Time-
line child window revealing that the attacker has com-
municated with the server in three intervals, where the
first corresponds to the alert. Repeating the procedure of
alert verification for the second interval, we see the pat-
terns (“<script>” tag in the URI) indicating the cross-site
scripting attack (see Figure 5 2 ). Instead of opening a
cluster and loading [Application] nodes for each connec-
tion, we can also select all clusters, load application neigh-
bors as a single cluster, and investigate them in the Details
child window (see Figure 5 3 ). Repeating the steps for
the third time interval reveals an SQL injection attack. So
the attacker tried three different attacks on the website.
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7.2. User Study
To verify that an analyst without more profound knowl-

edge of the Granef UI can also effectively utilize the pro-
posed analysis approach, we invited five experts in the cy-
bersecurity data analysis domain to replicate the second
use case. The participants had experience with cyberse-
curity data analysis between 5 and 12 years (8 years on
average). The evaluation aimed not only to verify whether
they are able to use Granef UI for alert analysis but also
to check how they work with the visualization in general.
We designed an online form to guide participants through
the testing. It served to collect participants’ feedback and
present the instructions throughout the evaluation session.
The sessions lasted between 45 and 60 minutes.

The evaluation sessions were realized in hybrid mode
(i.e., we were present in person or online throughout the
session and answered any questions). The session started
with a brief introduction to the relational data model of
network traffic data and a presentation of the key func-
tions of Granef UI. Users were then given a set of sim-
ple tasks to control the visualization so that they could
become more familiar with the tool and try out its fea-
tures. Subsequently, the domain experts were pointed to
the alert. Their task was to verify it and identify other
possible attacks in the dataset. At the end of the eval-
uation, the participants provided feedback and filled out
a System Usability Scale (SUS) questionnaire.

7.3. User Study Results and Discussion
After the initial indecision, each expert verified alert

correctness, analyzed related network traffic, and identi-
fied the two additional attacks. The resulting SUS score
was 78, which can be interpreted as an Acceptable or Good
(B+) system in adjective interpretation or the numeric val-
ues (average score is 68). In addition, each expert stated
that they could imagine working with the tool in the future
and using it for certain types of network traffic analysis.

The biggest difficulty for participants was unfamiliar-
ity with the data model, as they expected application
data within the connection nodes, for example. That was
a problem especially at the beginning of the alert verifica-
tion task. However, after a short time, they got used to
the model and could quickly analyze attacks from other
time intervals and use the context menu to fetch related
nodes. We attribute this initial confusion to the lack of
visual demonstrations in the initial familiarization phase
of the application. To avoid this in the future, we plan
to extend Granef UI with an additional page containing
a simple tutorial with analysis examples. A positive sur-
prise for us was that the participants were able to use
clusters intuitively, which allowed them to get an overview
of the contained data quickly. Participants also intuitively
started using neighbor node fetching when they did not
know how to proceed. Using this naive approach, they ob-
tained additional information that helped them to discover
other attacks and finish the task.

The evaluation also revealed several bugs in imple-
mentation (e.g., incorrect alignment of elements, confusing
button descriptions, and data loading indicator), which we
subsequently corrected in new versions of Granef UI. We
also gathered users’ ideas for visualization improvements
that we plan to implement in the future.

8. Conclusion

In this work, we presented a new approach to network
forensics using relational graphs visualization. This data
representation method offers a new way of data analysis
inherent to the human brain that is used to analyze and
understand a given problem by associating different in-
formation. Our work builds on the Granef toolkit (Cer-
mak and Sramkova, 2021), which introduced processing
and storing network traffic data as associations in a graph
database. We designed and implemented an open-source
module Granef UI, that utilizes the graph database of the
Granef toolkit and allows the analyst to visualize the data
in relational graphs and explore them using predefined
queries or interactive fetching of related nodes. When de-
signing the tool, we drew on discussions with domain ex-
perts and requirements derived from common tasks that
an analyst performs during network forensics and incident
investigation. To show how the implemented visualization
tool fulfills these requirements, we presented two analyti-
cal use cases and performed a user study with five domain
experts. Their results and positive feedback showed that
the proposed analysis approach fulfills the defined require-
ments and allows the analyst to explore data at different
levels of detail. At the same time, the evaluation showed
that once the analysts got used to the new data model,
they could quickly investigate the incident and reveal all
necessary information. In the future, we plan to perform
a more comprehensive evaluation with a larger sample of
analysts and compare Granef with other commonly used
tools to demonstrate its benefits and challenges.

We believe that Granef toolkit (available as open-source
at https://granef.csirt.muni.cz/) extended by the vi-
sual interface will complement the portfolio of network
traffic analysis tools and offer the forensics and cyber-
security community new insights into the data allowing
them to uncover hidden data associations. We also ex-
pect that the relational analysis concept will be progres-
sively used to analyze other data types, such as logs or
system events. An interesting opportunity is a combina-
tion of multiple (heterogeneous) data types within a single
relational analysis. As a result, the analyst could easily
navigate within a unified visual interface – e.g., between
data from network traffic and system processes that ini-
tiated the network connections – without combining dif-
ferent tools and their outputs. The broader use of the
relational analysis concept thus has great potential to ac-
celerate exploratory data analysis in both digital forensics
and incident response.
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