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A B S T R A C T   

Fingerprinting a host’s operating system is a very common yet precarious task in network, asset, and vulnera-
bility management. Estimating the operating system via network traffic analysis may leverage TCP/IP header 
parameters or complex analysis of hosts’ behavior using machine learning. However, the existing approaches are 
becoming obsolete as network traffic evolves which makes the problem still open. This paper discusses various 
approaches to passive OS fingerprinting and their evolution in the past twenty years. We illustrate their usage, 
compare their results in an experiment, and list challenges faced by the current fingerprinting approaches. The 
hosts’ differences in network stack settings were initially the most important information source for OS 
fingerprinting, which is now complemented by hosts’ behavioral analysis and combined approaches backed by 
machine learning. The most impactful reasons for this evolution were the Internet-wide network traffic 
encryption and the general adoption of privacy-preserving concepts in application protocols. Other changes, such 
as the increasing proliferation of web applications on handheld devices, raised the need to identify these devices 
in the networks, for which we may use the techniques of OS fingerprinting.   

1. Introduction 

Passive fingerprinting of operating system (OS) is a common task in 
network management, monitoring, and cybersecurity. It is often a 
fundamental part of complex tasks and tools as it allows hosts in the 
network to identify communicating peers and adjust the communication 
accordingly, e.g., web servers tailor responses based on received User- 
Agent to avoid interoperability problems [1]. When applied on a 
network-wide scale, it enables network reconnaissance, asset discovery, 
cyber situational awareness, and even cyber threats detection. Due to its 
wide range of applications, OS fingerprinting can be perceived as a 
matter of course used daily. However, information and communication 
technology rapidly evolves, and common practices, such as traditional 
OS fingerprinting methods, may not keep pace with the changes in 
networks. There is a need to periodically revise the methods and tools 
and check if they are still relevant in practice. 

The specific problem we are approaching in this paper is passive OS 
fingerprinting via network traffic analysis. We passively collect records 
of network traffic, e.g., via packet capture or flow (IPFIX) monitoring 
[2], at an observation point on a communication line. We analyze 
network communication between the hosts in the network, and we 

estimate each communicating device’s operating system. We do not 
interact with the devices nor have access to them. Typically, only the 
packet headers or first few packets should be enough to estimate one or 
both parties’ OS in observed network communication. We observe 
communication of many devices in our network to build a knowledge 
base for more precise fingerprints. 

Due to the evolution of information technology and communication 
networks, there is a continuous need to revise the approaches to pre-
serve OS fingerprinting usability. Estimating the OS of a host in the 
network using its TCP/IP header settings solely is not precise enough for 
security-related use cases. The wide adoption of network traffic 
encryption, namely HTTPS, practically prevented payload-based 
fingerprinting methods, such as User-Agent analysis. From this point 
of view, the problem is not how to perform OS fingerprinting but on 
selecting an appropriate and sustainable method for a given use case. 

The contributions of this paper are threefold and go beyond the 
survey of literature. First, we present a survey of the state of the art of 
passive OS fingerprinting. An overview of use cases is provided to 
illustrate the number of tasks dependent on passive OS fingerprinting. 
Second, we evaluate the discussed methods in a series of experiments. 
Our experiments demonstrate the level of detail and precision of existing 
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passive OS fingerprinting methods in current network traffic. Third, we 
identify drawbacks of the existing methods, especially regarding tech-
nology evolution in recent years. The experiments suggest which 
methods are becoming obsolete and which prove to be useful in current 
networks. 

This paper is structured as follows. Background and motivating use 
cases are outlined in Section 2. Related work is summarized in Section 3. 
Brief history of OS fingerprinting and traditional methods are presented 
in Section 4, while Section 5 presents modern approaches, including 
machine learning and encrypted traffic analysis. The features used in the 
presented methods are discussed in detail in Section 6. Evaluation and 
comparison of all the methods is presented in Section 7. Section 8 con-
cludes the paper. 

2. Background and motivating use cases 

There are many OS fingerprinting applications in network manage-
ment and cybersecurity domains, often as a part of complex tasks. OS 
fingerprinting helps identify, enumerate, and map hosts in the network, 
which then helps in understanding the network and facilitating network 
operations and security management. OS fingerprinting based on traffic 
monitoring supports this process on a network-wide scale. 

2.1. Network reconnaissance and situational awareness 

A high-level motivation for OS fingerprinting is building and main-
taining what is known in the literature as cyber situational awareness 
(CSA) [3]. CSA is a continuous process of perceiving the environment, 
understanding the processes in it, and projecting future changes of the 
situation [4]. The perception of the environment is a fundamental pro-
cess that builds upon data and knowledge from many sources, such as 
asset management, vulnerability and risk management, anomaly and 
intrusion detection, and audits. Network reconnaissance, including OS 
fingerprinting, is an integral part of perception in CSA. Discovering 
active hosts in the network and identifying their OS is one of the basic 
steps in gathering information about a network. Such overview is often 
complemented by network topology mapping, service discovery, and 
other steps that can often be done using common tools, such as Nmap 
[89]. The higher the quality of the data on the perception level is, the 
better we can understand and comprehend the network, anticipate 
future events and mitigate risks. 

2.2. Identification of obsolete, vulnerable, and Rogue devices 

Crucial use cases for OS fingerprinting are motivated by operational 
cybersecurity, cyber defense, and incident response. Herein, we provide 
three examples of how OS fingerprinting helps cybersecurity operations: 
detection of obsolete, vulnerable, and rogue devices. 

Detection of obsolete devices is a simple task for OS fingerprinting. 
An obsolete device with obsolete OS, poses a security risk for the 
network. Such a device may be severely vulnerable and lacking security 
updates. Cybersecurity teams may check for obsolete devices, and large- 
scale OS fingerprinting is a convenient way of doing so. Identifying only 
the major version of an OS may be sufficient for this task. Such a task is 
often executed after the end of support of a widely used OS. 

Detection of vulnerable devices via OS fingerprinting is a more 
complex use case than the detection of obsolete devices and require 
more detailed fingerprinting. Detection of a major version of an OS is 
often enough to identify an obsolete device but might not be sufficient to 
detect a vulnerable, yet not obsolete, device. Vulnerability databases can 
be searched for all the vulnerabilities of a detected OS version. Although 
this method is not very accurate, it can be used on a large scale to 
enumerate all the potentially vulnerable devices [5] and save time by 
reducing the number of vulnerability checks performed by more precise 
tools. If a new vulnerability appears, OS fingerprinting can be used to 
estimate the number of devices that could be vulnerable and, thus, 

provide an estimate of vulnerability’s potential impact on an organiza-
tion and prioritize its handling adequately. 

The detection of rogue devices is a task of detecting devices that 
should not appear in the network. An attacker may install a rogue device 
in the network to get access to the internal network services while 
overcoming intrusion detection systems on the network perimeter. Such 
devices can sniff network traffic, steal data, and compromise other hosts. 
The detection of a rogue device via OS fingerprinting is possible when 
the rogue device uses a different OS from known devices in the network, 
or its OS is not recognized as one of the allowed or supported systems in 
the network. 

There are also numerous highly specialized use cases for OS finger-
printing. A prime example is spam filtering, e.g., as implemented in 
SpamTitan tool [6]. The tool assumes that most legitimate email servers 
are based on Linux, and most spam comes from compromised Windows 
desktops, hence, the tool does not accept e-mails from desktop Windows 
OS. Similar behavior may be observed in software license servers that do 
not allow hosts with an unsupported OS to obtain a token to run licensed 
software locally. 

3. Related work 

To the best of our knowledge, there is no recent survey paper on 
passive OS fingerprinting. Historically, however, several survey papers 
covering passive or active OS fingerprinting were published. The first 
overview of OS and application fingerprinting techniques was published 
as a white paper by Allen [7] in 2007. The author discussed similarities 
between active scanning and passive fingerprinting and illustrate it on 
Nmap, Xprobe2, and p0f tools. Medeiros et al. [8] conducted a quali-
tative comparison of four active OS fingerprinting tools (Nmap, Xprobe2, 
SinFP, and Zion). Zion was shown to outperform other tools, which 
included the recognition of SYN proxy and Honeyd, a TCP/IP 
stack-emulating honeypot [9]. Herrmann et al. [10] surveyed the device 
fingerprinting techniques used in network forensics. The survey outlined 
the use of the active and passive fingerprinting methods to assign the 
activity to certain actors and answer the forensic question “who did it?”. 

There are other surveys focused on other areas with a significant 
overlap with OS fingerprinting. Liu et al. [11] surveyed machine 
learning techniques for identification of IoT (Internet of Things) devices 
from passively collected network traces and signal patterns. Identifica-
tion of a specific IoT device requires more level of detail than OS iden-
tification and the techniques can be similar to identifying the device’s 
OS. Sánchez et al. [12] reviewed methods of fingerprinting device 
behavior to identify individual device or its general type (e.g., desktop, 
mobile, IoT). Examining the external manifestation of hardware and 
software equipment is a superset of OS network traffic analysis and 
covers similar topics. Xu et al. [13] dived into the properties of wireless 
transmissions and survey methods of device identification based on 
measurements of the physical and medium access layers. They identified 
features dependent on the device vendor and transmission software 
which, in many cases, corresponds to the OS. 

A countering task to OS fingerprinting is deception. The adminis-
trator may deliberately set a machine to display characteristics of a 
different OS or application than the actual one. This might be used to 
hide a machine by masking its identity to prevent attackers from 
reaching it. A more important use is with the honeypots, hosts, and 
services in the network that are deliberately left to be exploited by at-
tackers. The honeypots are often emulated, and there is a need to make 
them look like they run a particular OS or application. Albanese et al. 
[14] in 2015 used six OS and application fingerprinting tools (Nmap, 
SinFP, XProbe, p0f, amap, and Nessus) to fingerprint a masquerading 
device. The authors illustrated how to deceive the fingerprinting tools 
with minimal overhead by modifying the fingerprinted hosts’ outgoing 
traffic. 

Recently, researchers paid attention to the analysis of encrypted 
traffic. This topic is surveyed, for example, by Velan et al. [15]. The 
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encrypted traffic analysis often aims to identify communication pro-
tocols using properties of certain applications or transferred content. 
These tasks are more complex than fingerprinting but provide pieces of 
information, such as the OS or application name and version, as a part of 
the result. 

4. History and traditional methods 

This section provides an overview of the OS fingerprinting origin and 
early evolution. It introduces the works that impacted the area the most 
and the traditional approach to fingerprinting based on TCP/IP header 
parameters. Apart from the scientific papers, this section also covers the 
OS fingerprinting tools based on the traditional methods. 

4.1. Brief history of OS fingerprinting 

The history of passive OS fingerprinting can be traced back to 
December 1998, when Nmap 2.00 was released [89], introducing active 
OS detection based on a set of features obtained from Nmap probes’ 
responses. This concept inspired many researchers who switched from 
active probes to passive monitoring of the existing network traffic and 
relied on the ordinary traffic to contain enough information to distin-
guish operating systems. The first results appeared in 2000. Lance 
Spitzner published the concept of passive fingerprinting [16] using three 
features from IP header (values of Time To Live (TTL), Do not Fragment 
(DF), Type of Service (ToS)), and TCP Window size parameter. In the 
same year, the first versions of p0f [17] and Siphon [18] tools for passive 
fingerprinting were released. 

The signature databases of available tools were limited at that time, 
and the tools were rejecting most of the traffic as the parameters did not 
perfectly fit any record in its database. In 2003, Lippmann et al. [19] 
reviewed ten TCP/IP features used in open-source tools and proposed 
their normalization, such as rounding up Time to Live value to the next 
higher power of two to minimize the influence of monitoring point 
location on the collected data. They also suggested creating groups of 
related operating systems often confused by the fingerprinting (e.g., Win 
95, Win 98, and Win 98-second edition) to simplify the fingerprinting. 
Finally, they experimented with machine learning algorithms to identify 
nine classes of OS using the discussed features. They conclude that OS 
identification from TCP/IP header features is possible, but a low error 
rate can only be obtained by merging similar classes. 

4.2. TCP/IP methods 

Karagiannis et al. [20] proposed a novel view on the information 
obtained from TCP/IP header parameters. They constructed a commu-
nication graph of devices according to source/destination IP addresses 
and ports, and used protocol. From this graph, they derived profiles of 
end-hosts behavior, and by analyzing the profile properties, they were 
able to fingerprint specific devices in the network. The communication 
profile was further exploited by Siebren Mossel [21] who explored the 
update procedure of different operating systems. He used network flows 
as the data source and extracted source ports and destination IP ad-
dresses. He paired those features to a dictionary of known versions of 
OS. 

The use of network flow technology proved to be determining factor 
for many works as it enables fingerprinting in large networks. Martin 
Vymlátil [22] implemented the export of TCP/IP features used for OS 
fingerprinting into a flow exporter and continued his work with 
Matoušek et al. [23]. They use eight TCP/IP features known from tools 
and previous works and show the feasibility of continuous OS finger-
printing in large networks. They also propose a mechanism for an 
autonomous update of the signature database. They extract the features 
from an HTTP request and pair them with the corresponding User-Agent. 
The User-Agent then serves as ground truth, and if a new combination of 
feature values is observed, it is stored in the database as a new 

fingerprint. Finally, the authors experiment with machine learning 
feature selection and show that their model predicts better on a subset of 
four features; IP TTL, packet size of the first TCP SYN packet, TCP 
Window size, and TCP No Operations option. Jirsík and Čeleda [24] 
experimented with the OS fingerprinting in the flow analysis process for 
high-speed fingerprinting without further data processing. 

The evolution of OS fingerprinting from TCP/IP features continued 
by its applications in different environments. Tyagi et al. [25] explores 
the possibilities of unauthorised OS detection in enterprise networks. 
With seven basic header features, they detect virtual machines run by a 
malicious actor within the organization network. Osanaiye et al. [26] 
investigate four features (TTL, Window size, SYN size, and IP DF flag) of 
machines in a cloud environment to identify their OS and subsequently 
to detect the true source of a packet during spoofed DDoS attack. 
Laštovička et al. [27,28] employ three basic features (TTL, Window size, 
and SYN size) to identify the OS of devices connected to a wireless 
network. They show passive OS fingerprinting’s usability in dynamic 
wireless networks with mobile devices and many operating systems. 
Al-Sherari et al. [29] experiment with adding unconventional TCP/IP 
features (e.g., the size of FIN packet) to improve the OS detection of 
desktop and mobile devices. They also propose a hybrid approach 
combining exact matches with fingerprint database and machine 
learning prediction for feature vectors not matching any known 
fingerprint. 

4.3. Overview of tools 

Many theoretical concepts and methods have been introduced, but 
only a few transformed into recognized tools. One of the very first ones 
and the best-known tool is p0f [17] by Michal Zalewski, released in 
2000. It relies on a fingerprint database stored in a text file as a set of 
signature strings for each operating system. The signature string format 
is designed to describe various features from multiple protocols and was 
later adopted by other tools. In 2013, a real-time version of p0f called 
k-p0f [30] was implemented in the PNA (Passive Network Appliance) 
kernel module to increase throughput as the k-p0f intercepts packets 
directly from the network stack. Even though p0f tool was popular, it 
required manual maintenance of the fingerprint database, and the last 
version of p0f v3 was released in 2012 with the last meaningful update of 
the database on May 21, 2014. 

Ettercap tool [31] was originally designed in 2001 as a suite for 
man-in-the-middle attacks. Apart from the main functionality of packet 
sniffing and manipulation, it also supports passive OS fingerprinting and 
generating host profiles. It uses similar features and signature structure 
as p0f, but from the source code [32], it seems the database was last 
updated in 2004 according to the fingerprint file header and the fact that 
it does not contain any newer OS versions (i.e., the latest version of some 
well-known OS are Windows XP, Mac OS X 10.3, or Debian 3 woody). 

Similar destiny met other tools mentioned in the literature from that 
time. The Siphon Project [18] by Subterrain Security Group from 2000 
disappeared, and its official website no longer exists, leaving only the 
Github repository for historical and reference purposes. NetSleuth [33] 
was a tool for network monitoring and forensic analysis capable of 
identifying fingerprints of network devices. Released in 2012 by Net-
Grab, it promised extensive functionality but disappeared in 2015 with 
no official information. PRADS (Passive Real-time Asset Detection Sys-
tem) [34] by Fjellskål and Wysocki was another attempt for passive OS 
fingerprinting tool from 2009. It took and extended the p0f fingerprint 
database with recent entries and features. Nevertheless, after the initial 
activity, the fingerprint database was abandoned on August 16, 2012. 

Satori [35] is one of the tools with still active updates. First released 
in 2004, it was active for about ten years before its end of life. In 2018, 
its original creator Eric Kollmann revived it as an open-source Python 
library and continued its development. Due to Satori being actively 
updated (last database update on Sep 2022), we can say NetworkMiner 
fingerprinting abilities are updated as well. NetworkMiner [36] is an 
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open-source tool for network forensic analysis that offers OS finger-
printing. It does not have its own fingerprint database but uses the fin-
gerprints of p0f, Ettercap, and Satori. 

Apart from the open-source tools, OS fingerprinting is often a part of 
bigger commercial solutions. Active scans dominate this field, but some 
products offer passive fingerprinting as well. It is a part of security in 
Juniper Network and Security Manager Profiler [37], and in Cisco IPS 
Security manager [38] and Cisco Meraki firewall [39]. However, the 
commercial solutions are closed source, and we cannot evaluate how 
they perform the fingerprinting and how often the fingerprints are 
updated. Another approach is represented by AlienVault products, Ali-
entVault Asset Discovery [40] and OSSIM [41] which rely on the 
open-source tools on the backend. They used p0f as fingerprinting core 
until July 2012 when they switch to PRADS. Passive fingerprinting can 

also be a part of protection against spam as in SpamTitan solution [6] or 
can be commercialized as a standalone database of fingerprints like 
Fingerbank [42]. Fingerbank database was available on Github [43] 
since 2011 as an open repository of DHCP fingerprints of operating 
systems. This database currently continues in the form of a public API 
with a rate limit of 300 requests per hour and a paid access with higher 
limits. 

5. Modern approaches 

With TCP/IP headers explored, the research searched for new fea-
tures to distinguish OS in network traffic. This section covers the works 
that extract features from application layer protocols, analyze encrypted 
traffic, and works dedicated to special traffic types. It also covers the 

Table 1 
Related work on passive OS fingerprinting.  

Year Work Data 
Type 

Dataset Features Count Methodology* Level of Detail     

Total TCP/ 
IP 

DNS HTTP TLS Other   

2000 [16] PCAP N/A 4 4 – – – – DB of signatures OS name 
2003 [19] PCAP Own data 10 10 – – – – ML (kNN, Btree, MLP, SVM) Mixed – OS name, minor 

version 
2003 [44] PCAP Own data 1 – – 1 – – DB of signatures Minor version 
2004 [60] PCAP Own data 4 4 – – – – ML (Bayes) OS name 
2005 [55] PCAP Own data 1 1 – – – – Statistical analysis, fourier transformation Minor version 
2007 [20] PCAP Own data 5 5 – – – – Communication graph analysis Host in a network 
2007 [61] PCAP Own data 7 7 – – – – ML (X-Means) Minor version 
2008 [62] PCAP Own data 172 – – – – 172 Formal grammars Minor version but only SIP 

devices 
2009 [63] Nmap DB Nmap DB 544 544 – – – – ML (SVM) OS name 
2010 [64, 

65] 
PCAP Dataset  

[66] 
N/A Y – – – Y DB of signatures Minor version 

2010 [67] PCAP Own data 22 22 – – – – ML (J48/C4.5, Jrip, RF, SVM, kNN) Minor version 
2012 [21] IPFIX Own data 2 2 – – – – DB of signatures OS name 
2013 [48] PCAP Own data 2 – 2 – – – DB of signatures OS name 
2014 [22] IPFIX Own data 8 8 – – – – DB of signatures Minor version 
2014 [23] IPFIX Own data 9 8 – 1 – – DB of signatures, ML (k-Means) Minor version 
2014 [29] PCAP Own data 9 9 – – – – DB of signatures, ML (J48/C4.5) Minor version 
2014 [24] IPFIX Own data 4 3 – 1 – – DB of signatures Minor version 
2015 [25] PCAP Own data 7 7 – – – – DB of signatures Minor version 
2015 [49] DNS log Own data 1 – 1 – – – DB of signatures OS name 
2015 [46, 

47] 
IPFIX Own data 2 – – 1 1 – DB of signatures TLS client / Minor version 

2015 [26] PCAP Own data 4 4 – – – – DB of signatures Minor version 
2016 [52] PCAP Own data 53 3 – – 5 45 ML (SVM, RF, kNN) OS name 
2016 [51, 

54] 
PCAP Own data 216 Y Y Y Y Y ML (J48, Jrip, Ridor, PART, DT, RF, NB, 

MLP) 
Minor version 

2016 [56] PCAP Own data 3 – – – – 3 DB of signatures Specific device 
2016 [57] PCAP Own data N/A – – – – Y Frequency-domain analysis Minor version 
2017 [68] PCAP Own data 5 5 – – – – Expectation-Maximization (EM) estimator Major version 
2018 [27] IPFIX Dataset  

[69] 
6 3 – 2 1 – DB of signatures Minor version 

2018 [70] IPFIX Dataset  
[69] 

3 3 – – – – ML (kNN, DT, NB, SVM) Minor version 

2018 [58] PCAP Own data 2 – – – – 2 Timing distribution analysis Specific device 
2018 [59] PCAP Own data 1 – – – – 1 Timing analysis Specific device 
2019 [53] IPFIX Dataset  

[69] 
21 7 – – 6 8 ML (Gradient Boosting DT) Major version 

2020 [45] IPFIX Dataset  
[71] 

12 3 – 2 7 – ML (DT) Minor version 

2020 [72, 
73] 

IPFIX Dataset  
[69] 

3 3 – – – – ML (SVM, RF, KNN, NB, MLP, LSTM) OS name 

2021 [74] Nmap DB Nmap DB 233 233 – – – – ML (NB, MLP, DT, RF, Bagging, 
LogisticRegression) 

OS name 

2021 [75] PCAP Own data 23 14 – 1 – 8 ML (NB, DT, SVM, KNN, RF) OS name 
2021 [76] PCAP Dataset  

[68] 
7 7 – – – – Expectation-Maximization Major version 

2021 [50] PCAP Own data 1 – 1 – – – DB of signatures OS name 
2022 [91] IPFIX Dataset  

[69] 
* * – * * * ML (SVM, RF, NB, AL) OS name  

* DB (Database), kNN (k Nearest Neighbors), MLP (Multi-Layer Perceptron), SVM (Support Vector Machine), RF (Random Forest), NB (Naïve Bayes), DT (Decision 
Tree), LSTM (Long Short-Term Memory), AL (Active Learning). 
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applications of machine learning methods as the next step in OS 
fingerprinting. Finally, overview of all the reviewed work is provided in 
Table 1. 

5.1. Application layer information 

The traditional methods focus on the TCP/IP stack features as they 
are universal for most traffic and are not affected by encryption. How-
ever, the application layer contains additional information that allows 
easier and more precise fingerprinting. The most common choice of 
application layer protocol to study is HTTP. In 2003, Saumil Shah pro-
posed [44] to use HTTP banners sent by the server for OS identification. 
He built a database mapping different banner variations to the most 
probable application server and its operating system. The OS identifi-
cation of clients often stems from the HTTP User-Agent, which directly 
states the client OS. It is used as a complement for other methods [24,27, 
45] to improve identification in unencrypted HTTP connections. 
Because reading a string for OS identification is not scientifically 
interesting, some works use User-Agent as ground truth to build models 
on different features [23,46,47]. 

The idea of OS identification based on update procedures or OS- 
specific connections spans multiple protocols. Mossel’s work [21] 
using destination address was already introduced. Matsunaka et al. [48], 
Chang et al. [49], and Voronov et al. [50] take the OS-specific queries 
from DNS requests, Laštovička et al. [27,45] use HTTP hostname and 
TLS Server Name Indication (SNI) fields. In all cases, they build a 
database of known OS and their related service locations identified 
either by IP address or a domain name. When a device connects to such a 
location, the OS is assigned to the device. 

The characteristics of DNS queries were studied by Matsunaka et al. 
[48], who measure their time distribution to identify OS. Features 
extracted from DNS were also used by Aksoy et al. [51] as a complement 
to features from other protocols to improve their method’s accuracy. 

5.2. Encrypted traffic analysis 

With the encryption of the network traffic, the amount of informa-
tion that can be used for OS detection is significantly reduced. Appli-
cation layer-based methods for OS fingerprinting that are usually more 
precise than the traditional ones are rendered useless in the encrypted 
network traffic settings as the information needed to determine the OS 
(e.g., User-Agent) is not available due to encryption. Even though most 
of the application data is encrypted, there are still unencrypted parts of 
the handshake, which can be utilized for OS fingerprinting, such as 
certificate, SNI, or cipher suites. 

Husák et al. [47] build their method for operating system finger-
printing on the assumption that we can observe both encrypted and 
unencrypted network traffic from the host. The pairing of these two 
pieces of information enables the OS fingerprinting of the encrypted 
traffic. They suggest creating a dictionary that links the information 
from unencrypted network traffic used for OS fingerprint (i.e., 
User-Agent) with the information observable in the encrypted traffic (i. 
e., cipher suites lists). The OS detection in the encrypted network traffic 
is then done by harvesting the cipher suites from the observed encrypted 
connection and mapping it to the User-Agent in the dictionary based on 
which the OS is determined. The authors evaluate the cardinality of the 
relations in the dictionary, and they can identify the OS in 62% of the 
encrypted connections. 

Muehlstein et al. [52] dealt with OS identification from encrypted 
traffic by adding features extracted from TLS handshake to traditional 
TCP/IP features and packet timings. They achieved 85% accuracy on 
data with most of the traffic encrypted. Similarly, Fan et al. [53] use the 
TLS handshake feature combined with TCP/IP and traffic statistics but 
achieve up to 96.3% accuracy on a TLS dataset. Laštovička et al. [45] 
build a classifier solely from TLS Client hello features and achieve 93.1% 
accuracy. Aksoy et al. [51,54] experiment with a general classifier for 

nine protocols and use up to 216 features extracted from them. That 
includes encrypted traffic over SSL, SSH, and FTP; however, their re-
ported accuracy of OS identification on these protocols is only 25.0%, 
22.5%, and 14.0% respectively. 

5.3. Other approaches 

Other approaches cover mostly borderline or very specific areas of 
fingerprinting concerning only selected types of devices. The common 
topic is measuring time aspects and using advanced analytical methods 
to infer the device or its OS. 

Kohno et al. [55] noticed that operating systems have different 
default frequencies of a TCP Timestamp option clock that can be used to 
identify the OS. They further investigate the traffic timings, and, with 
precise enough measurement, they can identify OS and even a specific 
device based on its clock skew. The scope of Azzouni et al. [56] work is 
limited to the identification of OpenFlow controllers, yet their methods 
are general enough to be considered related to OS fingerprinting. They 
employ timing analysis of packets, precisely the round-trip time and 
processing time, together with features of ARP (Address Resolution 
Protocol) responses. Gurary et al. [57] fingerprint OS of smartphones 
based on their signal transmission properties. They devise a 
frequency-domain analysis algorithm that can identify a mobile device’s 
OS from a sample of 30 s of traffic. Shen et al. [58] focus on ICS (In-
dustrial Control Systems) devices and analyze time interval distribution 
of packets and inter-layer response time to fingerprint them. They 
complement the analysis with a traffic characteristics profile of each 
device to detect it and reveal any attacks that tamper with the device or 
try to impersonate it. Sanchez et al. [59] propose to fingerprint physical 
devices by their internal clock signals, which depend on their specific 
hardware. By measuring the timing of responses, they identify a known 
device from the traffic. 

5.4. Machine learning 

Machine learning (ML) techniques are mainly used to overcome the 
drawbacks of traditional methods. Namely, the need for manual creation 
of a signature database and its maintenance. Machine learning also 
enables using a higher number of new features and their autonomous 
selection based on the resulting model’s accuracy. 

The first experiments with ML methods followed the use of TCP/IP 
parameters. Lippmann et al. [19] shows its feasibility for a limited 
number of target classes (i.e., operating systems). Robert Beverly [60] 
constructed a Bayesian classifier over four basic features to map OS 
share in network traffic and to count hosts behind NAT devices. Zhang 
et al. [63] then experiment with an increasing number of features from 
the Nmap fingerprint database and their processing in an SVM (Support 
Vector Machine) classifier. The work on creating fingerprints and 
feature selection continued in Caballero et al. [61], who proposed an 
approach for automatic fingerprint generation from a TCP header. 
Richardson et al. [67] reviewed the features used in that time and dis-
cussed their influencing factors. They discuss the problems of evaluating 
the methods on small networks, which result in the automatic tools to 
bias the training data and the classifiers overfitting. They showed that 
features’ semantics are critical for OS identification and blindly putting 
features into ML algorithms works only on a very limited dataset. Salah 
et al. [75] extended the TCP/IP parameters with fingerprinting from 
IPv6 headers to keep up with the adoption of the protocol. 

The capabilities of ML algorithms allowed researchers to use a higher 
number of features. With the traditional TCP/IP header parameters 
explored, the attention turned toward other protocols and derived fea-
tures. Especially, accurate OS fingerprinting from encrypted traffic pa-
rameters began to dominate the field. Muehlstein et al. [52] 
experimented with adding TLS features. Aksoy et al. [51,54] investigate 
headers of IP, ICMP, TCP, UDP, HTTP, DNS, SSL, SSH, and FTP protocols 
and use a genetic algorithm to determine the relevant packet header 
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features. Fan et al. [53] combine TLS handshake with flow statistics and 
TCP/IP features. 

Apart from the accuracy, some works focused on the usability of 
machine learning in large networks. With many different operating 
systems and lots of training data, the resulting ML models tend to be 
extensive. However, these complicated models need to process large 
amounts of data continuously. Shamsi et al. [68,76] propose a 
non-parametric expectation-maximization estimator to enable 
Internet-wide OS fingerprinting. Laštovička et al. [70] benchmark 
well-known ML algorithms to evaluate their performance and accuracy 
in large networks. They conclude that the decision tree classifier has 
similar accuracy to other algorithms while needing orders of magnitude 
lower time to identify the OS. 

The works on OS fingerprinting are summarized in Table 1. Most of 
the works were already referenced in previous sections, namely the ones 
proposing novel methodology or using novel features. The table sum-
marizes the works in chronological order and presents an overview of 
data types, datasets, and methodologies used. Further, the table displays 
which and how many features were used in a particular paper. If a paper 
only states that it uses a feature from the protocol, but we could not track 
how many or which features were used, a simple Y marks the fact. The 
features are grouped according to the protocol fields they were taken or 
derived from. Finally, the level of detail achievable via each method is 
displayed. It is divided into four categories from the simple OS name (e. 
g., Android), its major version (e.g., Android 9), and its minor version (e. 
g., Android 4.2). The last category is specific to the papers dealing with 
profiles of devices as identification of a specific device inherently con-
tains its operating system. 

6. Datasets and fingerprinting features 

An interesting phenomenon is that most research works use the re-
searcher’s own data, such as the data from a laboratory setup or a live 
network. There are only a few known datasets and other alternatives, 
such as the Nmap Feature Database used by Zhang et al. [63]. An 
insufficient number of available datasets and a short period of time in 
which they conform to the real environment are well-known issues of 
cybersecurity and network traffic analysis research. In total, we identi-
fied three datasets collected from a live network that were used in works 
on passive OS fingerprinting. The first dataset, presented by Massicotte 
et al. [66], was used in two papers by Gagnon and Esfandiari [64,65]. 
The dataset was published in 2006 and used in works from 2011 and 
2012, which raises a question of its relevance to current network traffic. 
The other two datasets were presented by Laštovička et al. [69,71] to 
accompany authors’ recent works. The datasets and the research works 
were published between 2018 and 2020 and should accurately represent 
current real-world network traffic as the datasets contain network flow 
capture from large-scale campus network including the OS labels from 
various OS detection techniques up to the minor OS version detail level. 
The datasets were recently used by Fan et al. [53], Hagos et al. [72,73], 
and Zhang et al. [91] from different research groups, which indicates the 
usability of the dataset. Moreover, the usability of the datasets is sup-
ported by more the 500 downloads of the datasets. 

It is worth noting that the dataset for evaluating passive OS finger-
printing does not have to originate in the networking domain. In 
essence, any dataset of network traffic that annotates the OS of 
communicating hosts can be used, for example, datasets from training 
exercises, Capture the Flag games, and similar events. Such datasets 
often annotate the hosts, software, and version, but the number and 
variety of involved hosts are often limited. Thus, such datasets can be 
used but are not recommended if an alternative is available. 

6.1. Fingerprinting features 

The works reviewed in the previous sections use a wide range of 
features, from the simple TCP/IP header fields to features derived from 

the application layer. Also, the number of features used ranges from one 
to several hundred. This section discusses the features used for OS 
fingerprinting and their relation to the actual OS and how they are 
affected by other phenomena. 

To illustrate the feature selection importance, we start with features 
we encountered in some papers that are outright wrong and should 
never be used to identify OS. The most obvious one is the source IPv4 
address feature. Source IP virtually equals the OS’s identifier in a fixed 
environment with static addresses, and experiments in such environ-
ment should reach 100% accuracy. However, if a model trained in these 
conditions is used in any other or a dynamic network, it has no infor-
mation value. 

Communication and its state affect numerous features used in the 
literature. The most used ones are transport protocol, destination port, 
TCP flags, ACK number, and fragment offset from the TCP/IP headers. 
They are bound to the data transfer itself, and the OS of the packet 
sender cannot affect them as a different value would disrupt the 
communication. Similarly, features describing the data from the appli-
cation layer like HTTP content type or DNS response length (and many 
others) were used. 

6.2. Network and transport layer features 

We will discuss in detail the TCP/IP header fields as they are used in 
most papers. Table 2 provides an overview of all IP header fields 
together with a short comment on whether or not they are affected by 
the OS default settings for TCP/IP network stack. The fields marked as 
Yes correspond to OS unique settings and are commonly used in practice. 
Other features, marked Partially, need to be treated carefully as their 
usage depends on the context of the communication. 

The IP Type of Service (ToS) field meaning changed many times since 
its introduction. The latest updates were made by RFCs 2474 [77] and 
3168 [78] in 1998 and 2001, respectively, dividing the ToS into two 
distinct fields, Differentiated Services Code Point (DSCP) and Explicit 
Congestion Notification (ECN). Later in 2018, RFC 8436 [79] changed 
the assignment procedures of the DSCP space affecting the values again. 
When using the ToS field for OS fingerprinting, such changes need to be 
considered as old operating systems use different standards and the field 
has completely different semantics. 

The Total Length parameter is directly affected by transmitted data. 
However, it is one of the most used features for OS fingerprinting when 
applied correctly. The total length of the first packet in TCP communi-
cation often referred to as SYN Size, does not contain any data part and is 
influenced solely by OS preferences of TCP Options and padding. SYN 
Size covers only the length of the packet, whereas Checksum also cor-
responds to the header fields’ content. Hence, even the initial packet of 
communication contains the communication-specific and routing in-
formation that is not related to OS and still affecting the checksum. It 
then depends on how the feature is treated and if the fingerprinting 

Table 2 
IP header features.  

Feature OS Affected Comment 

IP Version No Depends on communication 
Header Length No Depends on options field 
DSCP Partially Depends on data and OS defaults 
ECN Yes OS capability of congestion control 
Total Length Partially Only for selected packets 
ID Yes OS generated value 
Flags Yes OS default 
Fragment Offset No Depends on data transfer 
Time To Live Yes OS default 
Protocol No Depends on service 
Header Checksum Partially Depends on data and OS defaults 
Source IP No Depends on network topology 
Destination IP Partially Only for selected values 
Options No Depends on communication  
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system can filter out such influence. 
The last field from the IP header used for OS fingerprinting 

depending on the context is the Destination IP. Generally, any OS can 
communicate with any IP address. However, some addresses are dedi-
cated to serving OS-specific content (i.e., update servers) to which others 
usually do not connect. 

The situation with TCP header fields is much clearer. The values are 
either strictly enforced by the communication (i.e., destination port, 
flags, acknowledgement) or the sender OS can choose the value from a 
predefined range. The fields are summarized in Table 3. 

6.3. Application layer features 

The inspection of higher-level protocols brings new opportunities for 
OS fingerprinting. They contain a mix of features that depend on the OS, 
communication, and data. Hence, it is necessary to discuss which phe-
nomena affect each feature and assess its suitability. As there are hun-
dreds of fields in various protocols, we cannot provide an exhaustive 
assessment of all the features. Instead, we provide an overview of the 
most used and promising features for passive OS identification which are 
summarized in Table 4 and discussed in detail below. 

The most common use of application layer features is to read the field 
where OS is explicitly stated. The HTTP User-Agent was specifically 
designed to provide the information about the client OS so that the 
server can adjust the web page to fit the client. Similarly, other protocols 
send OS information in their banner and, if it is not encrypted (like in the 
HTTP case), the OS can be passively identified. Even though the User- 
Agent field can be easily spoofed, we believe such behavior is not 
widespread enough to hinder OS fingerprinting statistically, as the ratio 
of spoofed values ranges between 0,1% to 0,22% [92,93]. Also, other 
anomalies in User-Agent amount to less than 0,1% of real traffic [94], 
which makes OS identification based on User-Agent analysis reliable for 
most fingerprinting use cases. 

The OS can be identified from the target of communication using a 
similar idea to the destination IP OS identification. The device usually 
has to send a DNS request to translate the hostname to IP address to 
access the OS-specific content. The DNS qName feature can be extracted 
to serve the OS identification. The communication target can also be 
monitored in the HTTP and HTTP/2 traffic. The HTTP hostname and TLS 
Server Name Indication (SNI) are both sent in cleartext and can be 
monitored easily. 

Analysis of encrypted traffic represents a special use-case in appli-
cation layer OS fingerprinting. Even though most of the communication 
is illegible, the parameters from the connection setup provide additional 
information. Especially the TLS Client hello messages are often used. 
However, the standards change frequently, modifying the semantics and 
values of the fields. There are significant changes in TLS 1.3 [80] to 
previous versions. The Version of TLS 1.3 client is set to 1.0 in TLS 
header, then the field Version inside the Client hello states 1.2, and finally 
in the Supported Versions extension it declares version 1.3. This 
non-intuitive behavior can confuse an automatically trained OS finger-
printing system, which was not trained on TLS 1.3. 

The Cipher Suites field specifies a list of supported encryption algo-
rithms. TLS 1.3 defines only five cipher suites to be used, limiting the 
variability for fingerprinting. The elliptic_curves extension was renamed 
to supported_groups and restricted clients to use five elliptic curves and 
five finite field groups. Moreover, it introduced ordering with the most 
preferred group first. However, many client implementations inten-
tionally violate the standard by including legacy cipher suites and 
groups to ensure backward compatibility. Some clients also implement 
the GREASE (Generate Random Extensions And Sustain Extensibility) 
[81] mechanism to prevent extensibility failures in the TLS ecosystem. 
The rapid changes driven by standards and implementations require 
corresponding updates in fingerprinting systems, but OS identification 
using these features is still possible. 

6.4. Derived features 

The final type of features is the characteristics measured from the 
traffic communication patterns rather than from the packet content. 
They are heavily affected by the hardware of sending machine and the 
state and current performance of the network. The fingerprinting system 
must clearly define how it separates the outside influence on the original 
OS behavior’s feature values. Such distinction should be sound both for 
the laboratory experiment settings and for the real-world network 
deployment to ensure the method viability. 

The prime examples are the features of packet time interval distribution 
and packet inter-arrival times. The fingerprinting system needs to fulfill 
several requirements to measure and use these features. The monitoring 
probe needs to measure time with sufficient precision as small skews can 
affect the fingerprinting process. Moreover, it needs to address the 
problem of a system load of both the monitoring probe and the routing 
devices on monitored paths. The probe’s high system load can delay the 
processing of some packets invalidating the arrival timings, and simi-
larly, packets could be slowed in a bucket on an overloaded router 
anywhere on the path from source to destination. To address these is-
sues, many packets must be collected to statistically eliminate the 
random noise and extract the underlying average values. A different set 
of timing features used in the literature is affected by the load of the 
monitored system and the load of the network or monitoring probe. The 
server response time and round trip time features add the dependency on 
how fast the fingerprinted system can handle requests, which is again 
affected more by the current load than the OS. 

7. Evaluation of the presented methods 

The previous section presented around 20 features related to the 
operating system fingerprinting. This section describes an experimental 
setup to monitor a large operational network, extract ground truth, and 
evaluate OS fingerprinting methods. 

7.1. Experiment setup 

For the evaluation of OS fingerprinting methods, we need a dataset 
with the following requirements. First, the dataset needs to be big 
enough to capture the variability of the data. In this case, we need many 

Table 3 
TCP header features.  

Feature OS Affected Comment 

Source Port Yes OS generated for requests 
Destination Port No Depends on communication 
Seq Number Yes OS generated value 
Ack Number No Depends on communication 
Data Offset No Depends on options field 
Flags No Depends on communication 
Window Size Yes OS default 
Checksum No Depends on data payload 
Urgent Pointer No Depends on data payload 
Options Yes OS default  

Table 4 
Selected application layer features.  

Feature OS Affected Comment 

HTTP User-agent Yes Application generated 
SSH Banner Yes Application generated 
DNS qName Partially Only specific values 
HTTP Hostname Partially Only specific values 
TLS SNI Partially Only specific values 
TLS Version No Defined by standard 
TLS Cipher suites Partially OS generated until TLS 1.2 
TLS Supported groups Partially OS generated until TLS 1.2  
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connections from different operating systems. Second, the dataset needs 
to be annotated, which means that the corresponding operating system 
needs to be known for each network connection captured in the dataset. 
Therefore, we cannot just capture any network traffic for our dataset; we 
need to be able to determine the OS reliably. 

To overcome these issues, we have decided to create the dataset from 
the traffic of several web servers at our university. This allows us to 
address the first issue by collecting traces from thousands of devices 
ranging from user computers and mobile phones to web crawlers and 
other servers. The ground truth values are obtained from the HTTP User- 
Agent as proposed and used by [23,46,47,45], which resolves the second 
of the presented issues. Even though most traffic is encrypted, the 
User-Agent can be recovered from the web server logs that record every 
connection’s details. By correlating the IP address and timestamp of 
each log record to the captured traffic, we can add the ground truth to 
the dataset. 

For this dataset, we have selected a cluster of five web servers that 
host 475 unique university domains for public websites. The monitoring 
point recording the traffic was placed at the backbone network con-
necting the university to the Internet. 

7.2. Dataset creation 

The dataset used in this paper was collected from approximately 8 h 
of university web traffic throughout a single workday. The logs were 
collected from Microsoft IIS web servers and converted from W3C 
extended logging [82] format to JSON. The logs are referred to as web 
logs and are used to annotate the records generated from packet capture 
obtained by using a network probe tapped into the link to the Internet. 

Fig. 1 describes the entire dataset creation process, which consists of 
seven steps. The packet capture was processed by the Flowmon flow 
exporter to obtain primary flow data containing information from TLS 
and HTTP protocols (1). Additional statistical features were extracted 
using GoFlows [83] flow exporter (2). The primary flows were filtered 
(3) to remove incomplete records and network scans before merging the 
data from both exporters (4). Web logs were filtered to cover the same 
time frame as the flow records (5) and then paired (6) with the flow 
records. The last step was to convert the User-Agent values into the 
operating system (7) using a Python version of the open-source tool 
ua-parser [84]. We replaced the unstructured User-Agent string in the 
records with the resulting OS. The details of OS distribution grouped by 
the OS family are summarized in Table 5. The Other OS family contains 
records generated by web crawling bots that do not include OS 

information in the User-Agent. 
We provide the created dataset with detailed description of the 

creation process in our university repository [85]. To make it more 
available for wider audience of scientists, we also published the dataset 
on Zenodo sharing platform [90]. 

7.3. OS fingerprinting methods evaluation 

Our goal was to experimentally evaluate the accuracy of available OS 
fingerprinting methods on a dataset from the current traffic of a large 
operational network. The methods can be split in two groups: 1) ma-
chine learning and 2) methods based on manual analysis and a database 
of signatures. 

To evaluate the machine learning methods results, we built a data 
processing pipeline. The first step is to load the dataset from file while 
discarding the features not used by the evaluated method. The second 
step is to filter out the records with a null value in the required features. 
The numerical features are then standardized using Standard Scaler [86] 
subtracting the mean and dividing by the standard deviation. The cat-
egorical features are encoded using the OneHot encoder, which is 
necessary for some classifiers and does not introduce any artificial nu-
merical properties. The label with the target class is treated as a string. In 
the case of identification of OS name, the label is taken directly. We 
concatenate the OS name, major version, and minor version into one 
more detailed label to identify minor versions. With the data loaded and 
preprocessed, the dataset is randomly divided into training and testing 
sets in the ratio 80:20. The ML model is trained, and its classification 
score is calculated over the test set. An average classification score of ten 
independent executions of the process is presented as the result in this 
paper. Finally, the implementation of each machine learning algorithm 
is taken from the SciKit tool [87]. We changed the algorithm’s param-
eters only if such a change was explicitly stated in the paper presenting 
the evaluated method, otherwise, we used the default settings. 

To provide a reference point, we let the p0f tool discussed in detail in 
Section 4.3 identify the operating systems. As p0f works only with PCAP 
data, we run it over the original packet capture and then paired the 
results with web log data in the same way as with IP flows. We calcu-
lated the accuracy metrics according to Sokolova’s [88] multi-class 
classification microaveraging formulas and summarized the results in 
Table 7. The accuracy is high due to the fact that in multi-class settings, 
every true negative classification for each class pushes the resulting 
average accuracy towards one, and thus, losing the information value on 
large amounts of samples. The other metrics reflect the fact that p0f was 

Fig. 1. Dataset creation process. Packet capture is transformed to flows which are merged with web logs to provide ground truth.  
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lastly updated in 2014 and cannot identify any of the newer OS which 
dominates the dataset. Lastly, the execution time needed to process the 
dataset of roughly 22GB of data took 54.7 s on average on a common 
desktop PC, hence the performance is not an issue. 

The first work we aimed to reproduce was Lippmann et al. [19] as it 
was one of the first works defining the field. The results are summarized 
in Table 6. The original accuracy results cover the identification after 
merging classes of OS, which mostly corresponds to OS name. However, 
we were interested in how the methods performed if the classes were not 
merged and the identification was considered minor versions. The re-
sults for the minor version are in the parenthesis in Table 6. We also 
noticed the parameters for ML algorithms were limited in the original 
work. In the year 2003, they needed severe compromises between ac-
curacy and computing power. We repeated the experiment setting the 
parameters to match the ones described in the paper and then again with 
the default settings of the SciKit tool. 

The execution time of training and testing differs for each ML algo-
rithm. The whole processing pipeline identifying minor version of OS 
based on the Lippmann’s parameters took 15.4 s in the case of k-NN, 3.5 
s for decision tree, 120.3 s for MLP, and 144.5 s for SVM on a desktop PC. 
The higher complexity of MLP and SVM classifiers results in much longer 
processing time while not resulting in better accuracy metrics as shown 
above. 

Evaluating other works using machine learning algorithms proved to 
be more complicated. As it allows to use many features, the authors use 
up to hundreds of them without listing them in their papers or other 
sources. Table 8 summarizes the results where we were able to identify 
the features and algorithms used. In the case of Richardson’s work [67], 
we omitted the features of checksums, seq/ack numbers, data offset, and 
urgent pointer as they are strongly tied to the transmitted data (see 
Section 6), and we did not include them in the flow export data. The 
results list the accuracy of evaluated methods on the level of detail of OS 
name with accuracy on the minor version in parentheses. The focus of 
many works on ML is to compare different algorithms performance, so 
we included the measurements in our evaluation. 

The second group of works identifies OS by matching the feature 
values to a previously created signatures database. In most cases, the 
original database is no longer available (or never was), and evaluating it 
on a modern dataset is not possible. We decided to replace the database 
with a Decision Tree classifier trained on the original experiment’s 
features. We used the same processing pipeline as described above to 
measure the results. As the fingerprinting approach is different, the 
reproduction is by no means perfect and should be taken only as an 
approximation of the methods performance. Even with such limitation 
we believe this comparison can be interesting and provide some insight 
into the field. The results are presented in Table 9 and cover the works 
that describe their identification method and list the features used. Most 
of the works are proof-of-concept type of papers that show OS identifi-
cation is possible using the selected features but lack any performance 
metrics. 

8. Conclusion 

In this paper, we presented the use cases, methods, and history of 
passive operating system fingerprinting. We described traditional and 

modern approaches to the task in detail and discussed the traffic features 
used in literature from the perspectives of information value and us-
ability. Further, we provided an evaluation of the discussed methods and 
illustrated their usage and accuracy. We mainly focused on how the 
fingerprinting methods cope with recent changes and novel trends in 
network communication. 

One of the most important topics we addressed in this paper is the 
need for OS fingerprinting methods evolution to keep up with the 
changes in network protocols, new types of devices, and shifts in 
computing paradigms such as wireless networks, mobile devices, cloud 
computing, network virtualization, traffic encryption. These examples 
of rapid development demand fingerprinting methods to be flexible to 
adapt to them. The usage of machine learning seems to be a solution. We 
transformed methods relying on legacy signature databases to machine 
learning models based on the same features during our evaluation. We 
tested selected methods on web server traffic, and our results suggest 
that the accuracy of old methods with machine learning is comparable to 
the current methods. The accuracy of evaluated methods ranges be-
tween 80 to 95% when identifying the OS name. When identifying the 
OS name, major version, and minor version, the spread in accuracy 
widens to 70–95%. 

8.1. Current challenges 

We encountered several issues and challenges related to the OS 
fingerprinting research during the literature review and subsequent 
experiments. We discussed them throughout the paper; hence, we pro-
vide a summary of key findings. 

8.1.1. Missing datasets 
The methods presented in recent literature are often tailored for one 

particular type of network as researchers focus on available data, which 
leads to measurements in the lab environment or the research facility, 
which severely limits the scope and diversity of the data. The presented 
methods are fine-tuned to provide the best possible results on the 
selected data, and the machine learning models are trained on the same 

Table 6 
Evaluation of Lippmann’s work [19].  

Classifier* Accuracy on OS Name (Minor Version) Accuracy metrics on OS name with default settings (Minor Version) 
Original Results Reproduced with Original Parameters Accuracy Precision Recall f-score 

kNN 90.2% (N/A) 94.7% (92.1%) 94.6% (94.3%) 94.0% (90.4%) 94.0% (90.4%) 94.0% (90.3%) 
DT 91.3% (N/A) 87.6% (76.0%) 95.8% (94.6%) 95.7% (94.4%) 95.6% (94.3%) 95.7% (94.3%) 
MLP 87.5% (N/A) 83.6% (72.3%) 86.4% (75.9%) 86.1% (76.1%) 86.7% (75.5%) 85.7% (70.7%) 
SVM 89.1% (N/A) 83.1% (72.3%) 83.3% (72.5%) 83.9% (74.6%) 83.0% (72.6%) 80.4% (66.0%)  

* kNN (k Nearest Neighbors), DT (Decision Tree), MLP (Multi-Layer Perceptron), SVM (Support Vector Machine). 

Table 5 
Overview of identified OS traffic.  

OS Family No. of Flows OS Family No. of Flows 

Other 42,474 Ubuntu 653 
Windows 40,349 Fedora 88 
Android 10,290 Chrome OS 53 
iOS 8840 Symbian OS 1 
Mac OS X 5324 Slackware 1 
Linux 1589 Linux Mint 1  

Table 7 
Evaluation of p0f v3.  

Metric OS name Minor version 

Accuracy 92.8% 97.6% 
Precision 64.1% 6.9% 
Recall 49.1% 8.1% 
F-score 55.6% 7.5%  
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type of network they classify. This narrow focus results in the method’s 
poor performance in general use when traffic is different, which reduces 
their usability in real networks. When such a method is used in another 
type of network, its accuracy drops, and the method must be retrained 
on data from the new environment. Such a task is often not trivial as 
obtaining annotated data from a network is demanding and, in some 
production networks, even impossible. This leads to the need for 
fingerprinting methods that can identify OS accurately regardless of the 
network type. 

OS fingerprinting requires detailed information about hosts’ OS to 
train the fingerprinting methods and evaluate them. However, obtaining 
such data from a large network is a precarious task that leads researchers 
to estimate the ground truth from available data (i.e., User-Agents or 
application banners). 

8.1.2. Reproducibility 
The reproducibility of results is a well-known problem in scientific 

research. In the case of the OS fingerprinting papers we reviewed, many 
lacked the description of fingerprinting methods, or the description was 
insufficient. The source codes and datasets were not provided or no 
longer available, and the texts of papers often lack the settings of algo-
rithms used. 

8.1.3. Comparability 
Comparing original results from the papers to others or the repro-

duced ones is not straightforward. A notable number of OS finger-
printing papers do not provide any accuracy metrics of their 
experiments and settle down with the possibility of OS identification 
using the method. Such lack of information leaves questions about how 
they were evaluated. Furthermore, OS identification’s level of detail is 
often blurry as merging similar systems in one group is very common. 
This artificial boosting of accuracy leads to some OS being identified to 
its name with major and minor versions (i.e., Android 4.2), whereas 
others in the same paper are identified only as an OS family (i.e., Linux). 
The accuracy metric itself can be very misleading on imbalanced data-
sets where one target class dominates the dataset. A simple model 
classifying everything into one class can achieve high accuracy; 

therefore, other metrics should accompany accuracy to express the 
method performance more realistically. 

8.1.4. Feature acquisition 
There is a wide range of features used for OS fingerprinting, 

including a couple of exotic ones. The connection of features to OS and 
data is discussed in Section 6, but there are problems with the practi-
cality of some features too. The measurement of them requires a specific 
location of the monitoring point, unrealistic precision of timing mea-
surement, or additional computations over the raw packet data. Such 
requirements make it complicated to deploy in a large network and use 
more processing power than is available on devices commonly used for 
monitoring. To ensure the fingerprinting methods’ usability, the mea-
surement of features should be feasible in any network with standard 
equipment and should not require extensive computations. 
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Table 8 
Evaluation of methods based on machine learning.  

Author Classifier* Original Results Reproduced results on OS Name (Minor Version) 
Accuracy Accuracy Precision Recall F-score 

Beverly [60] Bayes N/A 37.7% (0.5%) 49.7% (92.1%) 37.6% (0.6%) 37.4% (0.3%) 
Richardson [67] (limited params) RF 98% (<30%) 94.9% (91.5%) 95.8% (94.6%) 95.8% (94.7%) 95.8% (94.6%) 

DT N/A 94.4% (92.3%) 95.8% (94.7%) 95.8% (94.6%) 95.8% (94.6%) 
SVM 98% (<30%) 86.2% (74.9%) 84.8% (75.3%) 84.2% (71.9%) 81.8% (65.2%) 
kNN N/A 91.2% (84.4%) 93.9% (91.2%) 94.0% (91.1%) 94.0% (91.0%) 

Laštovička [70] DT 97.6% (N/A) 84.1% (73.7%) 83.6% (81.1%) 94.3% (73.6%) 81.6% (68.5%) 
kNN 97.6% (N/A) 80.5% (71.6%) 82.9% (79.5%) 83.7% (73.2%) 81.4% (68.6%) 
SVM 97.6% (N/A) 82.5% (73.2%) 85.0% (80.4%) 82.7% (72.2%) 79.9% (66.9%) 
Bayes 81.8% (N/A) 37.2% (21.8%) 50.9% (56.3%) 37.3% (22.4%) 37.0% (23.8%) 

Laštovička [45] DT 93.1% (N/A) 82.1% (73.4%) 81.6% (71.5%) 92.4% (73.4%) 81.6% (71.4%)  

* kNN (k Nearest Neighbors), DT (Decision Tree), SVM (Support Vector Machine), RF (Random Forest). 

Table 9 
Evaluation of methods based on manual analysis.  

Author Accuracy on OS Name (Minor Version) 
Original Results Reproduced 

Spitzner [16] N/A 75.8% (70.2%) 
Karagiannis [20] N/A 89.1% (87.4%) 
Vymlátil [22] N/A (89.5%) 89.4% (78.1%) 
Matoušek [23] N/A (91.7%) 89.4% (78.1%) 
Jirsík [24] N/A 84.1% (73.7%) 
Tyagi [25] N/A (95.5%) 94.2% (92.7%) 
Osanaiye [26] N/A 84.4% (73.8%) 
Laštovička [27] 80.9% (N/A) 84.1% (73.7%)  
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