
Computer Networks 229 (2023) 109782

Available online 20 April 2023
1389-1286/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Passive operating system fingerprinting revisited: Evaluation and
current challenges

Martin Laštovička *, Martin Husák , Petr Velan , Tomáš Jirsík , Pavel Čeleda
Masaryk University, Žerotínovo nám. 617/9, Brno, 601 77, Czech Republic

A R T I C L E I N F O

Keywords:
OS fingerprinting
Network monitoring
Network management
Cybersecurity
Machine learning
Survey

A B S T R A C T

Fingerprinting a host’s operating system is a very common yet precarious task in network, asset, and vulnera-
bility management. Estimating the operating system via network traffic analysis may leverage TCP/IP header
parameters or complex analysis of hosts’ behavior using machine learning. However, the existing approaches are
becoming obsolete as network traffic evolves which makes the problem still open. This paper discusses various
approaches to passive OS fingerprinting and their evolution in the past twenty years. We illustrate their usage,
compare their results in an experiment, and list challenges faced by the current fingerprinting approaches. The
hosts’ differences in network stack settings were initially the most important information source for OS
fingerprinting, which is now complemented by hosts’ behavioral analysis and combined approaches backed by
machine learning. The most impactful reasons for this evolution were the Internet-wide network traffic
encryption and the general adoption of privacy-preserving concepts in application protocols. Other changes, such
as the increasing proliferation of web applications on handheld devices, raised the need to identify these devices
in the networks, for which we may use the techniques of OS fingerprinting.

1. Introduction

Passive fingerprinting of operating system (OS) is a common task in
network management, monitoring, and cybersecurity. It is often a
fundamental part of complex tasks and tools as it allows hosts in the
network to identify communicating peers and adjust the communication
accordingly, e.g., web servers tailor responses based on received User-
Agent to avoid interoperability problems [1]. When applied on a
network-wide scale, it enables network reconnaissance, asset discovery,
cyber situational awareness, and even cyber threats detection. Due to its
wide range of applications, OS fingerprinting can be perceived as a
matter of course used daily. However, information and communication
technology rapidly evolves, and common practices, such as traditional
OS fingerprinting methods, may not keep pace with the changes in
networks. There is a need to periodically revise the methods and tools
and check if they are still relevant in practice.

The specific problem we are approaching in this paper is passive OS
fingerprinting via network traffic analysis. We passively collect records
of network traffic, e.g., via packet capture or flow (IPFIX) monitoring
[2], at an observation point on a communication line. We analyze
network communication between the hosts in the network, and we

estimate each communicating device’s operating system. We do not
interact with the devices nor have access to them. Typically, only the
packet headers or first few packets should be enough to estimate one or
both parties’ OS in observed network communication. We observe
communication of many devices in our network to build a knowledge
base for more precise fingerprints.

Due to the evolution of information technology and communication
networks, there is a continuous need to revise the approaches to pre-
serve OS fingerprinting usability. Estimating the OS of a host in the
network using its TCP/IP header settings solely is not precise enough for
security-related use cases. The wide adoption of network traffic
encryption, namely HTTPS, practically prevented payload-based
fingerprinting methods, such as User-Agent analysis. From this point
of view, the problem is not how to perform OS fingerprinting but on
selecting an appropriate and sustainable method for a given use case.

The contributions of this paper are threefold and go beyond the
survey of literature. First, we present a survey of the state of the art of
passive OS fingerprinting. An overview of use cases is provided to
illustrate the number of tasks dependent on passive OS fingerprinting.
Second, we evaluate the discussed methods in a series of experiments.
Our experiments demonstrate the level of detail and precision of existing

* Corresponding author.
E-mail address: lastovicka@ics.muni.cz (M. Laštovička).

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

https://doi.org/10.1016/j.comnet.2023.109782
Received 21 September 2022; Received in revised form 3 April 2023; Accepted 15 April 2023

mailto:lastovicka@ics.muni.cz
www.sciencedirect.com/science/journal/13891286
https://www.elsevier.com/locate/comnet
https://doi.org/10.1016/j.comnet.2023.109782
https://doi.org/10.1016/j.comnet.2023.109782
https://doi.org/10.1016/j.comnet.2023.109782
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2023.109782&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computer Networks 229 (2023) 109782

2

passive OS fingerprinting methods in current network traffic. Third, we
identify drawbacks of the existing methods, especially regarding tech-
nology evolution in recent years. The experiments suggest which
methods are becoming obsolete and which prove to be useful in current
networks.

This paper is structured as follows. Background and motivating use
cases are outlined in Section 2. Related work is summarized in Section 3.
Brief history of OS fingerprinting and traditional methods are presented
in Section 4, while Section 5 presents modern approaches, including
machine learning and encrypted traffic analysis. The features used in the
presented methods are discussed in detail in Section 6. Evaluation and
comparison of all the methods is presented in Section 7. Section 8 con-
cludes the paper.

2. Background and motivating use cases

There are many OS fingerprinting applications in network manage-
ment and cybersecurity domains, often as a part of complex tasks. OS
fingerprinting helps identify, enumerate, and map hosts in the network,
which then helps in understanding the network and facilitating network
operations and security management. OS fingerprinting based on traffic
monitoring supports this process on a network-wide scale.

2.1. Network reconnaissance and situational awareness

A high-level motivation for OS fingerprinting is building and main-
taining what is known in the literature as cyber situational awareness
(CSA) [3]. CSA is a continuous process of perceiving the environment,
understanding the processes in it, and projecting future changes of the
situation [4]. The perception of the environment is a fundamental pro-
cess that builds upon data and knowledge from many sources, such as
asset management, vulnerability and risk management, anomaly and
intrusion detection, and audits. Network reconnaissance, including OS
fingerprinting, is an integral part of perception in CSA. Discovering
active hosts in the network and identifying their OS is one of the basic
steps in gathering information about a network. Such overview is often
complemented by network topology mapping, service discovery, and
other steps that can often be done using common tools, such as Nmap
[89]. The higher the quality of the data on the perception level is, the
better we can understand and comprehend the network, anticipate
future events and mitigate risks.

2.2. Identification of obsolete, vulnerable, and Rogue devices

Crucial use cases for OS fingerprinting are motivated by operational
cybersecurity, cyber defense, and incident response. Herein, we provide
three examples of how OS fingerprinting helps cybersecurity operations:
detection of obsolete, vulnerable, and rogue devices.

Detection of obsolete devices is a simple task for OS fingerprinting.
An obsolete device with obsolete OS, poses a security risk for the
network. Such a device may be severely vulnerable and lacking security
updates. Cybersecurity teams may check for obsolete devices, and large-
scale OS fingerprinting is a convenient way of doing so. Identifying only
the major version of an OS may be sufficient for this task. Such a task is
often executed after the end of support of a widely used OS.

Detection of vulnerable devices via OS fingerprinting is a more
complex use case than the detection of obsolete devices and require
more detailed fingerprinting. Detection of a major version of an OS is
often enough to identify an obsolete device but might not be sufficient to
detect a vulnerable, yet not obsolete, device. Vulnerability databases can
be searched for all the vulnerabilities of a detected OS version. Although
this method is not very accurate, it can be used on a large scale to
enumerate all the potentially vulnerable devices [5] and save time by
reducing the number of vulnerability checks performed by more precise
tools. If a new vulnerability appears, OS fingerprinting can be used to
estimate the number of devices that could be vulnerable and, thus,

provide an estimate of vulnerability’s potential impact on an organiza-
tion and prioritize its handling adequately.

The detection of rogue devices is a task of detecting devices that
should not appear in the network. An attacker may install a rogue device
in the network to get access to the internal network services while
overcoming intrusion detection systems on the network perimeter. Such
devices can sniff network traffic, steal data, and compromise other hosts.
The detection of a rogue device via OS fingerprinting is possible when
the rogue device uses a different OS from known devices in the network,
or its OS is not recognized as one of the allowed or supported systems in
the network.

There are also numerous highly specialized use cases for OS finger-
printing. A prime example is spam filtering, e.g., as implemented in
SpamTitan tool [6]. The tool assumes that most legitimate email servers
are based on Linux, and most spam comes from compromised Windows
desktops, hence, the tool does not accept e-mails from desktop Windows
OS. Similar behavior may be observed in software license servers that do
not allow hosts with an unsupported OS to obtain a token to run licensed
software locally.

3. Related work

To the best of our knowledge, there is no recent survey paper on
passive OS fingerprinting. Historically, however, several survey papers
covering passive or active OS fingerprinting were published. The first
overview of OS and application fingerprinting techniques was published
as a white paper by Allen [7] in 2007. The author discussed similarities
between active scanning and passive fingerprinting and illustrate it on
Nmap, Xprobe2, and p0f tools. Medeiros et al. [8] conducted a quali-
tative comparison of four active OS fingerprinting tools (Nmap, Xprobe2,
SinFP, and Zion). Zion was shown to outperform other tools, which
included the recognition of SYN proxy and Honeyd, a TCP/IP
stack-emulating honeypot [9]. Herrmann et al. [10] surveyed the device
fingerprinting techniques used in network forensics. The survey outlined
the use of the active and passive fingerprinting methods to assign the
activity to certain actors and answer the forensic question “who did it?”.

There are other surveys focused on other areas with a significant
overlap with OS fingerprinting. Liu et al. [11] surveyed machine
learning techniques for identification of IoT (Internet of Things) devices
from passively collected network traces and signal patterns. Identifica-
tion of a specific IoT device requires more level of detail than OS iden-
tification and the techniques can be similar to identifying the device’s
OS. Sánchez et al. [12] reviewed methods of fingerprinting device
behavior to identify individual device or its general type (e.g., desktop,
mobile, IoT). Examining the external manifestation of hardware and
software equipment is a superset of OS network traffic analysis and
covers similar topics. Xu et al. [13] dived into the properties of wireless
transmissions and survey methods of device identification based on
measurements of the physical and medium access layers. They identified
features dependent on the device vendor and transmission software
which, in many cases, corresponds to the OS.

A countering task to OS fingerprinting is deception. The adminis-
trator may deliberately set a machine to display characteristics of a
different OS or application than the actual one. This might be used to
hide a machine by masking its identity to prevent attackers from
reaching it. A more important use is with the honeypots, hosts, and
services in the network that are deliberately left to be exploited by at-
tackers. The honeypots are often emulated, and there is a need to make
them look like they run a particular OS or application. Albanese et al.
[14] in 2015 used six OS and application fingerprinting tools (Nmap,
SinFP, XProbe, p0f, amap, and Nessus) to fingerprint a masquerading
device. The authors illustrated how to deceive the fingerprinting tools
with minimal overhead by modifying the fingerprinted hosts’ outgoing
traffic.

Recently, researchers paid attention to the analysis of encrypted
traffic. This topic is surveyed, for example, by Velan et al. [15]. The

M. Laštovička et al.

Computer Networks 229 (2023) 109782

3

encrypted traffic analysis often aims to identify communication pro-
tocols using properties of certain applications or transferred content.
These tasks are more complex than fingerprinting but provide pieces of
information, such as the OS or application name and version, as a part of
the result.

4. History and traditional methods

This section provides an overview of the OS fingerprinting origin and
early evolution. It introduces the works that impacted the area the most
and the traditional approach to fingerprinting based on TCP/IP header
parameters. Apart from the scientific papers, this section also covers the
OS fingerprinting tools based on the traditional methods.

4.1. Brief history of OS fingerprinting

The history of passive OS fingerprinting can be traced back to
December 1998, when Nmap 2.00 was released [89], introducing active
OS detection based on a set of features obtained from Nmap probes’
responses. This concept inspired many researchers who switched from
active probes to passive monitoring of the existing network traffic and
relied on the ordinary traffic to contain enough information to distin-
guish operating systems. The first results appeared in 2000. Lance
Spitzner published the concept of passive fingerprinting [16] using three
features from IP header (values of Time To Live (TTL), Do not Fragment
(DF), Type of Service (ToS)), and TCP Window size parameter. In the
same year, the first versions of p0f [17] and Siphon [18] tools for passive
fingerprinting were released.

The signature databases of available tools were limited at that time,
and the tools were rejecting most of the traffic as the parameters did not
perfectly fit any record in its database. In 2003, Lippmann et al. [19]
reviewed ten TCP/IP features used in open-source tools and proposed
their normalization, such as rounding up Time to Live value to the next
higher power of two to minimize the influence of monitoring point
location on the collected data. They also suggested creating groups of
related operating systems often confused by the fingerprinting (e.g., Win
95, Win 98, and Win 98-second edition) to simplify the fingerprinting.
Finally, they experimented with machine learning algorithms to identify
nine classes of OS using the discussed features. They conclude that OS
identification from TCP/IP header features is possible, but a low error
rate can only be obtained by merging similar classes.

4.2. TCP/IP methods

Karagiannis et al. [20] proposed a novel view on the information
obtained from TCP/IP header parameters. They constructed a commu-
nication graph of devices according to source/destination IP addresses
and ports, and used protocol. From this graph, they derived profiles of
end-hosts behavior, and by analyzing the profile properties, they were
able to fingerprint specific devices in the network. The communication
profile was further exploited by Siebren Mossel [21] who explored the
update procedure of different operating systems. He used network flows
as the data source and extracted source ports and destination IP ad-
dresses. He paired those features to a dictionary of known versions of
OS.

The use of network flow technology proved to be determining factor
for many works as it enables fingerprinting in large networks. Martin
Vymlátil [22] implemented the export of TCP/IP features used for OS
fingerprinting into a flow exporter and continued his work with
Matoušek et al. [23]. They use eight TCP/IP features known from tools
and previous works and show the feasibility of continuous OS finger-
printing in large networks. They also propose a mechanism for an
autonomous update of the signature database. They extract the features
from an HTTP request and pair them with the corresponding User-Agent.
The User-Agent then serves as ground truth, and if a new combination of
feature values is observed, it is stored in the database as a new

fingerprint. Finally, the authors experiment with machine learning
feature selection and show that their model predicts better on a subset of
four features; IP TTL, packet size of the first TCP SYN packet, TCP
Window size, and TCP No Operations option. Jirsík and Čeleda [24]
experimented with the OS fingerprinting in the flow analysis process for
high-speed fingerprinting without further data processing.

The evolution of OS fingerprinting from TCP/IP features continued
by its applications in different environments. Tyagi et al. [25] explores
the possibilities of unauthorised OS detection in enterprise networks.
With seven basic header features, they detect virtual machines run by a
malicious actor within the organization network. Osanaiye et al. [26]
investigate four features (TTL, Window size, SYN size, and IP DF flag) of
machines in a cloud environment to identify their OS and subsequently
to detect the true source of a packet during spoofed DDoS attack.
Laštovička et al. [27,28] employ three basic features (TTL, Window size,
and SYN size) to identify the OS of devices connected to a wireless
network. They show passive OS fingerprinting’s usability in dynamic
wireless networks with mobile devices and many operating systems.
Al-Sherari et al. [29] experiment with adding unconventional TCP/IP
features (e.g., the size of FIN packet) to improve the OS detection of
desktop and mobile devices. They also propose a hybrid approach
combining exact matches with fingerprint database and machine
learning prediction for feature vectors not matching any known
fingerprint.

4.3. Overview of tools

Many theoretical concepts and methods have been introduced, but
only a few transformed into recognized tools. One of the very first ones
and the best-known tool is p0f [17] by Michal Zalewski, released in
2000. It relies on a fingerprint database stored in a text file as a set of
signature strings for each operating system. The signature string format
is designed to describe various features from multiple protocols and was
later adopted by other tools. In 2013, a real-time version of p0f called
k-p0f [30] was implemented in the PNA (Passive Network Appliance)
kernel module to increase throughput as the k-p0f intercepts packets
directly from the network stack. Even though p0f tool was popular, it
required manual maintenance of the fingerprint database, and the last
version of p0f v3 was released in 2012 with the last meaningful update of
the database on May 21, 2014.

Ettercap tool [31] was originally designed in 2001 as a suite for
man-in-the-middle attacks. Apart from the main functionality of packet
sniffing and manipulation, it also supports passive OS fingerprinting and
generating host profiles. It uses similar features and signature structure
as p0f, but from the source code [32], it seems the database was last
updated in 2004 according to the fingerprint file header and the fact that
it does not contain any newer OS versions (i.e., the latest version of some
well-known OS are Windows XP, Mac OS X 10.3, or Debian 3 woody).

Similar destiny met other tools mentioned in the literature from that
time. The Siphon Project [18] by Subterrain Security Group from 2000
disappeared, and its official website no longer exists, leaving only the
Github repository for historical and reference purposes. NetSleuth [33]
was a tool for network monitoring and forensic analysis capable of
identifying fingerprints of network devices. Released in 2012 by Net-
Grab, it promised extensive functionality but disappeared in 2015 with
no official information. PRADS (Passive Real-time Asset Detection Sys-
tem) [34] by Fjellskål and Wysocki was another attempt for passive OS
fingerprinting tool from 2009. It took and extended the p0f fingerprint
database with recent entries and features. Nevertheless, after the initial
activity, the fingerprint database was abandoned on August 16, 2012.

Satori [35] is one of the tools with still active updates. First released
in 2004, it was active for about ten years before its end of life. In 2018,
its original creator Eric Kollmann revived it as an open-source Python
library and continued its development. Due to Satori being actively
updated (last database update on Sep 2022), we can say NetworkMiner
fingerprinting abilities are updated as well. NetworkMiner [36] is an

M. Laštovička et al.

Computer Networks 229 (2023) 109782

4

open-source tool for network forensic analysis that offers OS finger-
printing. It does not have its own fingerprint database but uses the fin-
gerprints of p0f, Ettercap, and Satori.

Apart from the open-source tools, OS fingerprinting is often a part of
bigger commercial solutions. Active scans dominate this field, but some
products offer passive fingerprinting as well. It is a part of security in
Juniper Network and Security Manager Profiler [37], and in Cisco IPS
Security manager [38] and Cisco Meraki firewall [39]. However, the
commercial solutions are closed source, and we cannot evaluate how
they perform the fingerprinting and how often the fingerprints are
updated. Another approach is represented by AlienVault products, Ali-
entVault Asset Discovery [40] and OSSIM [41] which rely on the
open-source tools on the backend. They used p0f as fingerprinting core
until July 2012 when they switch to PRADS. Passive fingerprinting can

also be a part of protection against spam as in SpamTitan solution [6] or
can be commercialized as a standalone database of fingerprints like
Fingerbank [42]. Fingerbank database was available on Github [43]
since 2011 as an open repository of DHCP fingerprints of operating
systems. This database currently continues in the form of a public API
with a rate limit of 300 requests per hour and a paid access with higher
limits.

5. Modern approaches

With TCP/IP headers explored, the research searched for new fea-
tures to distinguish OS in network traffic. This section covers the works
that extract features from application layer protocols, analyze encrypted
traffic, and works dedicated to special traffic types. It also covers the

Table 1
Related work on passive OS fingerprinting.

Year Work Data
Type

Dataset Features Count Methodology* Level of Detail

Total TCP/
IP

DNS HTTP TLS Other

2000 [16] PCAP N/A 4 4 – – – – DB of signatures OS name
2003 [19] PCAP Own data 10 10 – – – – ML (kNN, Btree, MLP, SVM) Mixed – OS name, minor

version
2003 [44] PCAP Own data 1 – – 1 – – DB of signatures Minor version
2004 [60] PCAP Own data 4 4 – – – – ML (Bayes) OS name
2005 [55] PCAP Own data 1 1 – – – – Statistical analysis, fourier transformation Minor version
2007 [20] PCAP Own data 5 5 – – – – Communication graph analysis Host in a network
2007 [61] PCAP Own data 7 7 – – – – ML (X-Means) Minor version
2008 [62] PCAP Own data 172 – – – – 172 Formal grammars Minor version but only SIP

devices
2009 [63] Nmap DB Nmap DB 544 544 – – – – ML (SVM) OS name
2010 [64,

65]
PCAP Dataset

[66]
N/A Y – – – Y DB of signatures Minor version

2010 [67] PCAP Own data 22 22 – – – – ML (J48/C4.5, Jrip, RF, SVM, kNN) Minor version
2012 [21] IPFIX Own data 2 2 – – – – DB of signatures OS name
2013 [48] PCAP Own data 2 – 2 – – – DB of signatures OS name
2014 [22] IPFIX Own data 8 8 – – – – DB of signatures Minor version
2014 [23] IPFIX Own data 9 8 – 1 – – DB of signatures, ML (k-Means) Minor version
2014 [29] PCAP Own data 9 9 – – – – DB of signatures, ML (J48/C4.5) Minor version
2014 [24] IPFIX Own data 4 3 – 1 – – DB of signatures Minor version
2015 [25] PCAP Own data 7 7 – – – – DB of signatures Minor version
2015 [49] DNS log Own data 1 – 1 – – – DB of signatures OS name
2015 [46,

47]
IPFIX Own data 2 – – 1 1 – DB of signatures TLS client / Minor version

2015 [26] PCAP Own data 4 4 – – – – DB of signatures Minor version
2016 [52] PCAP Own data 53 3 – – 5 45 ML (SVM, RF, kNN) OS name
2016 [51,

54]
PCAP Own data 216 Y Y Y Y Y ML (J48, Jrip, Ridor, PART, DT, RF, NB,

MLP)
Minor version

2016 [56] PCAP Own data 3 – – – – 3 DB of signatures Specific device
2016 [57] PCAP Own data N/A – – – – Y Frequency-domain analysis Minor version
2017 [68] PCAP Own data 5 5 – – – – Expectation-Maximization (EM) estimator Major version
2018 [27] IPFIX Dataset

[69]
6 3 – 2 1 – DB of signatures Minor version

2018 [70] IPFIX Dataset
[69]

3 3 – – – – ML (kNN, DT, NB, SVM) Minor version

2018 [58] PCAP Own data 2 – – – – 2 Timing distribution analysis Specific device
2018 [59] PCAP Own data 1 – – – – 1 Timing analysis Specific device
2019 [53] IPFIX Dataset

[69]
21 7 – – 6 8 ML (Gradient Boosting DT) Major version

2020 [45] IPFIX Dataset
[71]

12 3 – 2 7 – ML (DT) Minor version

2020 [72,
73]

IPFIX Dataset
[69]

3 3 – – – – ML (SVM, RF, KNN, NB, MLP, LSTM) OS name

2021 [74] Nmap DB Nmap DB 233 233 – – – – ML (NB, MLP, DT, RF, Bagging,
LogisticRegression)

OS name

2021 [75] PCAP Own data 23 14 – 1 – 8 ML (NB, DT, SVM, KNN, RF) OS name
2021 [76] PCAP Dataset

[68]
7 7 – – – – Expectation-Maximization Major version

2021 [50] PCAP Own data 1 – 1 – – – DB of signatures OS name
2022 [91] IPFIX Dataset

[69]
* * – * * * ML (SVM, RF, NB, AL) OS name

* DB (Database), kNN (k Nearest Neighbors), MLP (Multi-Layer Perceptron), SVM (Support Vector Machine), RF (Random Forest), NB (Naïve Bayes), DT (Decision
Tree), LSTM (Long Short-Term Memory), AL (Active Learning).

M. Laštovička et al.

Computer Networks 229 (2023) 109782

5

applications of machine learning methods as the next step in OS
fingerprinting. Finally, overview of all the reviewed work is provided in
Table 1.

5.1. Application layer information

The traditional methods focus on the TCP/IP stack features as they
are universal for most traffic and are not affected by encryption. How-
ever, the application layer contains additional information that allows
easier and more precise fingerprinting. The most common choice of
application layer protocol to study is HTTP. In 2003, Saumil Shah pro-
posed [44] to use HTTP banners sent by the server for OS identification.
He built a database mapping different banner variations to the most
probable application server and its operating system. The OS identifi-
cation of clients often stems from the HTTP User-Agent, which directly
states the client OS. It is used as a complement for other methods [24,27,
45] to improve identification in unencrypted HTTP connections.
Because reading a string for OS identification is not scientifically
interesting, some works use User-Agent as ground truth to build models
on different features [23,46,47].

The idea of OS identification based on update procedures or OS-
specific connections spans multiple protocols. Mossel’s work [21]
using destination address was already introduced. Matsunaka et al. [48],
Chang et al. [49], and Voronov et al. [50] take the OS-specific queries
from DNS requests, Laštovička et al. [27,45] use HTTP hostname and
TLS Server Name Indication (SNI) fields. In all cases, they build a
database of known OS and their related service locations identified
either by IP address or a domain name. When a device connects to such a
location, the OS is assigned to the device.

The characteristics of DNS queries were studied by Matsunaka et al.
[48], who measure their time distribution to identify OS. Features
extracted from DNS were also used by Aksoy et al. [51] as a complement
to features from other protocols to improve their method’s accuracy.

5.2. Encrypted traffic analysis

With the encryption of the network traffic, the amount of informa-
tion that can be used for OS detection is significantly reduced. Appli-
cation layer-based methods for OS fingerprinting that are usually more
precise than the traditional ones are rendered useless in the encrypted
network traffic settings as the information needed to determine the OS
(e.g., User-Agent) is not available due to encryption. Even though most
of the application data is encrypted, there are still unencrypted parts of
the handshake, which can be utilized for OS fingerprinting, such as
certificate, SNI, or cipher suites.

Husák et al. [47] build their method for operating system finger-
printing on the assumption that we can observe both encrypted and
unencrypted network traffic from the host. The pairing of these two
pieces of information enables the OS fingerprinting of the encrypted
traffic. They suggest creating a dictionary that links the information
from unencrypted network traffic used for OS fingerprint (i.e.,
User-Agent) with the information observable in the encrypted traffic (i.
e., cipher suites lists). The OS detection in the encrypted network traffic
is then done by harvesting the cipher suites from the observed encrypted
connection and mapping it to the User-Agent in the dictionary based on
which the OS is determined. The authors evaluate the cardinality of the
relations in the dictionary, and they can identify the OS in 62% of the
encrypted connections.

Muehlstein et al. [52] dealt with OS identification from encrypted
traffic by adding features extracted from TLS handshake to traditional
TCP/IP features and packet timings. They achieved 85% accuracy on
data with most of the traffic encrypted. Similarly, Fan et al. [53] use the
TLS handshake feature combined with TCP/IP and traffic statistics but
achieve up to 96.3% accuracy on a TLS dataset. Laštovička et al. [45]
build a classifier solely from TLS Client hello features and achieve 93.1%
accuracy. Aksoy et al. [51,54] experiment with a general classifier for

nine protocols and use up to 216 features extracted from them. That
includes encrypted traffic over SSL, SSH, and FTP; however, their re-
ported accuracy of OS identification on these protocols is only 25.0%,
22.5%, and 14.0% respectively.

5.3. Other approaches

Other approaches cover mostly borderline or very specific areas of
fingerprinting concerning only selected types of devices. The common
topic is measuring time aspects and using advanced analytical methods
to infer the device or its OS.

Kohno et al. [55] noticed that operating systems have different
default frequencies of a TCP Timestamp option clock that can be used to
identify the OS. They further investigate the traffic timings, and, with
precise enough measurement, they can identify OS and even a specific
device based on its clock skew. The scope of Azzouni et al. [56] work is
limited to the identification of OpenFlow controllers, yet their methods
are general enough to be considered related to OS fingerprinting. They
employ timing analysis of packets, precisely the round-trip time and
processing time, together with features of ARP (Address Resolution
Protocol) responses. Gurary et al. [57] fingerprint OS of smartphones
based on their signal transmission properties. They devise a
frequency-domain analysis algorithm that can identify a mobile device’s
OS from a sample of 30 s of traffic. Shen et al. [58] focus on ICS (In-
dustrial Control Systems) devices and analyze time interval distribution
of packets and inter-layer response time to fingerprint them. They
complement the analysis with a traffic characteristics profile of each
device to detect it and reveal any attacks that tamper with the device or
try to impersonate it. Sanchez et al. [59] propose to fingerprint physical
devices by their internal clock signals, which depend on their specific
hardware. By measuring the timing of responses, they identify a known
device from the traffic.

5.4. Machine learning

Machine learning (ML) techniques are mainly used to overcome the
drawbacks of traditional methods. Namely, the need for manual creation
of a signature database and its maintenance. Machine learning also
enables using a higher number of new features and their autonomous
selection based on the resulting model’s accuracy.

The first experiments with ML methods followed the use of TCP/IP
parameters. Lippmann et al. [19] shows its feasibility for a limited
number of target classes (i.e., operating systems). Robert Beverly [60]
constructed a Bayesian classifier over four basic features to map OS
share in network traffic and to count hosts behind NAT devices. Zhang
et al. [63] then experiment with an increasing number of features from
the Nmap fingerprint database and their processing in an SVM (Support
Vector Machine) classifier. The work on creating fingerprints and
feature selection continued in Caballero et al. [61], who proposed an
approach for automatic fingerprint generation from a TCP header.
Richardson et al. [67] reviewed the features used in that time and dis-
cussed their influencing factors. They discuss the problems of evaluating
the methods on small networks, which result in the automatic tools to
bias the training data and the classifiers overfitting. They showed that
features’ semantics are critical for OS identification and blindly putting
features into ML algorithms works only on a very limited dataset. Salah
et al. [75] extended the TCP/IP parameters with fingerprinting from
IPv6 headers to keep up with the adoption of the protocol.

The capabilities of ML algorithms allowed researchers to use a higher
number of features. With the traditional TCP/IP header parameters
explored, the attention turned toward other protocols and derived fea-
tures. Especially, accurate OS fingerprinting from encrypted traffic pa-
rameters began to dominate the field. Muehlstein et al. [52]
experimented with adding TLS features. Aksoy et al. [51,54] investigate
headers of IP, ICMP, TCP, UDP, HTTP, DNS, SSL, SSH, and FTP protocols
and use a genetic algorithm to determine the relevant packet header

M. Laštovička et al.

Computer Networks 229 (2023) 109782

6

features. Fan et al. [53] combine TLS handshake with flow statistics and
TCP/IP features.

Apart from the accuracy, some works focused on the usability of
machine learning in large networks. With many different operating
systems and lots of training data, the resulting ML models tend to be
extensive. However, these complicated models need to process large
amounts of data continuously. Shamsi et al. [68,76] propose a
non-parametric expectation-maximization estimator to enable
Internet-wide OS fingerprinting. Laštovička et al. [70] benchmark
well-known ML algorithms to evaluate their performance and accuracy
in large networks. They conclude that the decision tree classifier has
similar accuracy to other algorithms while needing orders of magnitude
lower time to identify the OS.

The works on OS fingerprinting are summarized in Table 1. Most of
the works were already referenced in previous sections, namely the ones
proposing novel methodology or using novel features. The table sum-
marizes the works in chronological order and presents an overview of
data types, datasets, and methodologies used. Further, the table displays
which and how many features were used in a particular paper. If a paper
only states that it uses a feature from the protocol, but we could not track
how many or which features were used, a simple Y marks the fact. The
features are grouped according to the protocol fields they were taken or
derived from. Finally, the level of detail achievable via each method is
displayed. It is divided into four categories from the simple OS name (e.
g., Android), its major version (e.g., Android 9), and its minor version (e.
g., Android 4.2). The last category is specific to the papers dealing with
profiles of devices as identification of a specific device inherently con-
tains its operating system.

6. Datasets and fingerprinting features

An interesting phenomenon is that most research works use the re-
searcher’s own data, such as the data from a laboratory setup or a live
network. There are only a few known datasets and other alternatives,
such as the Nmap Feature Database used by Zhang et al. [63]. An
insufficient number of available datasets and a short period of time in
which they conform to the real environment are well-known issues of
cybersecurity and network traffic analysis research. In total, we identi-
fied three datasets collected from a live network that were used in works
on passive OS fingerprinting. The first dataset, presented by Massicotte
et al. [66], was used in two papers by Gagnon and Esfandiari [64,65].
The dataset was published in 2006 and used in works from 2011 and
2012, which raises a question of its relevance to current network traffic.
The other two datasets were presented by Laštovička et al. [69,71] to
accompany authors’ recent works. The datasets and the research works
were published between 2018 and 2020 and should accurately represent
current real-world network traffic as the datasets contain network flow
capture from large-scale campus network including the OS labels from
various OS detection techniques up to the minor OS version detail level.
The datasets were recently used by Fan et al. [53], Hagos et al. [72,73],
and Zhang et al. [91] from different research groups, which indicates the
usability of the dataset. Moreover, the usability of the datasets is sup-
ported by more the 500 downloads of the datasets.

It is worth noting that the dataset for evaluating passive OS finger-
printing does not have to originate in the networking domain. In
essence, any dataset of network traffic that annotates the OS of
communicating hosts can be used, for example, datasets from training
exercises, Capture the Flag games, and similar events. Such datasets
often annotate the hosts, software, and version, but the number and
variety of involved hosts are often limited. Thus, such datasets can be
used but are not recommended if an alternative is available.

6.1. Fingerprinting features

The works reviewed in the previous sections use a wide range of
features, from the simple TCP/IP header fields to features derived from

the application layer. Also, the number of features used ranges from one
to several hundred. This section discusses the features used for OS
fingerprinting and their relation to the actual OS and how they are
affected by other phenomena.

To illustrate the feature selection importance, we start with features
we encountered in some papers that are outright wrong and should
never be used to identify OS. The most obvious one is the source IPv4
address feature. Source IP virtually equals the OS’s identifier in a fixed
environment with static addresses, and experiments in such environ-
ment should reach 100% accuracy. However, if a model trained in these
conditions is used in any other or a dynamic network, it has no infor-
mation value.

Communication and its state affect numerous features used in the
literature. The most used ones are transport protocol, destination port,
TCP flags, ACK number, and fragment offset from the TCP/IP headers.
They are bound to the data transfer itself, and the OS of the packet
sender cannot affect them as a different value would disrupt the
communication. Similarly, features describing the data from the appli-
cation layer like HTTP content type or DNS response length (and many
others) were used.

6.2. Network and transport layer features

We will discuss in detail the TCP/IP header fields as they are used in
most papers. Table 2 provides an overview of all IP header fields
together with a short comment on whether or not they are affected by
the OS default settings for TCP/IP network stack. The fields marked as
Yes correspond to OS unique settings and are commonly used in practice.
Other features, marked Partially, need to be treated carefully as their
usage depends on the context of the communication.

The IP Type of Service (ToS) field meaning changed many times since
its introduction. The latest updates were made by RFCs 2474 [77] and
3168 [78] in 1998 and 2001, respectively, dividing the ToS into two
distinct fields, Differentiated Services Code Point (DSCP) and Explicit
Congestion Notification (ECN). Later in 2018, RFC 8436 [79] changed
the assignment procedures of the DSCP space affecting the values again.
When using the ToS field for OS fingerprinting, such changes need to be
considered as old operating systems use different standards and the field
has completely different semantics.

The Total Length parameter is directly affected by transmitted data.
However, it is one of the most used features for OS fingerprinting when
applied correctly. The total length of the first packet in TCP communi-
cation often referred to as SYN Size, does not contain any data part and is
influenced solely by OS preferences of TCP Options and padding. SYN
Size covers only the length of the packet, whereas Checksum also cor-
responds to the header fields’ content. Hence, even the initial packet of
communication contains the communication-specific and routing in-
formation that is not related to OS and still affecting the checksum. It
then depends on how the feature is treated and if the fingerprinting

Table 2
IP header features.

Feature OS Affected Comment

IP Version No Depends on communication
Header Length No Depends on options field
DSCP Partially Depends on data and OS defaults
ECN Yes OS capability of congestion control
Total Length Partially Only for selected packets
ID Yes OS generated value
Flags Yes OS default
Fragment Offset No Depends on data transfer
Time To Live Yes OS default
Protocol No Depends on service
Header Checksum Partially Depends on data and OS defaults
Source IP No Depends on network topology
Destination IP Partially Only for selected values
Options No Depends on communication

M. Laštovička et al.

Computer Networks 229 (2023) 109782

7

system can filter out such influence.
The last field from the IP header used for OS fingerprinting

depending on the context is the Destination IP. Generally, any OS can
communicate with any IP address. However, some addresses are dedi-
cated to serving OS-specific content (i.e., update servers) to which others
usually do not connect.

The situation with TCP header fields is much clearer. The values are
either strictly enforced by the communication (i.e., destination port,
flags, acknowledgement) or the sender OS can choose the value from a
predefined range. The fields are summarized in Table 3.

6.3. Application layer features

The inspection of higher-level protocols brings new opportunities for
OS fingerprinting. They contain a mix of features that depend on the OS,
communication, and data. Hence, it is necessary to discuss which phe-
nomena affect each feature and assess its suitability. As there are hun-
dreds of fields in various protocols, we cannot provide an exhaustive
assessment of all the features. Instead, we provide an overview of the
most used and promising features for passive OS identification which are
summarized in Table 4 and discussed in detail below.

The most common use of application layer features is to read the field
where OS is explicitly stated. The HTTP User-Agent was specifically
designed to provide the information about the client OS so that the
server can adjust the web page to fit the client. Similarly, other protocols
send OS information in their banner and, if it is not encrypted (like in the
HTTP case), the OS can be passively identified. Even though the User-
Agent field can be easily spoofed, we believe such behavior is not
widespread enough to hinder OS fingerprinting statistically, as the ratio
of spoofed values ranges between 0,1% to 0,22% [92,93]. Also, other
anomalies in User-Agent amount to less than 0,1% of real traffic [94],
which makes OS identification based on User-Agent analysis reliable for
most fingerprinting use cases.

The OS can be identified from the target of communication using a
similar idea to the destination IP OS identification. The device usually
has to send a DNS request to translate the hostname to IP address to
access the OS-specific content. The DNS qName feature can be extracted
to serve the OS identification. The communication target can also be
monitored in the HTTP and HTTP/2 traffic. The HTTP hostname and TLS
Server Name Indication (SNI) are both sent in cleartext and can be
monitored easily.

Analysis of encrypted traffic represents a special use-case in appli-
cation layer OS fingerprinting. Even though most of the communication
is illegible, the parameters from the connection setup provide additional
information. Especially the TLS Client hello messages are often used.
However, the standards change frequently, modifying the semantics and
values of the fields. There are significant changes in TLS 1.3 [80] to
previous versions. The Version of TLS 1.3 client is set to 1.0 in TLS
header, then the field Version inside the Client hello states 1.2, and finally
in the Supported Versions extension it declares version 1.3. This
non-intuitive behavior can confuse an automatically trained OS finger-
printing system, which was not trained on TLS 1.3.

The Cipher Suites field specifies a list of supported encryption algo-
rithms. TLS 1.3 defines only five cipher suites to be used, limiting the
variability for fingerprinting. The elliptic_curves extension was renamed
to supported_groups and restricted clients to use five elliptic curves and
five finite field groups. Moreover, it introduced ordering with the most
preferred group first. However, many client implementations inten-
tionally violate the standard by including legacy cipher suites and
groups to ensure backward compatibility. Some clients also implement
the GREASE (Generate Random Extensions And Sustain Extensibility)
[81] mechanism to prevent extensibility failures in the TLS ecosystem.
The rapid changes driven by standards and implementations require
corresponding updates in fingerprinting systems, but OS identification
using these features is still possible.

6.4. Derived features

The final type of features is the characteristics measured from the
traffic communication patterns rather than from the packet content.
They are heavily affected by the hardware of sending machine and the
state and current performance of the network. The fingerprinting system
must clearly define how it separates the outside influence on the original
OS behavior’s feature values. Such distinction should be sound both for
the laboratory experiment settings and for the real-world network
deployment to ensure the method viability.

The prime examples are the features of packet time interval distribution
and packet inter-arrival times. The fingerprinting system needs to fulfill
several requirements to measure and use these features. The monitoring
probe needs to measure time with sufficient precision as small skews can
affect the fingerprinting process. Moreover, it needs to address the
problem of a system load of both the monitoring probe and the routing
devices on monitored paths. The probe’s high system load can delay the
processing of some packets invalidating the arrival timings, and simi-
larly, packets could be slowed in a bucket on an overloaded router
anywhere on the path from source to destination. To address these is-
sues, many packets must be collected to statistically eliminate the
random noise and extract the underlying average values. A different set
of timing features used in the literature is affected by the load of the
monitored system and the load of the network or monitoring probe. The
server response time and round trip time features add the dependency on
how fast the fingerprinted system can handle requests, which is again
affected more by the current load than the OS.

7. Evaluation of the presented methods

The previous section presented around 20 features related to the
operating system fingerprinting. This section describes an experimental
setup to monitor a large operational network, extract ground truth, and
evaluate OS fingerprinting methods.

7.1. Experiment setup

For the evaluation of OS fingerprinting methods, we need a dataset
with the following requirements. First, the dataset needs to be big
enough to capture the variability of the data. In this case, we need many

Table 3
TCP header features.

Feature OS Affected Comment

Source Port Yes OS generated for requests
Destination Port No Depends on communication
Seq Number Yes OS generated value
Ack Number No Depends on communication
Data Offset No Depends on options field
Flags No Depends on communication
Window Size Yes OS default
Checksum No Depends on data payload
Urgent Pointer No Depends on data payload
Options Yes OS default

Table 4
Selected application layer features.

Feature OS Affected Comment

HTTP User-agent Yes Application generated
SSH Banner Yes Application generated
DNS qName Partially Only specific values
HTTP Hostname Partially Only specific values
TLS SNI Partially Only specific values
TLS Version No Defined by standard
TLS Cipher suites Partially OS generated until TLS 1.2
TLS Supported groups Partially OS generated until TLS 1.2

M. Laštovička et al.

Computer Networks 229 (2023) 109782

8

connections from different operating systems. Second, the dataset needs
to be annotated, which means that the corresponding operating system
needs to be known for each network connection captured in the dataset.
Therefore, we cannot just capture any network traffic for our dataset; we
need to be able to determine the OS reliably.

To overcome these issues, we have decided to create the dataset from
the traffic of several web servers at our university. This allows us to
address the first issue by collecting traces from thousands of devices
ranging from user computers and mobile phones to web crawlers and
other servers. The ground truth values are obtained from the HTTP User-
Agent as proposed and used by [23,46,47,45], which resolves the second
of the presented issues. Even though most traffic is encrypted, the
User-Agent can be recovered from the web server logs that record every
connection’s details. By correlating the IP address and timestamp of
each log record to the captured traffic, we can add the ground truth to
the dataset.

For this dataset, we have selected a cluster of five web servers that
host 475 unique university domains for public websites. The monitoring
point recording the traffic was placed at the backbone network con-
necting the university to the Internet.

7.2. Dataset creation

The dataset used in this paper was collected from approximately 8 h
of university web traffic throughout a single workday. The logs were
collected from Microsoft IIS web servers and converted from W3C
extended logging [82] format to JSON. The logs are referred to as web
logs and are used to annotate the records generated from packet capture
obtained by using a network probe tapped into the link to the Internet.

Fig. 1 describes the entire dataset creation process, which consists of
seven steps. The packet capture was processed by the Flowmon flow
exporter to obtain primary flow data containing information from TLS
and HTTP protocols (1). Additional statistical features were extracted
using GoFlows [83] flow exporter (2). The primary flows were filtered
(3) to remove incomplete records and network scans before merging the
data from both exporters (4). Web logs were filtered to cover the same
time frame as the flow records (5) and then paired (6) with the flow
records. The last step was to convert the User-Agent values into the
operating system (7) using a Python version of the open-source tool
ua-parser [84]. We replaced the unstructured User-Agent string in the
records with the resulting OS. The details of OS distribution grouped by
the OS family are summarized in Table 5. The Other OS family contains
records generated by web crawling bots that do not include OS

information in the User-Agent.
We provide the created dataset with detailed description of the

creation process in our university repository [85]. To make it more
available for wider audience of scientists, we also published the dataset
on Zenodo sharing platform [90].

7.3. OS fingerprinting methods evaluation

Our goal was to experimentally evaluate the accuracy of available OS
fingerprinting methods on a dataset from the current traffic of a large
operational network. The methods can be split in two groups: 1) ma-
chine learning and 2) methods based on manual analysis and a database
of signatures.

To evaluate the machine learning methods results, we built a data
processing pipeline. The first step is to load the dataset from file while
discarding the features not used by the evaluated method. The second
step is to filter out the records with a null value in the required features.
The numerical features are then standardized using Standard Scaler [86]
subtracting the mean and dividing by the standard deviation. The cat-
egorical features are encoded using the OneHot encoder, which is
necessary for some classifiers and does not introduce any artificial nu-
merical properties. The label with the target class is treated as a string. In
the case of identification of OS name, the label is taken directly. We
concatenate the OS name, major version, and minor version into one
more detailed label to identify minor versions. With the data loaded and
preprocessed, the dataset is randomly divided into training and testing
sets in the ratio 80:20. The ML model is trained, and its classification
score is calculated over the test set. An average classification score of ten
independent executions of the process is presented as the result in this
paper. Finally, the implementation of each machine learning algorithm
is taken from the SciKit tool [87]. We changed the algorithm’s param-
eters only if such a change was explicitly stated in the paper presenting
the evaluated method, otherwise, we used the default settings.

To provide a reference point, we let the p0f tool discussed in detail in
Section 4.3 identify the operating systems. As p0f works only with PCAP
data, we run it over the original packet capture and then paired the
results with web log data in the same way as with IP flows. We calcu-
lated the accuracy metrics according to Sokolova’s [88] multi-class
classification microaveraging formulas and summarized the results in
Table 7. The accuracy is high due to the fact that in multi-class settings,
every true negative classification for each class pushes the resulting
average accuracy towards one, and thus, losing the information value on
large amounts of samples. The other metrics reflect the fact that p0f was

Fig. 1. Dataset creation process. Packet capture is transformed to flows which are merged with web logs to provide ground truth.

M. Laštovička et al.

Computer Networks 229 (2023) 109782

9

lastly updated in 2014 and cannot identify any of the newer OS which
dominates the dataset. Lastly, the execution time needed to process the
dataset of roughly 22GB of data took 54.7 s on average on a common
desktop PC, hence the performance is not an issue.

The first work we aimed to reproduce was Lippmann et al. [19] as it
was one of the first works defining the field. The results are summarized
in Table 6. The original accuracy results cover the identification after
merging classes of OS, which mostly corresponds to OS name. However,
we were interested in how the methods performed if the classes were not
merged and the identification was considered minor versions. The re-
sults for the minor version are in the parenthesis in Table 6. We also
noticed the parameters for ML algorithms were limited in the original
work. In the year 2003, they needed severe compromises between ac-
curacy and computing power. We repeated the experiment setting the
parameters to match the ones described in the paper and then again with
the default settings of the SciKit tool.

The execution time of training and testing differs for each ML algo-
rithm. The whole processing pipeline identifying minor version of OS
based on the Lippmann’s parameters took 15.4 s in the case of k-NN, 3.5
s for decision tree, 120.3 s for MLP, and 144.5 s for SVM on a desktop PC.
The higher complexity of MLP and SVM classifiers results in much longer
processing time while not resulting in better accuracy metrics as shown
above.

Evaluating other works using machine learning algorithms proved to
be more complicated. As it allows to use many features, the authors use
up to hundreds of them without listing them in their papers or other
sources. Table 8 summarizes the results where we were able to identify
the features and algorithms used. In the case of Richardson’s work [67],
we omitted the features of checksums, seq/ack numbers, data offset, and
urgent pointer as they are strongly tied to the transmitted data (see
Section 6), and we did not include them in the flow export data. The
results list the accuracy of evaluated methods on the level of detail of OS
name with accuracy on the minor version in parentheses. The focus of
many works on ML is to compare different algorithms performance, so
we included the measurements in our evaluation.

The second group of works identifies OS by matching the feature
values to a previously created signatures database. In most cases, the
original database is no longer available (or never was), and evaluating it
on a modern dataset is not possible. We decided to replace the database
with a Decision Tree classifier trained on the original experiment’s
features. We used the same processing pipeline as described above to
measure the results. As the fingerprinting approach is different, the
reproduction is by no means perfect and should be taken only as an
approximation of the methods performance. Even with such limitation
we believe this comparison can be interesting and provide some insight
into the field. The results are presented in Table 9 and cover the works
that describe their identification method and list the features used. Most
of the works are proof-of-concept type of papers that show OS identifi-
cation is possible using the selected features but lack any performance
metrics.

8. Conclusion

In this paper, we presented the use cases, methods, and history of
passive operating system fingerprinting. We described traditional and

modern approaches to the task in detail and discussed the traffic features
used in literature from the perspectives of information value and us-
ability. Further, we provided an evaluation of the discussed methods and
illustrated their usage and accuracy. We mainly focused on how the
fingerprinting methods cope with recent changes and novel trends in
network communication.

One of the most important topics we addressed in this paper is the
need for OS fingerprinting methods evolution to keep up with the
changes in network protocols, new types of devices, and shifts in
computing paradigms such as wireless networks, mobile devices, cloud
computing, network virtualization, traffic encryption. These examples
of rapid development demand fingerprinting methods to be flexible to
adapt to them. The usage of machine learning seems to be a solution. We
transformed methods relying on legacy signature databases to machine
learning models based on the same features during our evaluation. We
tested selected methods on web server traffic, and our results suggest
that the accuracy of old methods with machine learning is comparable to
the current methods. The accuracy of evaluated methods ranges be-
tween 80 to 95% when identifying the OS name. When identifying the
OS name, major version, and minor version, the spread in accuracy
widens to 70–95%.

8.1. Current challenges

We encountered several issues and challenges related to the OS
fingerprinting research during the literature review and subsequent
experiments. We discussed them throughout the paper; hence, we pro-
vide a summary of key findings.

8.1.1. Missing datasets
The methods presented in recent literature are often tailored for one

particular type of network as researchers focus on available data, which
leads to measurements in the lab environment or the research facility,
which severely limits the scope and diversity of the data. The presented
methods are fine-tuned to provide the best possible results on the
selected data, and the machine learning models are trained on the same

Table 6
Evaluation of Lippmann’s work [19].

Classifier* Accuracy on OS Name (Minor Version) Accuracy metrics on OS name with default settings (Minor Version)
Original Results Reproduced with Original Parameters Accuracy Precision Recall f-score

kNN 90.2% (N/A) 94.7% (92.1%) 94.6% (94.3%) 94.0% (90.4%) 94.0% (90.4%) 94.0% (90.3%)
DT 91.3% (N/A) 87.6% (76.0%) 95.8% (94.6%) 95.7% (94.4%) 95.6% (94.3%) 95.7% (94.3%)
MLP 87.5% (N/A) 83.6% (72.3%) 86.4% (75.9%) 86.1% (76.1%) 86.7% (75.5%) 85.7% (70.7%)
SVM 89.1% (N/A) 83.1% (72.3%) 83.3% (72.5%) 83.9% (74.6%) 83.0% (72.6%) 80.4% (66.0%)

* kNN (k Nearest Neighbors), DT (Decision Tree), MLP (Multi-Layer Perceptron), SVM (Support Vector Machine).

Table 5
Overview of identified OS traffic.

OS Family No. of Flows OS Family No. of Flows

Other 42,474 Ubuntu 653
Windows 40,349 Fedora 88
Android 10,290 Chrome OS 53
iOS 8840 Symbian OS 1
Mac OS X 5324 Slackware 1
Linux 1589 Linux Mint 1

Table 7
Evaluation of p0f v3.

Metric OS name Minor version

Accuracy 92.8% 97.6%
Precision 64.1% 6.9%
Recall 49.1% 8.1%
F-score 55.6% 7.5%

M. Laštovička et al.

Computer Networks 229 (2023) 109782

10

type of network they classify. This narrow focus results in the method’s
poor performance in general use when traffic is different, which reduces
their usability in real networks. When such a method is used in another
type of network, its accuracy drops, and the method must be retrained
on data from the new environment. Such a task is often not trivial as
obtaining annotated data from a network is demanding and, in some
production networks, even impossible. This leads to the need for
fingerprinting methods that can identify OS accurately regardless of the
network type.

OS fingerprinting requires detailed information about hosts’ OS to
train the fingerprinting methods and evaluate them. However, obtaining
such data from a large network is a precarious task that leads researchers
to estimate the ground truth from available data (i.e., User-Agents or
application banners).

8.1.2. Reproducibility
The reproducibility of results is a well-known problem in scientific

research. In the case of the OS fingerprinting papers we reviewed, many
lacked the description of fingerprinting methods, or the description was
insufficient. The source codes and datasets were not provided or no
longer available, and the texts of papers often lack the settings of algo-
rithms used.

8.1.3. Comparability
Comparing original results from the papers to others or the repro-

duced ones is not straightforward. A notable number of OS finger-
printing papers do not provide any accuracy metrics of their
experiments and settle down with the possibility of OS identification
using the method. Such lack of information leaves questions about how
they were evaluated. Furthermore, OS identification’s level of detail is
often blurry as merging similar systems in one group is very common.
This artificial boosting of accuracy leads to some OS being identified to
its name with major and minor versions (i.e., Android 4.2), whereas
others in the same paper are identified only as an OS family (i.e., Linux).
The accuracy metric itself can be very misleading on imbalanced data-
sets where one target class dominates the dataset. A simple model
classifying everything into one class can achieve high accuracy;

therefore, other metrics should accompany accuracy to express the
method performance more realistically.

8.1.4. Feature acquisition
There is a wide range of features used for OS fingerprinting,

including a couple of exotic ones. The connection of features to OS and
data is discussed in Section 6, but there are problems with the practi-
cality of some features too. The measurement of them requires a specific
location of the monitoring point, unrealistic precision of timing mea-
surement, or additional computations over the raw packet data. Such
requirements make it complicated to deploy in a large network and use
more processing power than is available on devices commonly used for
monitoring. To ensure the fingerprinting methods’ usability, the mea-
surement of features should be feasible in any network with standard
equipment and should not require extensive computations.

CRediT authorship contribution statement

Martin Laštovička: Conceptualization, Methodology, Software,
Validation, Investigation, Writing – original draft, Writing – review &
editing, Supervision. Martin Husák: Conceptualization, Writing –
original draft, Writing – review & editing. Petr Velan: Methodology,
Software, Validation, Investigation, Data curation, Writing – original
draft. Tomáš Jirsík: Conceptualization, Writing – original draft, Writing
– review & editing. Pavel Čeleda: Supervision, Project administration,
Funding acquisition, Writing – review & editing.

Declaration of Competing Interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests:
Martin Laštovička, Martin Husák, Petr Velan, Tomas Jirsík, Pavel Čeleda
report financial support was provided by Ministry of Education, Youth
and Sports of the CR.

Data Availability

The data are publicly available in our university repository and
Zenodo platform, and are linked from the paper.

Acknowledgement

This research was supported by ERDF “CyberSecurity, CyberCrime
and Critical Information Infrastructures Center of Excellence” (No.
CZ.02.1.01/0.0/0.0/16_019/0000822).

Table 8
Evaluation of methods based on machine learning.

Author Classifier* Original Results Reproduced results on OS Name (Minor Version)
Accuracy Accuracy Precision Recall F-score

Beverly [60] Bayes N/A 37.7% (0.5%) 49.7% (92.1%) 37.6% (0.6%) 37.4% (0.3%)
Richardson [67] (limited params) RF 98% (<30%) 94.9% (91.5%) 95.8% (94.6%) 95.8% (94.7%) 95.8% (94.6%)

DT N/A 94.4% (92.3%) 95.8% (94.7%) 95.8% (94.6%) 95.8% (94.6%)
SVM 98% (<30%) 86.2% (74.9%) 84.8% (75.3%) 84.2% (71.9%) 81.8% (65.2%)
kNN N/A 91.2% (84.4%) 93.9% (91.2%) 94.0% (91.1%) 94.0% (91.0%)

Laštovička [70] DT 97.6% (N/A) 84.1% (73.7%) 83.6% (81.1%) 94.3% (73.6%) 81.6% (68.5%)
kNN 97.6% (N/A) 80.5% (71.6%) 82.9% (79.5%) 83.7% (73.2%) 81.4% (68.6%)
SVM 97.6% (N/A) 82.5% (73.2%) 85.0% (80.4%) 82.7% (72.2%) 79.9% (66.9%)
Bayes 81.8% (N/A) 37.2% (21.8%) 50.9% (56.3%) 37.3% (22.4%) 37.0% (23.8%)

Laštovička [45] DT 93.1% (N/A) 82.1% (73.4%) 81.6% (71.5%) 92.4% (73.4%) 81.6% (71.4%)

* kNN (k Nearest Neighbors), DT (Decision Tree), SVM (Support Vector Machine), RF (Random Forest).

Table 9
Evaluation of methods based on manual analysis.

Author Accuracy on OS Name (Minor Version)
Original Results Reproduced

Spitzner [16] N/A 75.8% (70.2%)
Karagiannis [20] N/A 89.1% (87.4%)
Vymlátil [22] N/A (89.5%) 89.4% (78.1%)
Matoušek [23] N/A (91.7%) 89.4% (78.1%)
Jirsík [24] N/A 84.1% (73.7%)
Tyagi [25] N/A (95.5%) 94.2% (92.7%)
Osanaiye [26] N/A 84.4% (73.8%)
Laštovička [27] 80.9% (N/A) 84.1% (73.7%)

M. Laštovička et al.

Computer Networks 229 (2023) 109782

11

References

[1] R. Fielding, J. Reschke, Hypertext transfer protocol (HTTP/1.1): semantics and
content, RFC 7231 (Proposed Standard) (2014). URL http://www.ietf.org/rfc/rf
c7231.txt.

[2] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto, A. Pras, Flow
monitoring explained: from packet capture to data analysis with NetFlow and
IPFIX, IEEE Commun. Surv. Tutorials 16 (4) (2014) 2037–2064.

[3] A. Kott, C. Wang, R.F. Erbacher, Cyber Defense and Situational Awareness, 62,
Springer, 2015.

[4] M. Husák, T. Jirsík, S.J. Yang, SoK: contemporary issues and challenges to enable
cyber situational awareness for network security, in: Proceedings of the 15th
International Conference on Availability, Reliability and Security, 2020. ACM.

[5] M. Laštovička, M. Husák, L. Sadlek, Network monitoring and enumerating
vulnerabilities in large heterogeneous networks, in: NOMS 2020 - 2020 IEEE/IFIP
Network Operations and Management Symposium, 2020. IEEE.

[6] Titan H.Q., SpamTitan Passive OS fingerprinting, [cited 2020-09-17] (2018). URL
https://www.manula.com/manuals/menlo-park-tech/spamtitan-administrator-gui
de/1/en/topic/passive-os-fingerprinting.

[7] J.M. Allen, OS and application fingerprinting techniques, SANS Institute InfoSec
Reading Room (2007).

[8] J.P.S. Medeiros, A. de Medeiros Brito Júnior, P.S. Motta Pires, A qualitative survey
of active TCP/IP fingerprinting tools and techniques for operating systems
identification, in: Á. Herrero, E. Corchado (Eds.), Computational Intelligence in
Security for Information Systems, Springer, Berlin Heidelberg, 2011, pp. 68–75.

[9] N. Provos, T. Holz, Virtual Honeypots: From Botnet Tracking to Intrusion
Detection, 1st Edition, Addison-Wesley Professional, 2007.

[10] D. Herrmann, K.-.P. Fuchs, H. Federrath, Fingerprinting Techniques For Target-
Oriented Investigations in Network forensics, Sicherheit 2014– Sicherheit, Schutz
und Zuverlässigkeit, 2014.

[11] Y. Liu, J. Wang, J. Li, S. Niu, H. Song, Machine learning for the detection and
identification of internet of things devices: a survey, IEEE Internet Things J. 9 (1)
(2021) 298–320.

[12] P.M.S. Sánchez, J.M.J. Valero, A.H. Celdrán, G. Bovet, M.G. Pérez, G.M. Pérez,
A survey on device behavior fingerprinting: data sources, techniques, application
scenarios, and datasets, IEEE Commun. Surv. Tutorials (2021).

[13] Q. Xu, R. Zheng, W. Saad, Z. Han, Device fingerprinting in wireless networks:
challenges and opportunities, IEEE Commun. Surv. Tutorialss 18 (1) (2015)
94–104.

[14] M. Albanese, E. Battista, S. Jajodia, A deception based approach for defeating OS
and service fingerprinting, in: 2015 IEEE Conference on Communications and
Network Security (CNS), 2015, pp. 317–325.

[15] P. Velan, M. Cermák, P. Celeda, M. Drašar, A survey of methods for encrypted
traffic classification and analysis, Int. J. Network Manage. 25 (5) (2015) 355–374.

[16] L. Spitzner, Passive fingerprinting, FOCUS on intrusion detection: passive
fingerprinting (May 3, 2000) (2000) 1–4.

[17] M. Zalewski, p0f v3, [cited 2022-03-02] (2012). URL http://lcamtuf.coredump.
cx/p0f3/.

[18] M. Beddoe, The Siphon project: the passive network mapping tool, [cited 2022-03-
02] (2011). URL https://github.com/unmarshal/siphon.

[19] R. Lippmann, D. Fried, K. Piwowarski, W. Streilein, Passive operating system
identification from TCP/IP packet headers, in: Workshop on Data Mining for
Computer Security, 2003, p. 40.

[20] T. Karagiannis, K. Papagiannaki, N. Taft, M. Faloutsos, Profiling the end host, in:
International Conference on Passive and Active Network Measurement, 2007,
pp. 186–196. Springer.

[21] S. Mossel, Passive OS detection by monitoring network flows, DLib Magazine
(2012).

[22] M. Vymlátil, Detection of Operation Systems in Network Traffic Using IPFIX, Brno
University of Technology Thesis, 2014.

[23] P. Matoušek, O. Ryšavý, M. Grégr, M. Vymlátil, Towards identification of operating
systems from the internet traffic: ipfix monitoring with fingerprinting and
clustering, in: 2014 5th International Conference on Data Communication
Networking (DCNET), 2014, pp. 1–7. IEEE.

[24] T. Jirsík, P. Čeleda, Identifying operating system using flow-based traffic
fingerprinting. Advances in Communication Networking, Springer International
Publishing, 2014, pp. 70–73.

[25] R. Tyagi, T. Paul, B. Manoj, B. Thanudas, Packet Inspection for Unauthorized OS
Detection in Enterprises, IEEE Secur Priv 13 (4) (2015) 60–65.

[26] O.A. Osanaiye, M. Dlodlo, TCP/IP header classification for detecting spoofed DDoS
attack in Cloud environment, in: IEEE EUROCON 2015 - International Conference
on Computer as a Tool, 2015, pp. 1–6.

[27] M. Laštovička, T. Jirsík, P. Čeleda, S. Špaček, D. Filakovský, Passive OS
fingerprinting methods in the jungle of wireless networks, in: NOMS 2018 - 2018
IEEE/IFIP Network Operations and Management Symposium, 2018, pp. 1–9. IEEE.

[28] M. Laštovička, D. Filakovský, Passive OS fingerprinting prototype demonstration,
in: NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management
Symposium, 2018. IEEE.

[29] T. Al-Shehari, F. Shahzad, Improving operating system fingerprinting using
machine learning techniques, Int. J. Comput. Theory Eng. 6 (1) (2014) 57.

[30] J. Barnes, P. Crowley, K-p0F: a High-throughput kernel passive OS fingerprinter,
in: Proceedings of the Ninth ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, ANCS ’13, 2013, pp. 113–114. IEEE.

[31] Ornaghi, Alberto and Valleri, Marco and Escobar, Emilio and Costamagna,
Gianfranco and Koeppe, Alexander and Abdulkadir, Ali, Ettercap project, [cited
2022-03-02] (2001). URL https://www.ettercap-project.org/.

[32] A. Ornaghi, M. Valleri, E. Escobar, E. Milam, G. Costamagna, A. Koeppe, Ettercap,
[cited 2022-03-02] (2011). URL https://github.com/Ettercap/ettercap.

[33] NetGrab, Netsleuth, [cited 2020-09-04] (2012). URL http://netgrab.co.uk/netsleut
h/.

[34] E.B. Fjellskål, K. Wysocki, PRADS - passive real-time asset detection system, [cited
2022-03-02] (2009). URL https://github.com/gamelinux/prads.

[35] E. Kollmann, Satori, [cited 2023-04-03] (2018). URL https://github.com/xnih/sat
ori.

[36] E. Hjelmvik, Networkminer, [cited 2022-03-02] (2007). URL https://www.net
resec.com/?page=Networkminer.

[37] Juniper Networks, Inc., Configuring profiler options (NSM Procedure), [cited 2022-
03-02] (2013). URL https://www.juniper.net/documentation/en_US/ns
m2012.2/topics/task/configuration/firewall-profiler-option-configuring-nsm.ht
ml.

[38] Cisco Systems, Inc., User guide for cisco security manager 4.7, [cited 2020-09-17]
(2009). URL https://www.cisco.com/c/en/us/td/docs/security/security_manage
ment/cisco_security_manager/security_manager/4-7/user/guide/CSMUser
Guide/ipsevact.html#100539.

[39] Cisco Systems, Inc., Next-gen firewall, [cited 2022-03-03] (2006). URL https://me
raki.cisco.com/technologies/next-gen-firewall.

[40] AT&T Business, Asset discovery, [cited 2022-03-02] (2020). URL https://cybersec
urity.att.com/solutions/asset-discovery-inventory.

[41] AT&T Business, AlienVault OSSIM, [cited 2022-03-02] (2019). URL https://cybe
rsecurity.att.com/products/ossim.

[42] Inverse inc., Fingerbank, [cited 2022-03-02] (2014). URL https://fingerbank.org/.
[43] Inverse inc., Fingerbank Github, [cited 2022-03-02] (2014). URL https://github.

com/karottc/fingerbank.
[44] S. Shah, HTTP fingerprinting and advanced assessment techniques, BlackHat Asia

(2003).
[45] M. Laštovička, S. Špaček, P. Velan, P. Čeleda, Using TLS fingerprints for OS

identification in encrypted traffic, in: NOMS 2020 - 2020 IEEE/IFIP Network
Operations and Management Symposium, 2020. IEEE.

[46] M. Husák, M. Čermák, T. Jirsík, P. Čeleda, Network-based HTTPS client
identification using SSL/TLS fingerprinting, in: 2015 10th International Conference
on Availability, Reliability and Security, 2015, pp. 389–396. IEEE.

[47] M. Husák, M. Cermák, T. Jirsík, P. Celeda, HTTPS tra ffic analysis and client
identification using passive SSL/TLS fingerprinting, EURASIP J. Inf. Secur. 2016
(1) (2016) 6.

[48] T. Matsunaka, A. Yamada, A. Kubota, Passive OS fingerprinting by DNS traffic
analysis, in: Advanced Information Networking and Applications (AINA), 2013
IEEE 27th International Conference On, 2013, pp. 243–250. IEEE.

[49] D. Chang, Q. Zhang, X. Li, Study on OS fingerprinting and NAT/Tethering based on
DNS log analysis, in: IRTF & ISOC Workshop on Research and Applications of
Internet Measurements (RAIM), 2015.

[50] I. Voronov, K. Gnezdilov, Determining OS and applications by DNS traffic analysis,
in: 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic
Engineering (ElConRus), 2021, pp. 72–76. IEEE.

[51] A. Aksoy, M.H. Gunes, Operating system classification performance of TCP/IP
protocol headers, in: Local Computer Networks Workshops (LCN Workshops), 2016
IEEE 41st Conference on, 2016, pp. 112–120. IEEE.

[52] J. Muehlstein, Y. Zion, M. Bahumi, I. Kirshenboim, R. Dubin, A. Dvir, O. Pele,
Analyzing https encrypted traffic to identify user’s operating system, browser and
application, in: 2017 14th IEEE Annual Consumer Communications & Networking
Conference (CCNC), 2017.

[53] X. Fan, G. Gou, C. Kang, J. Shi, G. Xiong, Identify os from encrypted traffic with
tcp/ip stack fingerprinting, in: 2019 IEEE 38th International Performance
Computing and Communications Conference (IPCCC), 2019, pp. 1–7. IEEE.

[54] A. Aksoy, S. Louis, M.H. Gunes, Operating system fingerprinting via automated
network traffic analysis, in: 2017 IEEE Congress on Evolutionary Computation
(CEC), 2017, pp. 2502–2509.

[55] T. Kohno, A. Broido, K.C. Claffy, Remote physical device fingerprinting, IEEE
Trans. Dependable Secure Comput. 2 (2) (2005) 93–108.

[56] A. Azzouni, O. Braham, T.M.T. Nguyen, G. Pujolle, R. Boutaba, Fingerprinting
OpenFlow controllers: the first step to attack an SDN control plane, in: 2016 IEEE
Global Communications Conference (GLOBECOM), 2016, pp. 1–6. IEEE.

[57] J. Gurary, Y. Zhu, R. Bettati, Y. Guan, Operating system fingerprinting. Digital
Fingerprinting, Springer, 2016, pp. 115–139.

[58] C. Shen, C. Liu, H. Tan, Z. Wang, D. Xu, X. Su, Hybrid-augmented device
fingerprinting for intrusion detection in industrial control system networks, IEEE
Wirel. Commun. 25 (6) (2018) 26–31.

[59] I. Sanchez-Rola, I. Santos, D. Balzarotti, Clock around the clock: timebased device
fingerprinting, in: Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’18, 2018, pp. 1502–1514. ACM.

[60] R. Beverly, A robust classifier for passive TCP/IP fingerprinting. International
Workshop on Passive and Active Network Measurement, Springer, 2004,
pp. 158–167.

[61] J. Caballero, S. Venkataraman, P. Poosankam, M.G. Kang, D. Song, A. Blum, FiG:
Automatic fingerprint Generation, Carnegie Mellon University, 2007.

[62] H.J. Abdelnur, O. Festor, et al., Advanced Network fingerprinting, in: International
Workshop On Recent Advances in Intrusion Detection, Springer, 2008,
pp. 372–389.

[63] B. Zhang, T. Zou, Y. Wang, B. Zhang, Remote operation system detection base on
machine learning, in: 2009 Fourth International Conference on Frontier of
Computer Science and Technology, 2009, pp. 539–542.

[64] F. Gagnon, B. Esfandiari, A hybrid approach to operating system discovery based
on diagnosis, Int. J. Network Manage. 21 (2) (2011) 106–119.

M. Laštovička et al.

http://www.ietf.org/rfc/rfc7231.txt
http://www.ietf.org/rfc/rfc7231.txt
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0002
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0002
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0002
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0003
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0003
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0004
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0004
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0004
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0005
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0005
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0005
https://www.manula.com/manuals/menlo-park-tech/spamtitan-administrator-guide/1/en/topic/passive-os-fingerprinting
https://www.manula.com/manuals/menlo-park-tech/spamtitan-administrator-guide/1/en/topic/passive-os-fingerprinting
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0008
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0008
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0008
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0008
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0009
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0009
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0010
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0010
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0010
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0011
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0011
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0011
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0012
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0012
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0012
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0013
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0013
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0013
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0014
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0014
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0014
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0015
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0015
http://lcamtuf.coredump.cx/p0f3/
http://lcamtuf.coredump.cx/p0f3/
https://github.com/unmarshal/siphon
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0020
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0020
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0020
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0021
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0021
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0022
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0022
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0023
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0023
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0023
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0023
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0024
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0024
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0024
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0025
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0025
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0026
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0026
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0026
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0027
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0027
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0027
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0028
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0028
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0028
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0029
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0029
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0030
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0030
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0030
https://www.ettercap-project.org/
https://github.com/Ettercap/ettercap
http://netgrab.co.uk/netsleuth/
http://netgrab.co.uk/netsleuth/
https://github.com/gamelinux/prads
https://github.com/xnih/satori
https://github.com/xnih/satori
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.juniper.net/documentation/en_US/nsm2012.2/topics/task/configuration/firewall-profiler-option-configuring-nsm.html
https://www.juniper.net/documentation/en_US/nsm2012.2/topics/task/configuration/firewall-profiler-option-configuring-nsm.html
https://www.juniper.net/documentation/en_US/nsm2012.2/topics/task/configuration/firewall-profiler-option-configuring-nsm.html
https://www.cisco.com/c/en/us/td/docs/security/security_management/cisco_security_manager/security_manager/4-7/user/guide/CSMUserGuide/ipsevact.html#100539
https://www.cisco.com/c/en/us/td/docs/security/security_management/cisco_security_manager/security_manager/4-7/user/guide/CSMUserGuide/ipsevact.html#100539
https://www.cisco.com/c/en/us/td/docs/security/security_management/cisco_security_manager/security_manager/4-7/user/guide/CSMUserGuide/ipsevact.html#100539
https://meraki.cisco.com/technologies/next-gen-firewall
https://meraki.cisco.com/technologies/next-gen-firewall
https://cybersecurity.att.com/solutions/asset-discovery-inventory
https://cybersecurity.att.com/solutions/asset-discovery-inventory
https://cybersecurity.att.com/products/ossim
https://cybersecurity.att.com/products/ossim
https://fingerbank.org/
https://github.com/karottc/fingerbank
https://github.com/karottc/fingerbank
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0044
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0044
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0045
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0045
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0045
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0046
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0046
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0046
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0047
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0047
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0047
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0048
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0048
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0048
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0050
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0050
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0050
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0051
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0051
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0051
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0052
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0052
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0052
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0052
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0053
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0053
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0053
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0054
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0054
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0054
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0055
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0055
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0056
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0056
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0056
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0057
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0057
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0058
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0058
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0058
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0059
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0059
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0059
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0060
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0060
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0060
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0061
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0061
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0062
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0062
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0062
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0063
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0063
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0063
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0064
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0064

Computer Networks 229 (2023) 109782

12

[65] F. Gagnon, B. Esfandiari, A hybrid approach to operating system discovery based
on diagnosis theory, in: 2012 IEEE Network Operations and Management
Symposium, IEEE, 2012, pp. 860–865.

[66] F. Massicotte, F. Gagnon, Y. Labiche, L. Briand, M. Couture, Automatic evaluation
of intrusion detection systems, in: 2006 22nd Annual Computer Security
Applications Conference (ACSAC’06), IEEE, 2006, pp. 361–370.

[67] D.W. Richardson, S.D. Gribble, T. Kohno, The limits of automatic OS fingerprint
generation, in: Proceedings of the 3rd ACM workshop on Artificial intelligence and
security, ACM, 2010, pp. 24–34.

[68] Z. Shamsi, D.B. Cline, D. Loguinov, Faulds: a non-parametric iterative classifier for
Internet-wide OS fingerprinting, in: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp. 971–982.

[69] M. Laštovička, T. Jirsík, P. Čeleda, S. Špaček, D. Filakovský, PassiveOSFingerprint,
[cited 2022-02-03] (2018). URL https://github.com/CSIRT-MU/PassiveOSFing
erprint.

[70] M. Laštovička, A. Dufka, J. Komárková, Machine learning fingerprinting methods
in cyber security domain: which one to use?, in: 2018 14th International Wireless
Communications & Mobile Computing Conference (IWCMC), 2018, pp. 542–547.
IEEE.

[71] M. Laštovička, S. Špaček, P. Velan, P. Čeleda, Dataset using TLS fingerprints for OS
identification in encrypted traffic (2019). doi:10.5281/zenodo.3461771. URL
http://doi.org/10.5281/zenodo.3461771.

[72] D.H. Hagos, M. Løland, A. Yazidi, Ø. Kure, P.E. Engelstad, Advanced passive
operating system fingerprinting using machine learning and deep learning, in:
2020 29th International Conference on Computer Communications and Networks
(ICCCN), 2020, pp. 1–11. IEEE.

[73] D.H. Hagos, A. Yazidi, Ø. Kure, P.E. Engelstad, A machine-learning based tool for
passive os fingerprinting with tcp variant as a novel feature, IEEE Internet Things
Journal 8 (5) (2020) 3534–3553.

[74] R. Pérez-Jove, C.R. Munteanu, A.P. Sierra, J.M. Vázquez-Naya, Applying artificial
intelligence for operating system fingerprinting, Eng. Proc. 7 (1) (2021) 51.

[75] S. Salah, M. Abu Alhawa, R. Zaghal, Desktop and mobile operating system
fingerprinting based on ipv6 protocol using machine learning algorithms, Int. J.
Secur. Netw. 17 (1) (2022).

[76] Z. Shamsi, D.B. Cline, D. Loguinov, Faulds: a non-parametric iterative classifier for
internet-wide os fingerprinting, IEEE/ACM Trans. Network. 29 (5) (2021)
2339–2352.

[77] K. Nichols, S. Blake, F. Baker, D.L. Black, RFC 2474: definition of the differentiated
services field (DS Field) in the IPv4 and IPv6 Headers (Dec. 1998). URL https:
//tools.ietf.org/html/rfc2474.

[78] K.K. Ramakrishnan, S. Floyd, D.L. Black, RFC 3168: the Addition of explicit
congestion notification (ECN) to IP (Sep. 2001). URL https://tools.ietf.org/htm
l/rfc3168.

[79] G. Fairhurst, RFC 8436: update to IANA registration procedures for Pool 3 values in
the differentiated services field codepoints (DSCP) registry (Aug. 2018). URL https:
//tools.ietf.org/html/rfc8436.

[80] E. Rescorla, The transport layer security (TLS) protocol version 1.3, RFC 8446
(2018). URL https://tools.ietf.org/html/rfc8446.

[81] D. Benjamin, RFC 8701: applying generate random extensions and sustain
extensibility (GREASE) to TLS extensibility (Jan. 2020). URL https://tools.ietf.
org/html/rfc8701.

[82] Microsoft Documentation, W3C logging, [cited 2022-03-02] (2018). URL http
s://docs.microsoft.com/en-us/windows/win32/http/w3c-logging.

[83] G. Vormayr, J. Fabini, T. Zseby, Why are my flows different? A tutorial on flow
exporters, IEEE Commun. Surv. Tutorialss 22 (3) (2020) 2064–2103.

[84] Google Inc., uap-python: a python implementation of the UA Parser, [cited 2022-
03-02] (2015). URL https://github.com/ua-parser/uap-python.

[85] M. Laštovička, M. Husák, P. Velan, T. Jirsík, P. Čeleda, OS fingerprinting dataset,
[cited 2022-03-02] (2021). URL https://is.muni.cz/www/lastovickam/public/Dat
aset_OS_Fingerprinting.zip.

[86] Scikit-learn, Standard Scaler, [cited 2022-03-02] (2007). URL https://scikit-learn.
org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html.

[87] Scikit-learn, Scikit-learn: machine learning in Python, [cited 2022-0302] (2007).
URL https://scikit-learn.org/stable/index.html.

[88] M. Sokolova, G. Lapalme, A systematic analysis of performance measures for
classification tasks, Inf. Process Manag. 45 (4) (2009) 427–437.

[89] G.F. Lyon, Nmap network scanning: the official Nmap project guide to network
discovery and security scanning, Insecure. Com LLC (US) (2008).

[90] M. Laštovička, M. Husák, P. Velan, T. Jirsík, P. Čeleda, Passive operating system
fingerprinting revisited - network flows dataset (2023). 10.5281/zenodo.7635138.
URL 10.5281/zenodo.7635138.

[91] D. Zhang, Q. Wang, Z. Wei, S. Chen, An Operating system identification method
based on active learning, in: 2022 International Conference on Electrical,
Computer and Energy Technologies (ICECET), 2022, pp. 1–6.

[92] M. Grill, M. Rehák, Malware detection using http user-agent discrepancy
identification, in: 2014 IEEE International Workshop on Information Forensics and
Security (WIFS), IEEE, 2014.

[93] A. Adhikari, Device identification from network traffic measurements-A HTTP user
agent based method, Aalto Univ. School Electr. Eng. (2012).

[94] J. Chen, G. Gou, G. Xiong, An analysis of anomalous user agent strings in network
traffic, in: 2019 IEEE 21st International Conference on High Performance
Computing and Communications, IEEE, 2019.

Martin Laštovička obtained his Ph.D. in Informatics at the
Faculty of Informatics, Masaryk University, Czech Republic. He
works as the head of the cybersecurity operations group in
CSIRT-MU. His research topic lies in network traffic analysis
and practical applications of machine learning to build Cyber
Situational Awareness through the identification of network
entities and their relationships. His focus is to apply research
outputs to real-world data and enhance operations of the
CSIRT-MU team.

Tomáš Jirsík obtained his Ph.D. in Informatics from the Fac-
ulty of Informatics, Masaryk University, Czech Republic. He is
currently a senior cybersecurity data analyst at Cisco Systems.
Previously, he was a senior researcher at the Institute of
Computer Science at Masaryk University and a member of the
Computer Security Incident Response Team of Masaryk Uni-
versity (CSIRT-MU). His research focus lies in network traffic
analysis with a specialization in host profiling. His research
further includes network segmentation approaches via ma-
chine learning and host fingerprinting in network traffic.

Martin Husák is a researcher at the Institute of Computer
Science at Masaryk University, a member of the university’s
security team (CSIRT-MU), and a contributor to The Honeynet
Project. His Ph.D. thesis addressed the problem of early
detection and prediction of network attacks using information
sharing. His research interests are related to cyber situational
awareness and threat intelligence with a special focus on the
effective sharing of data from honeypots and network
monitoring.

Pavel Čeleda is an associate professor at Masaryk University.
He received a Ph.D. degree in Informatics from the University
of defence, Brno. His main research interests include traffic
analysis, situational awareness, and cybersecurity testbeds for
research and education. The research topics are subject of
many projects, collaborations, and Ph.D. dissertations. He is a
principal investigator of the KYPO cyber range project and co-
PI of the C4e center of excellence.

Petr Velan obtained his Ph.D. in Informatics at the Faculty of
Informatics, Masaryk University, Czech Republic. He is
currently a senior researcher at the Institute of Computer Sci-
ence at Masaryk University and a member of the Computer
Security Incident Response Team of Masaryk University
(CSIRT-MU), where he participates on cybersecurity research
projects. His research focus lies on the network traffic moni-
toring and analysis with a specialization in network flow
monitoring.

M. Laštovička et al.

http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0065
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0065
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0065
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0066
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0066
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0066
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0067
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0067
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0067
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0068
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0068
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0068
https://github.com/CSIRT-MU/PassiveOSFingerprint
https://github.com/CSIRT-MU/PassiveOSFingerprint
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0070
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0070
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0070
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0070
http://doi.org/10.5281/zenodo.3461771
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0072
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0072
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0072
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0072
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0073
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0073
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0073
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0074
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0074
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0075
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0075
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0075
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0076
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0076
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0076
https://tools.ietf.org/html/rfc2474
https://tools.ietf.org/html/rfc2474
https://tools.ietf.org/html/rfc3168
https://tools.ietf.org/html/rfc3168
https://tools.ietf.org/html/rfc8436
https://tools.ietf.org/html/rfc8436
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8701
https://tools.ietf.org/html/rfc8701
https://docs.microsoft.com/en-us/windows/win32/http/w3c-logging
https://docs.microsoft.com/en-us/windows/win32/http/w3c-logging
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0083
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0083
https://github.com/ua-parser/uap-python
https://is.muni.cz/www/lastovickam/public/Dataset_OS_Fingerprinting.zip
https://is.muni.cz/www/lastovickam/public/Dataset_OS_Fingerprinting.zip
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/index.html
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0088
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0088
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0089
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0089
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0091
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0091
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0091
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0092
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0092
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0092
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0093
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0093
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0094
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0094
http://refhub.elsevier.com/S1389-1286(23)00227-X/sbref0094

	Passive operating system fingerprinting revisited: Evaluation and current challenges
	1 Introduction
	2 Background and motivating use cases
	2.1 Network reconnaissance and situational awareness
	2.2 Identification of obsolete, vulnerable, and Rogue devices

	3 Related work
	4 History and traditional methods
	4.1 Brief history of OS fingerprinting
	4.2 TCP/IP methods
	4.3 Overview of tools

	5 Modern approaches
	5.1 Application layer information
	5.2 Encrypted traffic analysis
	5.3 Other approaches
	5.4 Machine learning

	6 Datasets and fingerprinting features
	6.1 Fingerprinting features
	6.2 Network and transport layer features
	6.3 Application layer features
	6.4 Derived features

	7 Evaluation of the presented methods
	7.1 Experiment setup
	7.2 Dataset creation
	7.3 OS fingerprinting methods evaluation

	8 Conclusion
	8.1 Current challenges
	8.1.1 Missing datasets
	8.1.2 Reproducibility
	8.1.3 Comparability
	8.1.4 Feature acquisition

	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data Availability
	Acknowledgement
	References

