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Introduction: Pathogenic strains of Escherichia coli have been clearly identified

as the causative agents of extraintestinal and diarrheal infections; however, the

etiopathogenic role of E. coli in other conditions, including colorectal cancer,

remains unclear.

Methods: This study aimed to characterize mucosal E. coli isolates (n = 246)

from 61 neoplasia patients and 20 healthy controls for the presence of 35 genetic

determinants encoding known virulence factors.

Results: Virulence determinants encoding invasin (ibeA), siderophore receptor

(iroN), S-fimbriae (sfa), and genotoxin (usp) were more prevalent among E. coli

isolated from patients with neoplasia compared to the control group (p < 0.05).

In addition, the prevalence of these virulence determinants was increased in more

advanced neoplasia stages (padj < 0.0125). Compared to patients with advanced

colorectal adenoma and carcinoma, the ibeA gene was rarely found in the control

group and among patients with non-advanced adenoma (p < 0.05), indicating its

potential as the advanced-neoplasia biomarker. Patients with neoplasia frequently

had E. coli strains with at least one of the abovementioned virulence factors,

whereby specific combinations of these virulence factors were found.

Discussion: These findings suggest that E. coli strains isolated from patients with

colorectal neoplasia possess several virulence factors, which could contribute to

the development of neoplastic processes in the large intestine.
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Highlights

– This study found a positive association between several E. coli virulence-associated genes
and colorectal neoplasia.

– Compared to healthy controls, mucosal E. coli from neoplasia patients more frequently
encoded invasins, adhesins, and genotoxins, especially in cohorts of patients with
advanced neoplasia and colorectal cancer.
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– The gene for invasin (ibeA) has potential to be a one of the
neoplasia biomarkers, since it was found almost exclusively
among patients with advanced colorectal adenoma and
carcinoma.

– The fact that E. coli strains encode the same virulence factors in
subsets of patients with current and previous neoplasia indicates
that the identified E. coli strains appear to contribute to the
development of colorectal neoplasia, as opposed to being a
consequence of neoplastic conditions.

GRAPHICAL ABSTRACT

This study found a positive association between four
virulence-associated genes (VAGs) of E. coli and colorectal
neoplasia. These VAGs were predominantly found among E. coli
from patients with advanced adenoma or carcinoma. Presence of
certain E. coli in the gut appears to be a cause rather than a
consequence of colorectal neoplasia. Created with BioRender.com.

Introduction

Escherichia coli is a commensal bacterium of the human
gastrointestinal tract and, at the same time, an important human
pathogen. Pathogenic E. coli emerged from non-pathogenic strains
by the acquisition of virulence factors. Based on encoded virulence
factors, they can be classified as extraintestinal and intestinal
pathogenic E. coli (Nataro and Kaper, 1998; Kaper et al., 2004;
Tenaillon et al., 2010; Riley, 2020; Denamur et al., 2021).

Extraintestinal pathogenic E. coli (ExPEC) strains colonize
various sites of the human body and are associated with a spectrum
of infections ranging from uncomplicated urinary tract infections
to life-threatening bacteremia and meningitis. For example, ExPEC
is responsible for 80% of urinary tract infections and 30% of
neonatal meningitis (Desvaux et al., 2020). These strains typically
encode virulence factors that allow them to bind to eukaryotic
cells (e.g., P-fimbriae, S-fimbriae), survive outside the intestines
(e.g., siderophores), and damage cells and tissues (e.g., hemolysin,
cytotoxic necrotizing factor) (Dale and Woodford, 2015).

Intestinal pathogenic E. coli strains are mucosal pathogens
with six well-described diarrhea-associated pathotypes

(i.e., enterotoxigenic E. coli, enterohemorrhagic E. coli,
enteropathogenic E. coli, enteroinvasive E. coli, enteroaggregative
E. coli, and diffusely adherent E. coli), which use different
pathogenic strategies, such as the production of various toxins
and host adhesion/invasion factors (Kaper et al., 2004). Intestinal
pathogenic E. coli strains cause common food-borne diarrheal
complications (Beutin and Martin, 2012; Tseng et al., 2014;
Eppinger and Cebula, 2015; European Food Safety Authority
[EFSA] and European Centre for Disease Prevention and Control,
2021), including acute infectious diarrhea in children seen in
developing countries (Kosek et al., 2003; Dutta et al., 2013).

While pathogenic E. coli have been clearly identified as the
causative agents of urogenital and diarrheal infections, the role of
E. coli in other conditions, such as inflammatory bowel diseases
(IBDs) and colorectal cancer, remains unclear (Tjalsma et al., 2012;
Brennan and Garrett, 2016; Tilg et al., 2018; Wassenaar, 2018;
Garrett, 2019; Chattopadhyay et al., 2021). Besides host-genetic
and environmental factors, several bacteria have been found to
be involved in the pathogenesis of different neoplastic conditions,
and an abundance of E. coli has been found among these patients
(Bonnet et al., 2014; Feng et al., 2015; Nakatsu et al., 2015).
Reflecting this situation, E. coli strains with specific sets of virulence
factors (e.g., adherent-invasive E. coli, colibactin-producing E. coli)
are considered to be pathobionts rather than bacteria causing acute
infection (Desvaux et al., 2020).

In our previous prospective study, we identified a higher
prevalence of bacteriocin-producing strains among E. coli strains
isolated from the biopsies of patients with current or previous
colorectal neoplasia compared to E. coli from biopsies of healthy
controls (Kohoutová et al., 2020). Since several bacteriocins can be
considered virulence factors (reviewed in Bosák et al., 2021), this
follow-up study aimed to characterize mucosal E. coli isolates for
the presence of 35 genetic determinants encoding known virulence
factors.

Materials and methods

Study design, cohort characterization,
and ethical approval

This study extends our previous study, where the prevalence
of bacteriocinogeny was used to characterize E. coli isolates from
colorectal biopsies (Kohoutová et al., 2020). Here, E. coli isolates
were classified into phylogenetic groups and further characterized
with respect to the prevalence of 35 virulence determinants.

The biopsies (n = 187; up to 3 samples per individual)
were collected from patients treated at the University Hospital,
Hradec Králové (Czech Republic), between 2013 and 2017. All
participants were Caucasians living in the Czech Republic. Out
of 63 participants with colorectal neoplasia, 21 were classified
as having non-advanced colorectal adenoma (nCRA), 20 with
advanced colorectal adenoma (aCRA), and 22 with colorectal
carcinoma (CRC). Advanced colorectal adenoma was defined as
an adenoma with low-grade dysplasia and larger than 10 mm
and/or high-grade dysplasia of any size and/or an adenoma of any
size with a villous component (Mahajan et al., 2013). While 36
participants had current neoplasia, biopsies from 27 participants
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were collected after surgical or endoscopic removal of the neoplasm
(an average of 56 months after removal, ranging between 1 and
164 months). For two patients, no E. coli isolate was collected (i.e.,
nCRA patient no. 9 and CRC patient no. 4; see below). Twenty
healthy volunteers were enrolled as a control group (n = 52, up
to 3 biopsies per individual). Control individuals had an average
risk for colorectal carcinoma, normal colonoscopy findings, and
no history of colorectal neoplasia or inflammatory bowel disease.
Demographic and clinical characteristics of the participants, as well
as information about bowel preparation followed by collection of
bioptic samples have been published previously (Kohoutová et al.,
2020). All cohorts were matched for age and sex (Kohoutová et al.,
2020).

All human clinical samples were collected after receiving
written informed consent from participants. All data used in the
study were anonymized, and the study was approved by the Joint
Ethics Committee (Charles University, Faculty of Medicine at
Hradec Králové, and the University Teaching Hospital Hradec
Králové; Protocol no. 201107S54).

Isolation and identification of Escherichia
coli strains

We used E. coli strains isolated from mucosal biopsies
obtained in the previous study (Kohoutová et al., 2020). Briefly,
mucosal biopsies were collected during diagnostic or therapeutic
colonoscopy, and the bioptic samples were cultured on MacConkey
agar plates. A set of 522 candidate colonies (1–5 per biopsy)
have been analyzed using VITEK 2 system (BioMérieux SA,
Marcy l’Etoile, France), which resulted in 317 isolates identified
as Escherichia coli. Seventy-one duplicate E. coli isolates (i.e.,
isolates originating from the same individual, belonging to the
same phylogroup, and having the same set of detected VAGs)
were excluded. A set of E. coli isolates (n = 246) with different
PCR profiles was further analyzed in this study, including 46
strains from healthy controls, 71 strains from patients with non-
advanced colorectal adenoma (nCRA), 65 strains from patients
with advanced colorectal adenoma (aCRA), and 64 strains from
patients with colorectal cancer (CRC). In two patients, one nCRA
and one CRC, no E. coli strains were isolated (Supplementary
Table 1).

Phylogenetic classification of Escherichia
coli isolates

Multiplex-PCR amplifying of the chuA, yjaA, and the TspE4.C2
genomic fragments were used to classify E. coli isolates into four
phylogenetic groups (i.e., A, B1, B2, and D) (Clermont et al., 2000).

PCR detection of virulence-associated
genes

Due to unclear role of E. coli in neoplasia, E. coli isolates
have been screened for the presence of 35 virulence determinants,

which are relevant for known intestinal and extraintestinal E. coli
pathotypes, such as determinants associated with binding to the
host cell (afaI, bfpA, eaeA, fimA, pap, pCVD432, sfa, and tsh), with
iron acquisition (eitA, etsA, fepC, fyuA, ireA, iroN, iucD, and sitA),
with damage caused to cells and tissues (α-hly, cdt, cnf1, ehly, lt,
pks, sat, st, stx1, stx2, and usp), with invasion (ibeA, ial, and ipaH),
and with protection of bacterial cell (iss, hlyF, kpsMTII, ompT,
and traT).

The complete set used in this study included the following
determinants: α-hly – α-hemolysin, afaI – afimbrial adhesin,
bfpA – bundle-forming pilus, cdt – cytolethal distending toxin,
cnf1 – cytotoxic necrotizing factor, eaeA – intimin, ehly –
enterohemolysin, eitA – iron transport, etsA – transport system,
fepC – enterobactin transport, fimA – fimbriae type I, fyuA –
yersiniabactin receptor, hlyF – overproduction of outer membrane
vesicles, ial – locus associated with invasivity, ibeA – invasion of
brain epithelium protein A, ipaH – locus associated with invasivity,
ireA – iron responsive element, iroN – salmochelin receptor, iss –
increased serum survival protein, iucD – aerobactin synthesis,
kpsMTII – capsule synthesis, lt – thermolabile enterotoxin, ompT –
outer membrane protease T, pap – P-fimbriae, pCVD432 –
aggregative adherence plasmid, pks – colibactin synthesis, sfa –
S-fimbriae, sat – secreted autotransporter toxin, sitA – iron
transport, st – thermostable enterotoxin, stx1 – Shiga toxin 1,
stx2 – Shiga toxin 2, traT – complement resistance protein, tsh –
temperature-sensitive hemagglutinin, and usp – uropathogenic-
specific protein. In PCR screening, appropriate positive control
E. coli strain for each VAG was used. The complete list of primers
and PCR profiles is shown in Supplementary Table 2.

Statistical analysis

The two-tailed Fisher’s exact test was used to analyze the
prevalence of the genetic determinants of the phylogenetic groups
and virulence factors. P-values lower than 0.05 were considered
statistically significant and are denoted with asterisks according to
statistical significance (∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001). In
cases of multiple testing, statistical significance was adjusted for the
false discovery rate (padj < 0.0125). GraphPad Prism 5 software was
used for calculations. Correlation analysis (Pearson coefficient) was
performed using R software (v4.2.0) (R Core Team, 2022).

Results

Characterization of mucosal Escherichia
coli isolates

E. coli isolates used in this study were obtained from mucosal
biopsies of patients with colorectal neoplasia (n = 61; E. coli was
not isolated from two patients) and healthy controls (n = 20). From
239 biopsies, a set of 317 E. coli isolates has been collected. While
fourteen isolates represented duplicate E. coli isolation (isolation
of identical strains) from the same biopsy, seventy-one E. coli
isolates were duplicates from the same individual (see Methods).
For reduction of bias in statistical analysis, isolates identified as
duplicates have been excluded from the study and the set of 246
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FIGURE 1

Collection and characterization of mucosal E. coli isolates from patients (n = 200) and healthy controls (n = 46). (A) On average, three various E. coli
isolates were collected (range 1–7) per participant; there were no differences between healthy controls and neoplasia groups (Box and Whiskers:
median, max/min). Lower numbers of E. coli isolates per healthy volunteer resulted from lower number of biopsies compared to the average
number of biopsies per patient. (B) Prevalence of phylogroups was similar among E. coli from healthy controls and neoplasia patients. The
phylogroup composition of E. coli strains differed between patients with advanced adenomas and the control group (p < 0.05, Fisher’s exact test,
see Supplementary Table 3), but the difference was not statistically significant after correction for the false discovery rate (padj < 0.0125).
(C) Prevalence of 35 VAGs has been determined in all E. coli isolates. The neoplasia group consisted of isolates from non-advanced colorectal
adenoma (nCRA; n = 71), advanced colorectal adenoma (aCRA; n = 65), and colorectal carcinoma (CRC; n = 64).

different E. coli strains has been further analyzed. The source and
characteristics for each E. coli isolate (including duplicate isolates)
are shown in Supplementary Table 1.

Lower numbers of biopsies were collected from healthy
individuals compared to patients (p < 0.05); however, the number
of obtained E. coli isolates per biopsy was similar between patients
and controls (p = 0.1335). On average, three different E. coli strains
were collected for each participant (Figure 1A).

Phylogroup analysis of mucosal E. coli (n = 246) revealed
phylogroups B2 (36.2%), A (30.1%), and D (26.8%) were
common, while phylogroup B1 was relatively rare (6.9%). The
E. coli phylogroups did not differ significantly between patients
with neoplasia and healthy controls (p > 0.05, Figure 1B
and Supplementary Table 3). The prevalence of E. coli from
phylogroup B2 was higher among patients with advanced colorectal
adenoma compared to healthy controls (p = 0.0201); however,
this was not statistically significant after correction for the false
discovery rate (padj < 0.0125, Figure 1B and Supplementary
Table 3).

Analysis of the prevalence of 35 determinants encoding
virulence factors showed that virulence genes associated with
diarrheal E. coli pathotypes (i.e., bfpA, ial, pCVD432, lt, st, stx1, and
stx2) were rarely found in the set of mucosal E. coli. At the same

time, genes encoding fimbriae type 1 and three iron acquisition
systems have been found in more than half of mucosal isolates
(fimA 82.5%, fyuA 68.7%, sitA 63.0%, and fepC 62.2%). For more
details see Figure 1C and Supplementary Table 3.

Mucosal Escherichia coli from patients
with neoplasia and healthy volunteers
differ in the prevalence of virulence
determinants

E. coli strains isolated from healthy controls and patients with
neoplasia (i.e., nCRA, aCRA and CRC patients) differed in the
prevalence of several virulence determinants (p < 0.05; Figure 2A).
Besides the three determinants with lower prevalence among E. coli
from patients (i.e., afaI, iucD, and sat), genes encoding S-fimbriae
(sfa), siderophore receptor (iroN), invasin (ibeA), and genotoxin
(usp) showed higher prevalence in E. coli from mucosal biopsies
of neoplasia patients (Figure 2A).

More than half (55.0%) of E. coli isolates from neoplasia
patients harbored at least one of the four abovementioned genes
(i.e., ibeA, iroN, sfa, and usp). While E. coli from healthy controls

Frontiers in Microbiology 04 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1141619
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-14-1141619 April 8, 2023 Time: 15:10 # 5

Bosák et al. 10.3389/fmicb.2023.1141619

FIGURE 2

Virulence determinants with significantly different prevalence between mucosal E. coli from neoplasia patients and healthy controls. (A) Among
E. coli from patients, the prevalence of four virulence-associated genes (VAGs) was higher (left), and the prevalence of three others was lower (right).
(B) Certain combinations of neoplasia-associated genes (i.e., ibeA, iroN, sfa, and usp) occurred frequently in E. coli from patients, while E. coli from
healthy controls harbored these VAGs individually. The VAGs with higher prevalence in the neoplasia group were mainly associated with E. coli from
patients with advanced adenoma or carcinoma (C), and the prevalence of these genes was not only higher in E. coli from current neoplasia patients
but also in patients with a history of adenoma or carcinoma (D). The two-tailed Fisher’s exact test was used to calculate the statistical significance
between healthy controls and groups of patients (*p < 0.05, **p < 0.01, and ***p < 0.001). In panels (C,D), the dotted lines represent the prevalence
in E. coli from healthy controls, and the statistical significance relative to neoplasia stages is shown by asterisks. Statistical significance after
correction for the false discovery rate (padj < 0.0125) is shown in pink. E. coli from patients with non-advanced colorectal adenoma (nCRA; n = 71),
advanced colorectal adenoma (aCRA; n = 65), and colorectal carcinoma (CRC; n = 64) or patients with current and previous neoplasia (n = 100 and
n = 100, respectively) represent subsets of neoplasia isolates (n = 200). # = the number of detected VAGs per isolate.

often harbored them individually (e.g., usp in 17.4%, Figure 2B
right), these genes co-occurred (co-occurrence was defined as the
presence of 3 or 4 such genes) more frequently in E. coli from
patients (27.0% vs. 4.3%, respectively; p < 0.001, Figure 2B).
These four genes showed positive correlation with each other
(iroN/sfa (R = 0.63), usp/iroN (R = 0.61), usp/sfa (R = 0.43),
iroN/ibeA (R = 0.34), ibeA/sfa (R = 0.33), and usp/ibeA (R = 0.26);
p < 0.001), as well as to advanced neoplasia stages (p < 0.05;
see Supplementary Table 4). Combination sfa-iroN-usp has been
the most frequent combination in E. coli from patients with
advanced neoplasia (21.5% in aCRA and 12.5% in CRC). Moreover,
combination of all four identified VAGs has been found exclusively
in E. coli from patients with advanced neoplasia (9.2 and 10.9%
in aCRA and CRC, respectively) (Supplementary Table 1). While
some combinations of neoplasia-associated virulence genes were
frequent, others were not found in our set of E. coli isolates
(Figure 2B).

The prevalence of these four virulence genes also differed
among E. coli from patients with various neoplasia stages. These
genes were common in E. coli strains from patients with more
advanced stages of neoplasia (p < 0.05; Figure 2C), including

statistically significant differences after correction for testing of
multiple groups (padj < 0.0125, Figure 2C). A higher prevalence
of ibeA, iroN, sfa, and usp was also found in E. coli from patients
with previous colorectal neoplasia (p < 0.05; Figure 2D).

On the other hand, the prevalence of three virulence genes,
which were negatively-associated with E. coli from neoplasia
(i.e., afa, iucD, and sat), did not differ among neoplasia stages.
The different prevalence of iucD among E. coli from patients
with current and previous neoplasia (p < 0.0332) was not
statistically significant after correction for the false discovery
rate (padj < 0.0125). A complete statistical analysis is shown in
Supplementary Table 3.

Identified virulence factors were
common in individuals with neoplasia

Since different E. coli strains were collected from each
participant (Figure 1A), we also analyzed the prevalence of thirty-
five VAGs with respect to each individual. While a negative
association between three determinants (afaI, iucD, and sat) and
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neoplasia was not found on the patient level, the prevalence
of iroN, sfa, and usp was significantly higher among neoplasia
patients compared to healthy controls (p < 0.05; Figure 3A and
Supplementary Table 3). A non-significant increase in prevalence
among patients was found for the ibeA gene (5.0 and 23.0%;
p < 0.1000). At the same time, the ibeA gene was positively-
associated with advanced neoplasia patients (p < 0.05; Figure 3B).
This VAG was rare (<5%) among healthy controls and patients
with non-advanced adenomas, but it was quite common among
patients with advanced neoplasia stages (30.0 and 38.1%; p < 0.05
(aCRA) and padj < 0.0125 (CRC); Figure 3B and Supplementary
Table 3). Prevalence of ibeA correlated with CRC diagnosis
(R = 0.30, p < 0.01). In addition, the prevalence of sfa and usp was
also higher in groups of patients with advanced neoplasia (p < 0.05;
Figure 3B). Presence of all four VAGs (i.e., ibeA, iroN, sfa, and usp)
in human intestines showed positive correlation with CRC patients
(R = 0.29, p < 0.01), while border-line significance was found
for negative correlation with controls and nCRA patients (R = -
0.22, p = 0.054). Complete correlation analysis including graph of
Correspondence analysis is shown in Supplementary Table 4.

Interestingly, patients with current (n = 35) and previous
neoplasia (n = 26) showed similar prevalence of tested VAGs
except of two determinants – pap (P-fimbriae) and iucD (aerobactin
synthesis) (p < 0.05, Figure 3C).

Discussion

Colorectal carcinoma is one of the most common human
malignancies (Sung et al., 2021). Its etiopathogenesis has not
been fully elucidated; however, recent studies have shown that the
composition of the large intestine microbiota plays an important
role in tumorigenesis, and E. coli is considered to be a bacterial
species associated with colorectal neoplasia (Tjalsma et al., 2012;
Bonnet et al., 2014; Feng et al., 2015; Brennan and Garrett, 2016;
Tilg et al., 2018; Garrett, 2019; Chattopadhyay et al., 2021).

Our current study provided novel findings on the possible
role of E. coli in colorectal neoplasia. Compared to other studies
analyzing the role of E. coli at the microbiome level, we collected
a comprehensive set of E. coli isolates and performed analyses
at the E. coli strain and patient level. From each participant,
several different sites in the intestines were biopsied and E. coli
isolates were collected from each biopsy. This fact allowed analysis
of prevalence of VAGs among (i) all collected E. coli isolates
(n = 317), (ii) different isolates per biopsy (n = 303), (iii) different
isolates per individual (n = 246), and (iv) the presence of VAGs
in individuals (n = 81). Analysis of different E. coli per individual
appears to be the most appropriate since the first two sets are
potentially affected by the clonality of the collected E. coli isolates,
and analysis on the patient level does not provide information
about the occurrence of VAGs in bacterial cells. On average,
three different E. coli strains were collected and characterized per
individual. Based on the studies showing that the E. coli population
typically consists of 1–3 different strains (Micenková et al., 2016a),
a substantial part of participants’ E. coli strains were analyzed.
In addition, differences in the prevalence of VAGs among E. coli
strains were also found at the patient level indicating their relevance

to patients’ health. Analysis performed with all collected E. coli
isolates (n = 317) has been consistent with presented data (data
not shown), suggesting only a minimal effect of potential duplicate
isolates.

We determined the prevalence of 35 virulence-associated
genes in E. coli strains obtained from three groups of patients
diagnosed with colorectal neoplasia (i.e., non-advanced adenoma,
advanced adenoma, and colorectal carcinoma) and a group of
healthy controls. A positive association between virulence genes
and neoplasia was predominantly found in patients with advanced
adenoma and colorectal carcinoma (Figure 2C). E. coli from
patients with non-advanced adenoma differed from E. coli of
healthy controls and patients with advanced adenoma/carcinoma
in several tested determinants, including virulence factors and
E. coli phylogroups (Supplementary Table 3). As we showed
in previous study, non-advanced adenomas were histologically
different from both the healthy tissue and advanced adenomas
(Kohoutová et al., 2018). Moreover, differences in intestinal
microbiota in the early stages of neoplasia were shown by Nakatsu
et al. (2015). On the other hand, it is also possible that some patients
diagnosed with non-advanced colorectal adenoma could have had
pathological conditions other than the first stage of colorectal
carcinoma. Bonnington and Rutter (2016) showed that not all
patients with colon adenomas have a higher risk of carcinoma than
the general population.

In the neoplasia group, around 50% of patients had a
neoplasm at the time of colonoscopy, while the other half had
their neoplasm removed, on average 4.6 years before the current
colonoscopy. Interestingly, the prevalence of E. coli phylogroups
and the tested VAGs was similar in both neoplasia groups
(Supplementary Table 3), suggesting that successful treatment
of colorectal neoplasia does not result in a significant change
in the intestinal E. coli population. The presence of particular
E. coli strains in the gut is therefore not affected by the presence
of colorectal neoplasia but rather implies the opposite scenario,
i.e., the presence of particular E. coli strains is suspected of
contributing to the development of colorectal neoplasia. In fact, the
observed trend for higher occurrence of various VAGs (statistically
significant for pap and iucD) in the group of patients with previous
neoplasia (Figure 3C) further suggests the role of E. coli strains in
tumorigenesis.

In this study, mucosal E. coli isolates frequently belonged
to phylogroup B2; this was especially true for the advanced-
adenoma and carcinoma groups. However, the prevalence of B2-
isolates did not significantly differ between patients and healthy
controls, which is in contrast to other colorectal cancer studies,
where phylogroup B2 was associated with neoplasia (Kohoutová
et al., 2014; Raisch et al., 2014; Nouri et al., 2021). The limited
number of samples in this study likely precluded reaching statistical
significance. E. coli strains of phylogroup B2 range from normal
human resident microflora (Picard et al., 1999; Escobar-Páramo
et al., 2004; Nowrouzian et al., 2005; Micenková et al., 2016a) to
important human pathogens (Kotlowski et al., 2007; Azpiroz et al.,
2009; Raisch et al., 2014; Micenková et al., 2016b), depending on
encoded virulence factors.

We observed a trend toward a higher occurrence of E. coli
strains producing colibactin (based on detected clbB gene)
in patients with neoplasia compared to controls, although
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FIGURE 3

Prevalence of virulence determinants in patients and healthy individuals. (A) Out of 35 analyzed virulence-associated genes (VAGs), iroN, sfa, and usp
were more frequent in neoplasia patients compared to healthy individuals. (B) In addition, higher prevalence of ibeA, sfa, and usp was found among
patients with advanced neoplasia stages. (C) The most of the analyzed VAGs showed similar prevalence between patients with current and with
previous neoplasia. The two-tailed Fisher’s exact test was used to calculate the statistical significance between healthy controls and groups of
patients (*p < 0.05, **p < 0.01, and ***p < 0.001). In panel (B), the dotted lines represent the prevalence in healthy controls, and asterisks show the
statistical significance relative to neoplasia stages. Statistical significance after correction for the false discovery rate (padj < 0.0125) is shown in pink.
The prevalence of VAGs was analyzed for each group of participants, i.e., healthy controls (HC, n = 20) and neoplasia patients [nCRA (n = 20), aCRA
(n = 20), and CRC (n = 21)]. The complete analysis is shown in Supplementary Table 3.

the significance was borderline (26.5 and 13.0%, p = 0.0573;
Supplementary Table 3). Colibactin is genotoxin with a known
role in carcinogenesis (Lopez et al., 2021), and its prevalence
is frequently found to be higher among patients with colorectal
cancer (Arthur et al., 2012; Buc et al., 2013; Sarshar et al., 2017).
Compared to these studies, our set of participants combined
patients with current- as well as previous neoplasia; however,
E. coli from both groups showed similar prevalence of pks (29.0
and 24.0%, respectively; p = 0.5218). Thus, the reduced statistical
significance of pks prevalence is more likely due to a small set
of samples. Similarly, several other studies also failed to find a
significantly higher prevalence of pks in patients with neoplasia
(Shimpoh et al., 2017; Iwasaki et al., 2022), which suggests that
additional factors also contribute to the development of colorectal
neoplasia.

In contrast to colibactin, we identified a strong association
between several other tested virulence factors and neoplasia.
For the first time, a genetic determinant for uropathogenic-
specific protein (usp) was shown to be associated with
neoplasia. The uropathogenic-specific protein belongs to
the group of bacteriocin-like proteins (Parret and De Mot,
2002). Interestingly, several bacteriocins could act as virulence
factors (Bosák et al., 2021), and previously, we found increased

production of bacteriocins in the patients with colorectal neoplasia
(Kohoutová et al., 2014, 2020). Usp is frequently found in E. coli
strains causing extraintestinal infections (Yamamoto et al., 2001;
Rijavec et al., 2008) and in patients with inflammatory bowel
diseases (Sepehri et al., 2011; Roche-Lima et al., 2018). Since
Usp is a genotoxin active against mammalian cells (Nipič
et al., 2013), presence of E. coli synthesizing this protein
in the host intestines could contribute to inflammation and
neoplasia.

Three additional determinants were positively-associated with
neoplasia; they encoded S-fimbriae (sfa), siderophore receptor
(iroN), and invasion of brain epithelium protein A (ibeA). All of
them are known as virulence factors of extraintestinal pathogenic
E. coli strains. S-fimbriae form structural adhesive organelles on
the bacterial envelope facilitating adhesion to mammalian cells
(Mulvey, 2002). Outer membrane protein IroN serves as a receptor
for salmochelin (Hantke et al., 2003) and could contribute to the
eukaryotic invasion of pathogenic E. coli (Feldmann et al., 2007),
which was also shown for other siderophore receptors (Russo
et al., 2001). Both virulence factors (i.e., S-fimbriae and salmochelin
receptor) are frequently encoded on the same pathogenicity
island (Dobrindt et al., 2001). Invasin IbeA is associated with
pathogenic strains causing meningitis (Zhao et al., 2018) and
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is also responsible for the invasion of adherent-invasive E. coli
(AIEC) into intestinal epithelium (Cieza et al., 2015). AIEC strains
harboring ibeA are frequently found in patients with inflammatory
bowel diseases (Martinez-Medina et al., 2009; Palmela et al.,
2018), and Sarshar et al. (2017) found that around 20% of
E. coli isolates taken from adenomatous polyps were positive
for the ibeA gene. We clearly showed an association between
the ibeA gene and neoplasia, including a positive correlation
with neoplasia progression. In addition, the higher prevalence
of AIEC strains in these pathologies could partially explain the
increased risk of neoplasia in patients with inflammatory bowel
diseases.

On the other hand, we found three genes [i.e., afimbrial adhesin
(afaI), aerobactin synthesis (iucD), and secreted autotransporter
toxin (sat)] with significantly lower prevalence in neoplasia patients
(Figure 2A). These VAGs are frequently found among various
E. coli strains (Micenková et al., 2016b; Vieira et al., 2020). In
contrast to our study, Prorok-Hamon et al. (2014) found increased
incidence of afaI in patients with inflammatory bowel diseases
and colon cancer. Afimbrial adhesin is a virulence factor typical
for mucosa-associated E. coli pathotypes (e.g., DAEC and AIEC).
Moreover, EPEC pathotype (encoding eae) has been found to
be also associated with colon cancer (Maddocks et al., 2009;
Viljoen et al., 2015), but prevalence of intimin gene (eaeA)
was low in our set of E. coli from neoplasia patients (3%,
Supplementary Table 3). We hypothesize that the observed
lower prevalence of some virulence genes in neoplasia is a
result of presence of other neoplasia-associated genes, having
similar functions and being able to complement the absent
VAGs, e.g., adhesion can be mediated by both sfa and afaI, iron
acquisition by both iroN and iucD, and toxicity by both usp and
sat.

About half of E. coli strains from neoplasia patients harbored
at least one determinant (i.e., ibeA, iroN, sfa, and usp), and
these virulence factors with activity against eukaryotic cells co-
occurred frequently in specific combinations among E. coli strains
from neoplasia patients. The same E. coli strains also often
harbored genes for bacteriocins [86.4% compared to 52.2% of
strains without the abovementioned virulence factors; based on the
bacteriocin prevalence data published by Kohoutová et al. (2020)].
Interestingly, some bacteriocins are active also against eukaryotic
cells (Bosák et al., 2021). These findings suggest that E. coli virulence
in neoplasia is based on a combination of several virulence factors,
likely representing a functional unit rather than being mediated
by a single virulence factor or the sum of independent virulence
factors. This has already been suggested for virulent E. coli strains
causing different types of infection (Kaper et al., 2004). It is
tempting to speculate that E. coli, as a pathobiont, has to harbor
certain combinations of VAGs, which could participate in binding
to the host cell (e.g., sfa/iroN), in invasion into host tissue (e.g.,
ibeA/iroN) and in damage to the host cell (e.g., usp). Long-
term colonization of host intestines by these E. coli strains could
result in a chronic inflammation and in development of colorectal
neoplasia.

In conclusion, this study found a positive association
between four virulence determinants of E. coli and colorectal
neoplasia. These virulence-associated genes were predominantly
found among E. coli from patients with advanced adenoma or

colorectal carcinoma. The relevance of the observed associations
is supported by statistical significance at the level of cohort
patients as well as after correction for the false discovery
rate. Since the identified virulence factors are involved in
genotoxicity and adhesion/invasion process, E. coli virulence
in neoplasia appears to include a combination of several
virulence factors targeting intestinal epithelial cells that can
contribute to chronic inflammation and neoplasia. Moreover,
these strains stably colonize the gut, as suggested by the fact
that treatment of colorectal neoplasia did not result in a
significant decrease in their occurrence in the gut. Based on
this, the presence of specific E. coli strains in the intestinal
microflora appears to be a cause rather than a consequence of
colorectal neoplasia.
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