Detailed Information on Publication Record
2022
Reductive homogeneous Lorentzian manifolds
ALEKSEEVSKY, Dmitri, Ioannis CHRYSIKOS and Anton GALAEVBasic information
Original name
Reductive homogeneous Lorentzian manifolds
Authors
ALEKSEEVSKY, Dmitri, Ioannis CHRYSIKOS and Anton GALAEV
Edition
Differential Geometry and its Applications, Elsevier Science, 2022, 0926-2245
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
Netherlands
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 0.500
UT WoS
000838919700001
Keywords in English
Reductive homogeneous Lorentzian manifolds; Lorentz algebra; Totally reducible subalgebras of the; Lorentz algebra; Admissible subgroups; Contact homogeneous manifolds; Wolf spaces
Tags
Tags
International impact, Reviewed
Změněno: 26/5/2023 10:38, Mgr. Marie Šípková, DiS.
Abstract
V originále
We study homogeneous Lorentzian manifolds M = G/L of a connected reductive Lie group Gmodulo a connected reductive subgroup L, under the assumption that M is (almost) G-effective and the isotropy representation is totally reducible. We show that the description of such manifolds reduces to the case of semisimple Lie groups G. Moreover, we prove that such a homogeneous space is reductive. We describe all totally reducible subgroups of the Lorentz group and divide them into three types. The subgroups of Type Iare compact, while the subgroups of Type II and Type III are non-compact. The explicit description of the corresponding homogeneous Lorentzian spaces of Type II and III(under some mild assumption) is given. We also show that the description of Lorentz homogeneous manifolds M = G/L of Type I reduces to the description of subgroups L such that M = G/Lis an admissible manifold, i.e., an effective homogeneous manifold that admits an invariant Lorentzian metric. Whenever the subgroup Lis a maximal subgroup with these properties, we call such a manifold minimal admissible. We classify all minimal admissible homogeneous manifolds G/L of a compact semisimple Lie group Ga nd describe all invariant Lorentzian metrics on them.