
Recommending Similar Devices in Close Proximity
for Network Security Management

Vladimı́r Bouček∗, Martin Husák†
∗Faculty of Informatics, Masaryk University, Brno, Czech Republic

†Institute of Computer Science, Masaryk University, Brno, Czech Republic
492927@mail.muni.cz, husakm@ics.muni.cz

Abstract—This paper presents a prototype of a tool for
network security management that recommends similar devices
in close proximity to a given machine. The task of recommending
similar devices helps in analyzing the impact of cyber attacks,
providing early warning and mitigating a spreading infection,
or investigating an attack. Our tool uses modern graph-based
technologies to store and query the data and existing data models
that interconnect heterogeneous information about computer
networks. By traversing the graph of network entities and
calculating similarity scores, the tool suggests which devices are
most likely to be exploited along with or after the exploitation of
a device in question. The advantage of our tool is that it considers
multiple attack vectors, including social engineering.

Index Terms—Recommendation, Network security, Vulnerabil-
ity, Incident response

I. INTRODUCTION

Network security management involves numerous routine
yet complex and time-consuming tasks. The automation of
such tasks reduces the workload of network security operators,
speeds up incident response, and facilitates threat assessment
or digital forensics [1]. A specific task we aim to automate
in our work is finding similar devices in the proximity of
another device, which is a common subtask of many complex
procedures, such as vulnerability management and incident
response [2]. For example, during threat assessment, security
analysts look up devices that can be exploited directly or
following the exploitation of a different, nearby device. In
digital forensics, the investigator explores the attacker’s lateral
movement, e.g., hopping from one exploited device to another.
Such use cases are static, and the look-up of similar devices
in proximity is not a time-critical operation. However, the
situation changes in case of incident response and attack
mitigation [3]. There is a need to act promptly, secure the
surroundings of the exploited device, and send early warnings
to administrators of devices around [1]. This is especially
important in case of ransomware infections that spread fast
and harm the organization significantly [4]. It is imperative to
stop such infection early, and an automated recommendation
of possible targets is highly beneficial. However, existing
guidelines do not give advice on how to get an overview
of incidents with incomplete data, i.e., how to generalize
hypotheses in terms of time and space [5]. This is usually
accomplished using the expert knowledge of a security team or
database of all the data potentially usable in incident handling,
such as Cauldron [6] or CyGraph [7].

In previous work, we designed and implemented CRUSOE,
a toolset for achieving and maintaining cyber situational
awareness [8]. CRUSOE is inspired by Cauldron [6] and
CyGraph [7] and uses an orchestrated set of tools to collect
and periodically update the information on the devices in the
network using various passive and active network monitoring
tools ranging from NetFlow traffic analysis [9] to Nmap
network scanner [10] and dedicated vulnerability scanners.
The data are stored in a graph database, an emerging and
highly comprehensive approach to storing data in the form
of labeled nodes and edges. CRUSOE toolset has been im-
plemented and deployed in an operational environment [8].
However, the focus of the toolset is on the collection and
presentation of the data; the capabilities to analyze the data or
provide recommendations to the users are limited to mapping
organizations’ missions to network assets and otherwise left
for future work, such as this one. The principles of a system
that recommends similar devices in close proximity using
the traversal of the graph-based data model were presented
in another previous work [2] but not implemented. The re-
search on decision support tools and recommender systems
in cybersecurity was surveyed recently [1]. However, such
research is usually focused on countermeasure selection [11],
not suggesting future attacks or targets. Notable exceptions
are the work of Polatidis et al. [12], who use a recommender
system for attack prediction, and Albanese et al. [13], who
proposed automated tools to improve analyst’s performance.

The remainder of this paper is structured as follows. Sec-
tion II presents the design considerations and overview of
the proposed tool. Section III discusses the configuration
and usage of the system using real-world data. Section IV
concludes the paper.

II. DESIGN AND OVERVIEW

The tool is designed as a stand-alone piece of software.
The code is publicly available on GitHub1. Nevertheless, the
tool needs access to a database, where the data on a computer
network are stored. As mentioned previously, the tool uses
the database of the CRUSOE toolset [8], i.e., the Neo4j
graph database, in which the data are structured according
to the CRUSOE data model. The toolset can also be found

1https://github.com/CSIRT-MU/recommender-system-for-network-
security-management



on GitHub for reference2, although it is not needed to run the
recommender system. A simple graphical representation of the
database content is presented in Fig. 1.

Fig. 1. The data model used in CRUSOE toolset.

The recommendations are based on the proximity and
similarity of the devices in the network to the device on the
input; similar devices in close proximity are prioritized. The
calculation of similarity and distance was proposed in previous
work [2]. Formally, the devices are sorted by their risk score
(R), a quotient of similarity score (S) and distance (D) of the
two devices. It is calculated as follows:

R =
S

D
=

s1 ∗ s2 ∗ ...sn
min{d1, d2, ..., dn}

(1)

For practical reasons, the weights are assigned to partial
similarity scores (s1...sn) and distances (d1...dn), as discussed
later in the text.

The similarity is calculated as a product of all considered
partial similarities, each having a value in the range < 0, 1 >.
We assume that the malware spreads among devices with
similar services, pieces of software, and software versions.
CPE strings are widely used to represent a piece of software,
including operating systems, and can be provided by network
scanning software, such as Nmap [10]. Thus, one of the
partial similarities is the similarity of CPE strings of operating
systems of the two devices. Similarly, other partial similarities
based on CPE strings are used to compare network services
and their underlying software, such as the Apache web server
or the OpenSSH server. Even the set of network services pro-
vided by the device is a subject of partial similarity calculation.
Other partial similarities include the comparison of antivirus
software, content management systems, vulnerabilities, and
history of security events. More details on the calculation can

2https://github.com/CSIRT-MU/CRUSOE

be found in previous work [2], but the usable set of partial
similarities depends on the available data and their quality.

The distance leverages the graph-based representation of
data and stands for the shortest path between the two nodes
representing devices in the network. The paths, however, have
to conform to certain limitations esteeming from the assumed
attack vectors. Worm-like malware spreads autonomously in
the network, typically within the same subnet or towards
consecutive IP addresses. In this case, the path between the
nodes of type IP leads through the node of type Subnet. On the
contrary, malware spreading via social engineering will more
likely spread via email attachments, infected flash drives, or
cloud storage shared within the same office or department or
among the devices used by the same user. In this case, the
path between the IP nodes will lead through the nodes of type
Organization Unit or Contact.

The implementation uses breadth-first graph traversal start-
ing from the node representing the given IP address. Nodes
in Neo4j are not typed, so we had to implement a custom
add-on to Neo4j’s Cypher language that restricts the breadth-
first search to certain node classes. Thus, all the above-
mentioned classes are traversed, while irrelevant node classes
like Security Event or Vulnerability are ignored.

III. SYSTEM DEPLOYMENT, CONFIGURATION, AND USAGE

The system was evaluated using the data on the campus net-
work of Masaryk University collected by the university’s cy-
bersecurity team CSIRT-MU3 using the CRUSOE toolset [8].
The campus network of Masaryk University serves more than
40,000 users and hosts numerous devices. Data were collected
and periodically updated for three months so they reflect the
long-term status of the network and its hosts.

In total, the resulting graph database representing the cam-
pus network contains 640,165 nodes and 12,765,385 edges of
various types. More closely, the dataset contains information
on 31,135 IP addresses providing 97,829 network services in
844 subnets and 48 organization units (e.g., departments); 647
different pieces of software and 2,930 estimated vulnerabilities
were found in the network. The history of security incidents
is represented by 395,815 events related to one or more IP
addresses. The total size of the graph database used for testing
was 3.5 GB.

A. Configuration

The system first needs to be configured. The configuration
includes mostly the weights given to particular features of
distance and similarity calculation. A sample configuration
file structured in JSON format is presented in Fig. 2. The
previous work [2] did not specify the weights; it would be
extremely difficult to provide generic weights due to the dif-
ference between particular networks and observed phenomena.
Therefore, we first estimated the weights by an educated
guess during the development. Subsequently, we fine-tuned
the weights by analyzing the dataset and finding average and

3Computer Security Incident Response Team of Masaryk University



{
"max_distance": 2,
"path": {

"apply": true,
"subnet": 1,
"organization_unit": 1.25,
"contact": 1.15

},
"comparators": {

"os": {
"apply": true,
"critical_bound": 0.34927222,
"diff_value": 0.2,
"vendor": 0.9,
"product": 0.075,
"version": 0.025

},
"antivirus": {

"apply": true,
"critical_bound": 0.5,
"diff_value": 0.4,
"vendor": 0.6,
"product": 0.25,
"version": 0.15

},
"cms": {

"apply": true,
"require_open_ports": false,
"critical_bound": 0.44568431,
"diff_value": 0.4,
"vendor": 0.6,
"product": 0.25,
"version": 0.15

},
"net_service": {

"apply": true,
"critical_bound": 0.25,
"diff_value": 0.1

},
"cve_cumulative": {

"apply": true,
"critical_bound": 0.29492334

},
"event_cumulative": {

"apply": true,
"critical_bound": 0.00036752

}
}

}

Fig. 2. Configuration file of the recommender system.

median values of similarity and distance features between the
pairs of data entries. The supplementary scripts are parts of the
software package and help set the tool automatically, without
any expert input, only relying on the available data on the
network.

The distance calculation setting uses the weights of the
paths through nodes of certain types and the maximal distance.
For example, in Fig. 2, we can see that the weight of the
path going through the organization unit is bigger more the
path going through the subnet. This means that two devices
belonging to the same subnet are considered closer than two
devices that share the same organizational unit. The maximal
distance limits the length of the path used when searching for
neighboring nodes from the node on the input. The default

setting is 2. However, the distance settings are subject to
change in future development and deployment.

The implementation of the particular similarity features uses
so-called comparators. Each comparator can be turned on or
off, for example, in case the data for that comparator are
unavailable or of insufficient quality. The comparators can
then be configured separately, and new comparators can be
inserted into the tool. In the example in Fig. 2, we can see
comparators having multiple weights that are used to fine-
tune the resulting similarity score given by the comparator.
For example, in os and antivirus, the different weights are
used at different levels of detail so that the high-level data
like vendor that are easy to obtain are valued more than exact
version that is hard to extract. The other comparators may use
critical bound, a threshold suggesting that the output of the
comparator is to be used only when it exceeds a certain value.
Again, this is implemented to prevent data of low quality or
significance from skewing the final similarity score.

The exact values were calculated during the dataset analysis.
For each comparator, the similarity of each pair of relevant,
distinct database entries was calculated. For example, for
calculating the mean bound of the OS fingerprint compara-
tor, all the OS fingerprints in the database are involved in
the calculation. All the pairs of fingerprints are compared,
their similarity is calculated, and the mean value of all the
calculated similarities is then used as a critical bound for
the OS comparator. Mean bounds for other comparators are
calculated correspondingly. Using this approach, the critical
bound indicates whether the similarity value is above average
among all the potential similarity values in the dataset.

B. Usage and outputs

We assume the system to be installed along with the
CRUSOE toolset or elsewhere, given it can access the graph
database. Both command-line and REST API interfaces are
implemented. The user runs the system and specifies an IP
address or domain name of a device in the network, from
which to start the search for similar devices in close proximity.
The specified device is typically reported to be infected. The
recommender tool then queries the database and outputs a list
of results formatted either as a table for human users or a
JSON file for automatic processing. An example of the JSON-
formatted output can be seen in Fig. 3. The user can choose
between simple output and rich output with all the details. The
details allow for the explainability of the recommendations and
pinpointing important similarities between the two devices.

The system performs well with certain constraints; the
most computationally extensive part is traversing the graph
database. If the max distance is set to 2, meaning that nodes in
very close proximity are searched, and the whole recommen-
dation process takes less than 10 seconds. However, setting the
value higher to 4 or more, thus traversing a larger part of the
graph, may cause the system to return results in 30 seconds
or more.



[
...
{

"ip": "147.*.*.*",
"domains": [

"*.cz."
],
"contacts": [

"*@*.cz"
],
"os": {

"vendor": "linux",
"product": "linux_kernel",
"version": "*"

},
"antivirus": null,
"cms": null,
"cve_count": 932,
"security_event_count": 183,
"network_services": [

{
"service": "NTP",
"port": 123,
"protocol": "UDP"

}
],
"risk": [

5.67566254945783e-06
],
"distance": 4,
"path_types": [

"Organization"
],
"warnings": [

{
"message": "Similar OS between

hosts.",
"partial_similarity": 1.0

},
{

"message": "High number of common
net services between hosts",

"partial_similarity": 1.0
}

]
},
...

]

Fig. 3. Sample output of the recommender system.

IV. CONCLUSION

We presented a tool that, given an identifier of a device in
the network, recommends similar devices in close proximity.
Such recommendation is highly valuable in network security
management, namely in vulnerability and attack impact assess-
ment, early warning and mitigation, and digital forensics. A
prominent and timely use case is the estimation of the spread
of a ransomware infection and its mitigation [2], [4]. Because
ransomware uses various attack vectors, our tool considers
most of them simultaneously. The proximity of the devices
is based not only on IP address similarity or belonging to
the same IP range or network segment but also belonging
to the same department, physical proximity, or the same
user or administrator. The similarity is then based on OS
and service fingerprints, common vulnerabilities and present

security measures, and other features. The exact set of features
may depend on the availability of the corresponding data.

In our future work, we are going to deploy the tool along
with the instance of the CRUSOE toolset [8] used by the
CSIRT-MU and enable the team to use its API or a web
interface that we plan to develop. Subsequently, we are going
to evaluate the usage of the system and its accuracy in
recommending relevant devices. Moreover, we are going to
research the possibilities of auto-configuring the tool, namely
setting the weights of the comparators by mining historical se-
curity incident data or via genetic algorithms. The anonymized
content of the database used for evaluating the system will be
published as a dataset to enable the community to test the tool
without the need to fill the database.

ACKNOWLEDGMENT

This research was supported by OP JAK “MSCAfel-
low5 MUNI” (No. CZ.02.01.01/00/22 010/0003229).

REFERENCES

[1] M. Husák and M. Čermák, “SoK: Applications and Challenges of
Using Recommender Systems in Cybersecurity Incident Handling and
Response,” in Proceedings of the 17th International Conference on
Availability, Reliability and Security, ser. ARES ’22. New York, NY,
USA: Association for Computing Machinery, 2022.

[2] M. Husák, “Towards a data-driven recommender system for handling
ransomware and similar incidents,” in 2021 IEEE International Confer-
ence on Intelligence and Security Informatics (ISI), 2021.

[3] P. Cichonski, T. Millar, T. Grance, and K. Scarfone, “Computer security
incident handling guide: Recommendations of the national institute of
standards and technology,” NIST Special Publication, vol. 800, no. 61,
pp. 1–147, 2012.

[4] T. McIntosh, A. S. M. Kayes, Y.-P. P. Chen, A. Ng, and P. Watters,
“Ransomware mitigation in the modern era: A comprehensive review,
research challenges, and future directions,” ACM Computing Surveys,
vol. 54, no. 9, Oct 2021.

[5] J. M. Spring and P. Illari, “Review of human decision-making during
computer security incident analysis,” Digital Threats: Research and
Practice, vol. 2, no. 2, 4 2021.

[6] S. Jajodia, S. Noel, P. Kalapa, M. Albanese, and J. Williams, “Cauldron
Mission-centric Cyber Situational Awareness with Defense in Depth,” in
2011 – MILCOM 2011 Military Communications Conference, 11 2011,
pp. 1339–1344.

[7] S. Noel, E. Harley, K. H. Tam, M. Limiero, and M. Share, “CyGraph:
Graph-Based Analytics and Visualization for Cybersecurity,” Handbook
of Statistics, vol. 35, pp. 117–167, 2016.

[8] M. Husák, L. Sadlek, S. Špaček, M. Laštovička, M. Javornı́k, and
J. Komárková, “CRUSOE: A toolset for cyber situational awareness and
decision support in incident handling,” Computers & Security, vol. 115,
p. 102609, 2022.

[9] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow Monitoring Explained: From Packet Capture to
Data Analysis with NetFlow and IPFIX,” Communications Surveys &
Tutorials, IEEE, vol. 16, no. 4, pp. 2037–2064, Fourthquarter 2014.

[10] G. F. Lyon, Nmap network scanning: The official Nmap project guide
to network discovery and security scanning, 2008.

[11] S. Ossenbühl, J. Steinberger, and H. Baier, “Towards automated incident
handling: How to select an appropriate response against a network-based
attack?” in 2015 Ninth International Conference on IT Security Incident
Management & IT Forensics, 2015, pp. 51–67.

[12] N. Polatidis, E. Pimenidis, M. Pavlidis, and H. Mouratidis, “Recom-
mender systems meeting security: From product recommendation to
cyber-attack prediction,” in Engineering Applications of Neural Net-
works, G. Boracchi, L. Iliadis, C. Jayne, and A. Likas, Eds. Cham:
Springer International Publishing, 2017, pp. 508–519.

[13] M. Albanese, H. Cam, and S. Jajodia, Automated Cyber Situation Aware-
ness Tools and Models for Improving Analyst Performance. Cham:
Springer International Publishing, 2014, pp. 47–60.


