J 2023

Quantum key distribution rates from semidefinite programming

ARAUJO, Mateus, Marcus HUBER, Miguel NAVASCUES, Matej PIVOLUSKA, Armin TAVAKOLI et. al.

Basic information

Original name

Quantum key distribution rates from semidefinite programming

Authors

ARAUJO, Mateus, Marcus HUBER, Miguel NAVASCUES, Matej PIVOLUSKA (703 Slovakia, guarantor, belonging to the institution) and Armin TAVAKOLI

Edition

QUANTUM, WIEN, VEREIN FORDERUNG OPEN ACCESS PUBLIZIERENS QUANTENWISSENSCHAF, 2023, 2521-327X

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10200 1.2 Computer and information sciences

Country of publisher

Austria

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 6.400 in 2022

RIV identification code

RIV/00216224:14610/23:00131033

Organization unit

Institute of Computer Science

UT WoS

001000469200001

Keywords (in Czech)

Kvantová distribuce klíčů; semi-definitní programování

Keywords in English

quantum key distribution; semi-definite programming

Tags

Tags

International impact, Reviewed
Změněno: 5/4/2024 12:48, Mgr. Alena Mokrá

Abstract

V originále

Computing the key rate in quantum key distribution (QKD) protocols is a long standing challenge. Analytical methods are limited to a handful of protocols with highly symmetric measurement bases. Numerical methods can handle arbitrary measurement bases, but either use the min-entropy, which gives a loose lower bound to the von Neumann entropy, or rely on cumbersome dedicated algorithms. Based on a recently discovered semidefinite programming (SDP) hierarchy converging to the conditional von Neumann entropy, used for computing the asymptotic key rates in the device independent case, we introduce an SDP hierarchy that converges to the asymptotic secret key rate in the case of characterised devices. The resulting algorithm is efficient, easy to implement and easy to use. We illustrate its performance by recovering known bounds on the key rate and extending high-dimensional QKD protocols to previously intractable cases. We also use it to reanalyse experimental data to demonstrate how higher key rates can be achieved when the full statistics are taken into account.

Links

MUNI/G/1596/2019, interní kód MU
Name: Development of algorithms for application of quantum computers in electronic-structure calculations in solid-state physics and chemistry (Acronym: Qubits4PhysChem)
Investor: Masaryk University, INTERDISCIPLINARY - Interdisciplinary research projects