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Řiháčková, K.; Juliá Molina, M.;

Varea-Jiménez, E.; Govarts, E.;

Pedraza-Diaz, S.; et al. Identification

of Real-Life Mixtures Using Human

Biomonitoring Data: A Proof of

Concept Study. Toxics 2023, 11, 204.

https://doi.org/10.3390/

toxics11030204

Academic Editor: Virgínia

Cruz Fernandes

Received: 30 December 2022

Accepted: 28 January 2023

Published: 22 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

toxics

Article

Identification of Real-Life Mixtures Using Human
Biomonitoring Data: A Proof of Concept Study
Laura Rodriguez Martin 1 , Ilse Ottenbros 2,3 , Nina Vogel 4 , Marike Kolossa-Gehring 4 , Phillipp Schmidt 4,
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Abstract: Human health risk assessment of chemical mixtures is complex due to the almost infinite
number of possible combinations of chemicals to which people are exposed to on a daily basis.
Human biomonitoring (HBM) approaches can provide inter alia information on the chemicals that
are in our body at one point in time. Network analysis applied to such data may provide insight
into real-life mixtures by visualizing chemical exposure patterns. The identification of groups of
more densely correlated biomarkers, so-called “communities”, within these networks highlights
which combination of substances should be considered in terms of real-life mixtures to which a
population is exposed. We applied network analyses to HBM datasets from Belgium, Czech Republic,
Germany, and Spain, with the aim to explore its added value for exposure and risk assessment. The
datasets varied in study population, study design, and chemicals analysed. Sensitivity analysis was
performed to address the influence of different approaches to standardise for creatinine content of
urine. Our approach demonstrates that network analysis applied to HBM data of highly varying
origin provides useful information with regards to the existence of groups of biomarkers that are
densely correlated. This information is relevant for regulatory risk assessment, as well as for the
design of relevant mixture exposure experiments.

Keywords: chemical mixtures; human biomonitoring; network analysis; combined exposure; clustering;
mixture risk assessment; HBM4EU

1. Introduction

Humans are exposed to a myriad of concurrent and protracted environmental, oc-
cupational, dietary, lifestyle, and consumer product exposures. Due to the (increasingly)
large number of chemicals present in the environment, exposure and risk assessment of
chemical mixtures is complex and poses several challenges for scientists, risk assessors,
and managers [1,2]. Increasing awareness that daily-life exposure involves exposure to an
almost infinite number of different combinations of chemicals, needing a move beyond
chemical-by-chemical assessments, has led to a prioritisation of chemical mixtures in policy
and research.

There is no broadly accepted operational definition of mixtures. The European Com-
mission communication on “The combination effects of chemicals—Chemical mixtures” [3]
was published in response to a request from the European Parliament for the Commission
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to consider the extent to which the existing legislation “adequately addresses risks from
exposure to multiple chemicals from different sources and pathways, and on this basis
considers appropriate modifications, guidelines and assessment methods”. In the commu-
nication, mixtures are differentiated as follows: (a) intentional mixtures, i.e., manufactured
formulated products that are marketed as such; (b) mixtures originating from a single
source, also known as ‘unintentional mixtures’; and (c) mixtures of chemicals originat-
ing from multiple sources and through multiple pathways, also known as ‘coincidental
mixtures’ [4,5].

Intentional, unintentional, and coincidental mixtures can arise from combinations of
ambient environments and indoor sources, food products or contamination, consumer prod-
ucts, cosmetics, occupational exposures, medication and medical implants, and lifestyle.
In principle, every single substance, once it enters the body, will exhibit its health effects
in interaction with a person’s genetic makeup and acquired characteristics, and in concert
with all other (xenobiotic) substances from previous and simultaneous exposures. These
mixtures thus form a challenge to (experimental and observational) science, to mecha-
nistic and causal assessment of risks, and to regulation of substances and general risk
management policies [6,7]. In this manuscript, the term ‘mixture’ is used to describe any
combination of exposure to chemical substances or of exposure biomarkers that have been
measured in one or more biological matrices of a person during a single time point. These
biomarkers include both the chemical substances themselves and/or their metabolites.

In the context of the European Joint Programme HBM4EU (hbm4eu.eu) on human
biomonitoring (HBM), we evaluated existing HBM data using correlation network analysis
to identify real-life exposure patterns to mixtures in the human body. Network analysis is
a graphical method to visualise correlations between variables in a dataset. The method
allows for the identification of groups of exposure biomarkers that are more densely
related amongst each other than with other biomarkers. These groups are referred to as
“communities”. Building on a successful network analysis exploration based on Flemish
data [8], we further developed and applied network analysis to HBM datasets from Belgium,
the Czech Republic, Germany, and Spain. The objective was to describe the distribution
of (patterns in) biomarkers of exposure and to identify possible determinants that explain
observed variation of patterns in biomarkers of exposure. For each of the four studies,
results of the network analyses are shown, and findings are discussed.

2. Materials and Methods

In this section, we first describe data selection and preparation steps, followed by the
characteristics of the four datasets, the statistical descriptives and network analyses.

2.1. Selection of Existing HBM Studies

With the aim to further explore the added value of network analysis, four HBM studies
participating in the HBM4EU project were selected. The selection of the studies was based
on data availability, as well as on availability of appropriate statistical expertise at the
respective institutes.

2.2. Data Selection and Preparation

Harmonised data selection and preparation steps were performed with the subsequent
network analyses in mind. Hence, for each of the studies, the most data-rich subset was
chosen in terms of the maximum number of biomarkers measured. The data preparation
steps are described in more detail in Ottenbros et al. [8]. In brief, these involve (a) checking
the distribution of the variables; (b) transforming the data if needed; (c) imputing the data
points below the LOD (limit of detection) or LOQ (limit of quantification); (d) correcting
for outliers; (e) standardizing around zero; and (f) scaling of the data.

Concentrations of biomarkers were natural log transformed because HBM distribu-
tions are typically skewed. The network analysis makes use of the partial correlation
structure. Therefore, a strategy for dealing with censored and missing data is required.
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Thus, an (arbitrary) cut-off at a maximum of 40% of HBM levels below LOD/LOQ was
applied. Substances with more than 40% of the measured HBM values below LOD/LOQ
were excluded from further analysis. For the included substances, values below LOD/LOQ
were imputed based on a maximum likelihood estimation via single conditional imputation,
dependent on observed values for the other biomarkers [9]. Missing values in biomarkers
(completely missing, e.g., due to insufficient sample volume) and determinants were im-
puted by using a single imputation strategy using the R package mice (version 3.15; [10]) in
R (v3.5.0 or higher [11]). Please refer to the description of the individual studies (Section 2.3)
for details on which determinants this strategy was applied to. Determinants (e.g., age,
sex, and smoking) were imputed first, using linear regression for continuous variables
and logistic regression for the binary variables. The determinants and observed values
were then used as prediction matrix for single imputation of those biomarkers that were
completely missing, using linear regression.

For several substances, notably metals, different species were measured. For example,
for arsenic, data for total arsenic, organic, and inorganic arsenic were available. Addition-
ally, in some studies, the same substance was measured in urine as well as in blood, e.g.,
lead or cadmium. This would lead to relatively high correlations between the different
biomarkers for the same substance. In terms of combined exposures to chemical substances,
such correlations do not provide relevant information. Furthermore, it may also affect the
partial correlations structure with other substances. Therefore, only a single biomarker
was selected for inclusion in the network analysis; where possible, the biomarker that best
reflects the long-term exposure of the individual was selected. Furthermore, metabolites of
the large group of phthalates were not summed up to their diesters but included in their
monoester concentration.

For substances measured in urine, a standardisation for creatinine content was per-
formed to take into account the dilution level of spot or morning urine samples; the
dilution level could affect the correlation structure with other substances measured in urine.
For lipophilic substances measured in blood, blood lipid levels were used to standardise
measured blood levels. A sensitivity analysis was performed on the German data (see
Appendix A), showing the results standardised for creatinine or not.

2.3. Characteristics of the Four Existing HBM Datasets
2.3.1. 3xG (Belgium)

The 3xG study (Health—Municipalities—Birth, translated from Gezondheid, Gemeen-
ten, Geboorten) is a birth cohort study that monitors and promotes health of the inhabitants
of three bordering rural communities (Dessel, Mol, and Retie) in Flanders, Belgium. This
study focuses on the effect of the environment and lifestyle on health. This is performed
by researching 301 growing children from the region and by processing the disease and
mortality registers of the 3 municipalities. The aim of the 3xG study is to follow-up the
health and development of growing children as a sentinel population and to study the
influence of environmental exposures via biomonitoring. It is one of the initiatives in the
region to positively impact the well-being and welfare of the population.

All pregnant women in the region that fulfilled the inclusion criteria and were expected
to give birth between 2010 and 2015 were invited to participate. In total, 301 mother–
newborn pairs were obtained. All participants signed an informed consent. Inclusion
criteria were to be able to fill out a Dutch questionnaire and to live in the recruitment
area [12].

All participants agreed to fill in questionnaires during pregnancy and after delivery.
Socioeconomic characteristics, such as the educational level of the household members,
smoking habits, information on consumption of local food, and the course of pregnancy,
were collected. A urine sample was collected in the second trimester of pregnancy. Birth
weight, length, and head circumference of the baby at birth were collected with consent
from the mothers. A blood sample of the mother and umbilical cord blood were collected
at delivery and a questionnaire was filled in by the mothers at the same time point. Since
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not all biomarkers were measured in the same group of participants, we selected the
biomarkers that ensure a subset with enough participants. Consequently, a subset of
125 mother–child pairs were included in the network analysis. Biomarkers included in
the network analysis were corrected for age (in years), body mass index (BMI), and/or
smoking status of the participant. Networks were stratified by education status; low ISCED
(International Standard Classification of Education) is defined by participants belonging to
educational levels 0–4, and high ISCED is defined by participants belonging to educational
level ≥5.

2.3.2. CELSPAC—FIREexpo (Czech Republic)

The CELSPAC—FIREexpo study, conducted in the Czech Republic, aimed to determine
the health risks resulting from the occupational exposure of Czech firefighters and to
implement measures to minimise such risks. All participants were males between the age
of 18 and 35 years and non-smokers. All participants expressed and signed their informed
consent before their participation in the study. The sampling campaign took place from
January 2019 to June 2020. Samples of venous blood and morning urine were collected and
analysed for the presence of biomarkers. More information is publicly available on the
study website (https://www.recetox.muni.cz/hear/projects/celspac-fireexpo (accessed on
27 January 2023)) and in Rihackova et al. [13]. Because of the case-control study design,
the analysis of the detection frequency and the imputation of values <LOQ was carried
out separately for the two population groups (firefighters and controls); therefore, the list
of biomarkers used for the network analysis slightly differed between the two groups.
The biomarker levels were corrected for age (in years) and BMI. Stratification for sex and
smoking status was not relevant for this study (all participants were male and non-smokers),
and data on education level were not collected.

2.3.3. GerES V (Germany)

The German Environmental Survey for Children and Adolescents 2014–2017 (GerES
V) is a population-representative cross-sectional study carried out in order to determine the
exposure to pollutants of the general population in Germany and their sources. GerES V
investigated children and adolescents by determining, on a representative basis, the body
burden of environmental pollutants and the exposure to pollutants at home, including HBM
samples with more than 80 biomarkers. The study was performed in a stratified randomly
selected sample design. In GerES V, a subsample (n = 2294) of the 3- to 17-year-old partici-
pants of the German Health Interview and Examination Survey for Children and Adolescents
(KiGGS Wave 2) by the Robert Koch Institute (RKI; Berlin, Germany) was examined [14,15].
Participants of GerES V from 167 different sampling locations in Germany were visited by
a trained interviewer, conducting an interview on exposure-relevant behaviour and collect-
ing information on the living environment with the participants and their parents or legal
guardians, and collecting inter alia samples of first-morning void urine and blood. For more
details on both studies, see Murawski et al. [16] and Hoffmann et al. [17].

Different biomarkers were measured in subsets of participants in the nationally repre-
sentative GerES V. To have the maximum number of chemical substances while avoiding
high proportions of missing data, for the current analyses, data from urinary biomarkers
were used that were available for a subgroup of GerES V participants (n = 515, aged from 3
to 17 years old). This resulted in a set of 51 different chemicals.

Biomarkers included in the networks were corrected for the determinant’s age (in
years), sex, BMI, smoking status of the participant creatinine, and education of the house-
hold (ISCED). Networks were stratified by ISCED, median age, and BMI (each only cor-
recting for the remaining determinants). A sensitivity analysis, using different dilution
adjustments of creatinine, was conducted.

https://www.recetox.muni.cz/hear/projects/celspac-fireexpo
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2.3.4. BIOAMBIENT.ES (Spain)

The BIOAMBIENT.ES study was designed as a population-based cross-sectional epi-
demiological study representative of the Spanish workforce, with self-administered ques-
tionnaires, medical examinations, and collection of biological samples throughout the
Spanish territory [18]. The study participants were selected through a stratified sample by
conglomerates to guarantee the inclusion of all the geographical areas of the territory, both
sexes, and different sectors of activity (services sector and others). The study population
includes subjects aged 16 or older, who were residents in Spain for at least 5 years prior
to the start of the study, and who attended the occupational medical examinations during
2009. The fieldwork was conducted between March 2009 and July 2010.

Of the 1892 participants who constitute the population sample of the BIOAMBI-
ENT.ES project, 1880 subjects provided samples with sufficient whole blood volume, while
1770 subjects provided valid morning void urine samples (defined by having creatinine
levels between 0.3 and 3 g/L). The epidemiological questionnaire was designed to collect
basic individual information on sociodemographic data, lifestyle, environmental conditions,
and some personal characteristics. Questions about the frequency of food consumption
were also included to record habitual diet, as well as about recent illnesses and the use of
medications. For the purpose of the network analysis, the dataset with the highest number
of substances was selected, although this reduced the number of participants, since not
everyone had all substances determined.

2.4. Statistical Analysis
2.4.1. Descriptive Analysis

The descriptive analysis of the data used for network analysis largely follows the
conventions developed in HBM4EU’s Work Package on data management and analysis
(HBM4EU D10.12; www.hbm4eu.eu/work-packages/deliverable-10--12-update-statistical-
analysis-plan-for-the-co-funded-studies-of-wp8/ (accessed on 27 January 2023)). Central
tendency and distributional measures are provided to allow an assessment of the HBM
levels observed. Common scripts were used to generate the tables presenting descrip-
tive statistics.

Descriptive statistics were calculated using R (v3.5.0 or higher [11]). The number of
values and missing values, percentage below LOD and LOQ, mean, standard deviation,
standard error, and geometric mean were calculated using standard R functions. Percentiles
(P05 to P95) were calculated by means of the quantile function (package stats, version 3.6.2).
Descriptive statistics were calculated on the imputed values and standardised for creatinine
or blood lipids (biomarker measured in urine in the case of creatinine or measured in
blood in the case of lipid standardisation for lipophilic biomarkers). Pearson correlation
structures in the datasets were computed and displayed using heatmaps.

2.4.2. Network Analysis

Network analyses were performed as previously described [8]. After the data selection
and preparation steps, partners performed the network analysis using uniform centrally
prepared scripts. Network analysis was used to describe the conditional independence
between multiple variables, making use of the packages huge and igraph, using R (v3.5.0
or higher [11]) [19,20]. Within these networks, a node or dot represents a biomarker, and
an edge or line between two nodes reflects the conditional dependency between these
two biomarkers given all other variables. The output network presents unweighted edges,
only providing information on whether the edge connecting nodes is present or absent,
depending on a cut-off value (lambda).

For comparison purposes, weighted network analysis, which is more computationally
demanding, was applied as well, making use of the package EGAnet (v1.2.3 [21]) [22,23].
The output weighted network shows the strength of the edge by thickness of the line and
direction of the correlation by colour of the line (green for a positive correlation and red
for a negative correlation). Both the unweighted and weighted networks were estimated

www.hbm4eu.eu/work-packages/deliverable-10--12-update-statistical-analysis-plan-for-the-co-funded-studies-of-wp8/
www.hbm4eu.eu/work-packages/deliverable-10--12-update-statistical-analysis-plan-for-the-co-funded-studies-of-wp8/
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using the graphical lasso (GLASSO), which involves penalised maximum likelihood esti-
mation [24]. This method is a simple and fast algorithm for estimation of a sparse inverse
covariance matrix using a lambda penalty. The GLASSO cycles through the variables,
fitting a modified lasso regression to each variable in turn. Regularisation of the graph
was conducted along a sequence of 10 equally spaced lambdas ranging from the maxi-
mum lambda (resulting in an empty graph) to the minimum lambda set at 10% of the
maximum lambda.

For the unweighted networks, the optimal lambda selection was conducted using the
stability approach to regularisation selection method (StARS), which selects the optimal lambda
by variability across subsamples [25]. Variability (or instability) across subsamples is defined
as the fraction of times (range: 0–0.5) that two graphs disagree on the presence of an edge,
averaged over all edges in the graphs. We used the default variability threshold of 0.1.

For the weighted networks, the optimal graph from the GLASSO was selected with
the EBIC tuning parameter (default of 0.5). A parametric bootstrap (1000 iterations) was
used to estimate the median network structure, which was then plotted as the final result.

On both the weighted and the unweighted networks, the walktrap clustering algorithm
from the igraph package was used, which performs random walks (using a default of 4 steps)
across the network to merge nodes to so-called communities in a bottom-up manner [26,27].
Nodes were coloured according to the community they were assigned to. Edges of the un-
weighted networks linking different communities were coloured in red, and edges within a
community were coloured in black. Biomarkers within the same community were more closely
related to one another than to the other measured biomarkers in the network. To the degree
possible, usage of colours is standardised within each dataset, but not across datasets, nor
between unweighted and weighted network graphs.

3. Results
3.1. Descriptive Statistics for the Chemical Substances Included in the Network Analysis

Table 1 shows an overview of the descriptive statistics for the HBM datasets for those
chemicals that were measured in more than one country, i.e., the biomarkers for the substances
included for the network analysis, the matrix in which the biomarkers were measured, their
proportions below LOD or LOQ, and percentiles and geometric mean of the biomarker con-
centrations. Please note that the concentrations for urinary biomarkers were standardised for
creatinine. Country-specific descriptive statistics of biomarker levels as used in the network
analyses are presented in Supplementary Tables S1–S4. The correlation structure between
biomarkers is graphically represented in the subsequent sections by heatmaps.

3.1.1. 3xG (Belgium)

The following substances and substance groups were available in a selected subsample of
125 participants: metals including cadmium (Cd), nickel (Ni), chromium (Cr), antimony (Sb), cop-
per (Cu), thallium (Tl), and lead (Pb), total arsenic (As), hydroxy pyrene (1-PYR), trans-muconic
acid (TTMA), phthalates including mono(2-ethylhexyl) phthalate (MEHP), mono(2-ethyl-5-
hydroxy- hexyl) phthalate (5OH-MEHP), mono(2-ethyl-5-oxo-hexyl) phthalate (5oxo-MEHP),
mono-n-butyl phthalate (MnBP), mono-benzyl phthalate (MBzP), mono-ethyl phthalate (MEP),
and mono-isobutyl phthalate (MiBP), and bisphenol A (BPA total) were available in morning
urine (UM) samples of the pregnant mother; musks including tonalide (AHTN) and galax-
olide (HHCB) were available in the blood samples (MB) of the mother after delivery; metals
(cadmium, nickel, chromium, antimony, copper, thallium, managenese, and lead) and arsenic
were available in cord blood (CB) samples of the newborn; and organochlorine compounds
(OCs) including polychlorinated biphenyl 138 (PCB128), polychlorinated biphenyl 153 (PCB153),
polychlorinated biphenyl 180 (PCB180), dichlorodiphenyldichloroethylene (p,p’-DDE), and
hexachlorobenzene (HCB), and PFASs including perfluorooctane sulfonic acid (PFOS), perflu-
orooctanoic acid (PFOA), and perfluorohexane sulfonic acid (PFHxS) were available in cord
blood plasma (CBP) samples of the newborn.
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Table 1. Descriptive statistics for biomarkers included in the network analysis measured in more than one study. PFAS were measured in blood(in µg/L), all others
in urine (in µg/g creatinine).

Substance Group Biomarker 3XG (Belgium) CELSPAC—FIREexpo; Controls
(Czech Republic) GerES V (Germany) BIOAMBIENT.ES (Spain)

Distribution % < LOQ P25 P50 P75 P95 % <
LOQ P25 P50 P75 P95 % <

LOQ P25 P50 P75 P95 % <
LOQ P25 P50 P75 P95

Elements

Cd 0% 0.21 0.28 0.37 0.54 26% <
LOQ 0.06 0.09 0.15 2.5% 0.12 0.2 0.38 0.72

Cr 1.6% 0.26 0.49 0.82 1.76 7.8% 0.26 0.34 0.49 0.77

Hg 5.1% 0.04 0.06 0.1 0.26 0.68% 0.56 0.99 1.58 2.75

Sb 18% 0.03 0.04 0.06 0.15 21% 0.03 0.05 0.07 0.13

As 0% 6.72 13.89 38.79 81.22 0% 4.35 6.89 14.2 55.2

Pb 0% 0.64 0.84 1.14 1.7 2.6% 0.43 0.7 1.04 2.36

Tl 0% 0.18 0.22 0.26 0.35 11.35% 0.08 0.11 0.16 0.26

Phthalate
substitute

OH-DINCH 0.19% 0.98 2.13 4.66 14.7 4.91% 0.29 0.7 6.81 19.82

oxo-DINCH 1.55% 0.39 0.93 2.03 7.16 13.5% 0.11 0.35 1.19 11.87

cx-MINCH 0.19% 0.49 1.02 2.11 7.8 3.68% 0.26 0.43 1.22 8.21

Phthalates

MEHP 2.4% 1.75 2.53 4.33 8.42 13.0% 0.71 1.22 2.04 4.19 3.68% 2.47 4.09 6.63 14.9

5OH-MEHP 0% 6.67 10.08 13.75 38.04 0% 5.87 8.98 13.94 28.8 0% 11.54 18.44 26.26 56.6

5oxo-MEHP 0% 4.39 7.18 9.69 22.98 0% 4.08 6.42 10.49 21.6 0.61% 7.74 11.45 17.03 35.71

5cx-MEPP 0% 6.1 9.92 16.9 35.8 0% 12.82 18.88 28.15 54.27

MBzP 0% 3.79 7.1 11.97 22.59 0.39% 1.45 2.38 4.75 17.5 1.23% 3.16 5.09 8.98 28.53

MnBP 0% 23.36 34 51.35 91.75 0% 12.04 18.18 28.67 54.8 0.61% 9.63 14.74 22.23 41.53

OH-MnBP 0.78% 1.25 2.12 3.49 7.27 2.45% 1.08 1.71 2.44 5.04

MiBP 0% 43.16 60 94.4 288.5 0% 13.54 21.36 33.58 87.2 0% 16.33 23.71 34.19 72.73

OH-MiBP 0% 4.7 7.52 12.17 30.2 0% 6.5 9.17 14.19 25.01

MEP 0% 17.76 40.38 82.98 203.57 0% 10.96 17.76 32.05 113 0% 87.08 189.47 345.21 1307.09

OH-MiNP 0% 3.35 5.27 8.73 24.6 1.84% 2.03 3.45 5.91 23.17
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Table 1. Cont.

Substance Group Biomarker 3XG (Belgium) CELSPAC—FIREexpo; Controls
(Czech Republic) GerES V (Germany) BIOAMBIENT.ES (Spain)

Distribution % < LOQ P25 P50 P75 P95 % <
LOQ P25 P50 P75 P95 % <

LOQ P25 P50 P75 P95 % <
LOQ P25 P50 P75 P95

oxo-MiNP 0% 1.39 2.17 3.66 9.65 3.07% 1.19 2.08 3.62 14.93

cx-MiNP 0% 2.88 4.55 7.5 19.5 0.61% 3.85 6.11 9.91 45.64

OH-MiDP 0.78% 0.75 1.19 2.06 5.9 1.84% 1.23 1.76 2.83 5.11

oxo-MiDP 10.5% 0.29 0.54 0.89 2.56 10.4% 0.42 0.62 0.96 1.82

cx-MiDP 2.14% 0.41 0.7 1.19 3.62 0.61% 1.05 1.43 2.27 4.87

MMP 1.55% 3.21 5.07 10.44 36.0 4.91% 2.01 2.69 4.2 10.56

PAHs

1-OH-Pyr 1.6% 0.11 0.15 0.24 0.49 0% 0.06 0.10 0.13 0.26 1.36% 0.06 0.09 0.14 0.29

4-OH-Phe 20% 0.02 0.05 0.12 1.5 0.39% 0.02 0.04 0.08 0.26

1-OH-Phe 5.5% 0.08 0.17 0.34 0.70 0% 0.08 0.12 0.2 0.46

2-OH-Flu 0% 0.21 0.36 0.56 1.0 10.5% 0.23 0.43 0.69 2.19

2-OH-Nap 0% 3.0 5.2 7.1 21 0.19% 1.86 3.15 5.89 15.9

1-OH-Nap 0% 1.0 1.7 3.3 6.2 3.5% 0.36 0.68 1.41 4.88

Bisphenols BPA 2.4% 0.9 1.29 2.3 4.61 0% 3.69% 1.03 1.6 2.88 6.91

PFAS
PFNA 0% 0.23 0.3 0.36 0.49 0.61% 0.7 0.95 1.39 2.14

PFDA 0% 0.11 0.12 0.17 0.25 11.0% 0.26 0.37 0.53 0.84
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The descriptive statistics for the biomarkers included in the network analysis are given
in Supplementary Table S1. Nickel measured in the cord blood of the newborn and HCB
and PFHxS measured in the cord blood plasma of the newborn show the highest percentage
of values below LOD/LOQ, being 37%, 24.8%, and 20.8%, respectively. Furthermore, for
nickel measured in the cord blood of the newborns, the P25 value is under the LOD
(Supplementary Table S1).

Figure 1 shows the correlation between the biomarkers for the abovementioned sub-
stances. Biomarkers belonging to the same chemical groups show higher correlations,
such as PCBs, phthalates, PFASs, and heavy metals. Interestingly, specific heavy metals
measured in the urine of the mother during pregnancy and the cord blood of the newborn
during birth show low correlations. For example, arsenic and lead show a Pearson correla-
tion of 0.34 and 0.35, respectively, while other heavy metals do not show any significant
correlation. PFASs and PCBs also show small positive correlations. Significant negative
correlations were not observed for any of the biomarkers.
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Figure 1. 3xG: heatmap showing the Pearson correlations between all creatinine-standardised and
lipid-standardised measured biomarkers measured in urine and blood, respectively, available for
the selected subset of participants. Data were corrected for age, BMI, and smoking status of the
participants. The matrices in which biomarkers were measured are shown between brackets (MB:
maternal blood, CB: cord blood, CBP: cord blood plasma, UM: morning urine).

3.1.2. CELSPAC—FIREexpo (Czech Republic)

In the CELSPAC—FIREexpo study, data for the following substances were used (please
note that the list of substances in the control group and firefighters might slightly differ due
to differences in percentage above LOD/LOQ, see Materials and Methods): serum PFASs,
i.e., PFPeA, PFHxA, PFOA, PFNA, PFDA, PFUnDA, PFBS, PFHxS, PFHpS, and PFOS,
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and urine OH-PAHs, i.e., 1-NAPH, 2-NAPH, 2-FLUO, 3-FLUO, ∑(2-PHEN + 3-PHEN),
1-PHEN, 4-PHEN, and 1-PYR.

Supplementary Table S2 shows the descriptive statistics for all biomarkers used in the
analysis for the firefighters and the control group. The summed exposure to PFASs is sig-
nificantly higher in firefighters than in the control group (Mann–Whitney U test, p < 0.05).
When assessing individual substances, the levels of all measured PFASs are higher in fire-
fighters than in the control group, except for PFPeA and PFUnDA. No significant difference
was observed in the summed exposure levels for OH-PAHs between the firefighters and the
control group (Mann–Whitney U test, p < 0.05); however, the levels of individual OH-PAHs
slightly differ between the firefighters and the control group [13].

Figure 2 shows the correlation heatmap for the biomarkers included for the
CELSPAC—FIREexpo study. The correlations of biomarkers for substances belonging
to the same family of chemicals are generally higher compared to those that belong to
different chemical families. This trend is more prominent in firefighters, where the correla-
tions within a chemical family slightly increased, while the correlations between substances
from different chemical families remained weak (except for the correlation between PFBS
and 4-PHEN). In the control group, the heatmap was more heterogeneous, and the within-
family correlations were slightly weaker compared to firefighters, but some moderate
correlations were observed for chemicals from different families.
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Figure 2. CELSPAC—FIREexpo: heatmap showing the Pearson correlations between serum PFASs
and creatinine-standardised urinary OH-PAHs for firefighters (left) and the corresponding control
group (right). Data were corrected for age and BMI.

3.1.3. GerES V (Germany)

The following substances were included in first-morning void urine samples in the
selected subset of 515 participants: cadmium (Cd), chromium (Cr), mercury (Hg), ph-
thalates, DINCH, bisphenol A (BPA), polyaromatic hydrocarbons (PAHs), acrylamide,
pesticides, aprotic solvents (n-ethyl-pyrrolidone; n-methyl-pyrrolidone), UV-filters (ben-
zophenones (BP)), antimony (Sb), selenium (Se), parabens, lysmeral (TBBA), and CIT/MIT
(methylchloroisothiazolinone/methylisothiazolinone). From the above set, 10 biomarkers
were excluded from the network analyses because more than 40% of the measurements
were below LOQ: phthalate metabolites MnOP, MnPeP, MCHP, OH-MPHP, and cx-MPHP;
the aprotic solvents metabolite 5-HNEP; the pesticide glyphosate and its metabolite AMPA;
and the UV-filter metabolites of BP-1 and BP-3. As a result, a total of 51 biomarkers were in-
cluded in the analyses (see Tables 1 and S3). Missing data in biomarker data were imputed
as described in the Materials and Methods section (Data Selection and Preparation).
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Supplementary Table S3 shows all substances included for network analyses in GerES
V, their proportions below LOQ, and percentiles and geometric mean of the creatinine-
standardised biomarker concentrations. Figure 3 shows the correlation heatmap for the
biomarkers included for GerES V, using data standardised for creatinine and corrected
for the determinants age, sex, BMI, smoking status of the participant, and education of
the household. The heatmap shows mostly positive, small to medium correlations. For
example, chromium and NMMA show correlations around 0.3 with several metabolites
from other substance groups such as acrylamide, aprotic solvents, and some phthalates,
whereas the lowest correlations with other substance groups (r ≈ 0–0.27) are observed
for phthalate substitute DINCH, arsenic, mercury, and parabens. In contrast, correlations
between metabolites of the same substance showed the highest correlations (up to r ≈ 0.95),
e.g., acrylamide and glycidamide, and phthalates and their substitute DINCH and DEHTP.
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3.1.4. BIOAMBIENT.ES (Spain)

The selected subset of 163 participants had data on biomarkers for the following
substances: metals, i.e., mercury (Hg), cadmium (Cd), lead (Pb), thallium (Tl), and cobalt
(Co), phthalates (DMP, DEP, BBzP, DiBP, DnBP, DEHP, DiNP, and DiDP), DINCH, and
PFASs (PFHxS, PFOA, PFOS, PFNA, and PFDA). As a result, a total of 31 biomarkers were
included in the analyses. Metals and phthalates were measured in valid morning void urine
and PFAS in blood. Missing values in biomarker data were imputed as described in the
Materials and Methods section. Descriptive statistics for this set of biomarkers are shown
in Tables 1 and S4. Figure 4 shows the correlation heatmap for the biomarker included for
BIOAMBIENT.ES, using data standardization for creatinine and corrected by age, sex, body
mass index (BMI), and smoking status of the participant. The heatmap showed positive and
negative, mainly small to medium correlations. The correlation among metabolites of the
same group of substances showed higher positive correlations, except for metals and some
phthalates such as MEP. In addition, some negative correlations were observed among
PFAS or DINCH, and most of the phthalates. Mercury and thallium showed negative
correlations with most biomarkers, except for PFAS.
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Figure 4. BIOAMBIENT.ES: heatmap showing the Pearson correlations between all measured creatine-
standardised biomarkers available for the selected subset of participants. Data were corrected for sex,
age, body mass index (BMI) and smoking status of the participants.
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3.2. Network Analysis

The network analyses produce a graphical representation of the conditional indepen-
dence between the observed biomarker levels. Different colours in the networks indicate
the clustering structure or communities and which biomarkers are more closely related to
one another compared to the rest of the network. The sensitivity analysis of the networks
consisted of two parts. The first part comprised a comparison of two weighted network
estimation approaches. This was performed on the Belgium 3xG data. Secondly, the impact
of different approaches on correcting biomarker levels against creatinine levels (as a mea-
sure for the level of dilution of the urine sample) was evaluated using the German GerES V
data. The results of both comparisons are presented in Appendix A.

3.2.1. 3xG (Belgium)

Figure 5 shows the weighted network for the 3xG subset of participants (n = 125).
Biomarkers measured in urine are standardised for creatinine and lipid-soluble biomarkers
in blood are standardised for lipids. Nine different communities were identified (repre-
sented by the different colours), with the strongest relations within the communities (thick
lines). Negative correlations (red lines) were minimal. Green lines represent positive associ-
ations while red signify negative associations between biomarker levels. Communities with
biomarkers originating from the same chemical group were detected, such as the musks
(HHCB and AHTN, community 5 in yellow) or the heavy metals. The heavy metals were,
however, split into three separate communities (numbers 1, 2, and 7 in Figure 5).
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Figure 5. Weighted network for 3xG. The data were corrected for age, smoking, and BMI. Urinary
markers were standardised for creatinine and lipid soluble blood markers were standardised for
lipids. Matrices in which biomarkers are measured appear between brackets. Green lines represent a
positive dependency between nodes (biomarkers) while red lines represent a negative dependency.
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In line with what was observed in the heatmap of 3xG (Figure 1), As and Pb measured
in the urine of the mother during pregnancy and in the cord blood of the newborn at
birth are highly related, which is in agreement with previous studies on the migration
of hazardous heavy metals through the placenta to the foetus [28,29]. Other interesting
communities can be observed in Figure 5. For example, community number 6 shows a
relationship between total BPA, MEP, and Sb measured in the urine of the mother during
pregnancy. Both BPA and phthalates have been found in packaging for cosmetic and
personal care products and food packaging materials [30,31], and the use of make-up has
been previously associated with an increase in BPA and MEP in urine [32]. The relationship
between Sb and total BPA could be explained due to their presence in plastic containers that
leach plasticisers and plastic additives into water or other food products [33]. Interestingly,
this association is not seen in Figure 6 in a subset of participants with high educational
level compared to a subset of participants with low educational level, which may be due
to the fact that women with a higher educational level are more aware of the leaching
of chemicals from plastic containers to water or food products. The relation of total BPA
with MEP was not detected in either network once the data was stratified. Overall, the
networks observed for the higher educated subset appear to be more connected with larger
communities, having more (red) connections between nodes across communities.
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nities. 

Figure 6. Unweighted network for 3xG for participants with low educational level (left) and partic-
ipants with high educational level (right). The data were corrected for age and BMI. Urinary mark-
ers were standardised for creatinine and lipid soluble blood markers were standardised for lipids. 
Low ISCED is defined by participants belonging to educational levels 0–4 according to the ISCED 
(International Standard Classification of Education) and high ISCED is defined by participants be-
longing to educational level ≥5. Black lines indicate dependency between nodes (biomarkers) within 
a community; red lines indicate dependency between nodes in different communities. 

 
In Figure 5, another interesting community is the one consisting of 1-PYR and MiBP, 

MnBP, and TTMA. The most important route of exposure for 1-PYR is through smoking; 
however, living in a highly polluted environment also has an influence on the 1-PYR lev-
els [34]. No common route of exposure for 1-PYR and MiBP has been found in the litera-
ture. It is intriguing to notice that the link is no longer found in the network for partici-
pants with a high level of education, but it is conserved in those with a low educational 

Figure 6. Unweighted network for 3xG for participants with low educational level (left) and par-
ticipants with high educational level (right). The data were corrected for age and BMI. Urinary
markers were standardised for creatinine and lipid soluble blood markers were standardised for
lipids. Low ISCED is defined by participants belonging to educational levels 0–4 according to the
ISCED (International Standard Classification of Education) and high ISCED is defined by participants
belonging to educational level ≥5. Black lines indicate dependency between nodes (biomarkers)
within a community; red lines indicate dependency between nodes in different communities.

In Figure 5, another interesting community is the one consisting of 1-PYR and MiBP,
MnBP, and TTMA. The most important route of exposure for 1-PYR is through smoking;
however, living in a highly polluted environment also has an influence on the 1-PYR lev-
els [34]. No common route of exposure for 1-PYR and MiBP has been found in the literature.
It is intriguing to notice that the link is no longer found in the network for participants
with a high level of education, but it is conserved in those with a low educational level,
as seen in Figure 6. Furthermore, we also noticed that the link is no longer conserved in
participants with a BMI > 25 kg/m2 while it is in participants with a BMI ≤ 25 kg/m2

(Figure 7). Figure 7 also shows more dependencies in the low BMI category, where all
substances are part of a community, with some communities comprising multiple chemical
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families. Additionally, some dependencies across communities can be observed. Moreover,
we observe again a community of BPA and MEP. In contrast, the high BMI category displays
smaller communities and many substances not part of a community.
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measured in the cord blood of the newborn at birth. 

Figure 7. Unweighted network for 3xG for participants with a BMI ≤ 25 kg/m2 and participants with
a BMI > 25 kg/m2. The data were corrected for age and smoking. Urinary markers were standardised
for creatinine and blood markers were standardised for lipids. Black lines indicate dependency
between nodes (biomarkers) within a community; red lines indicate dependency between nodes in
different communities.

Further stratifications were explored in Figure 8 where networks are explored for
participants with a low fish consumption (less than 1–3 times per week) and relatively
high fish consumption (equal or more than 1–3 times per week). While some communities
are conserved, such as the PFASs, DEHP metabolites, and urinary heavy metals (Cu, Cd,
Cr, and Ni), some others show slight changes, especially regarding other heavy metals
measured in the cord blood of the newborn at birth.
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(2, blue), and the rest of the compounds (other OH-PAHs, PFHxA, and PFPeA in the green 
community, 3). 

In the firefighters’ network, the intra-community links were strong, and there were 
weak inter-community links, resulting in more strictly separated PFASs and OH-PAHs 
communities, while in the control group, more inter-community links were present, re-
sulting in communities with substances from different chemical families. This might be 
caused by the firefighting occupation being the predominant exposure factor contributing 
to the PAHs and PFASs exposure in firefighters. In the controls, the levels of PFASs and 
PAHs are, in general, lower than in firefighters and there might not be a predominant 
exposure source contributing to stronger communities of PFASs and PAHs. 

 

Figure 8. 3xG: unweighted network for participants with a low fish consumption (left) and partici-
pants with a relatively high fish consumption (right). The data were corrected for age and smoking.
Urinary markers were standardised for creatinine and lipid soluble blood markers were standardised
for lipids. Low fish consumption is defined as consumption of fish less than 1–3 times per week and
high fish consumption is defined as fish consumption of at least 1–3 times per week. Black lines
indicate dependency between nodes (biomarkers) within a community; red lines indicate dependency
between nodes in different communities.
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3.2.2. CELSPAC—FIREexpo (Czech Republic)

Figure 9 shows the weighted network of the firefighters (n = 52) and the control group
(n = 55) of the CELSPAC—FIREexpo study. The set of biomarkers differ between the two
groups due to differences in percentage detected above LOQ (Supplementary Table S2).
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Figure 9. Weighted network for CELSPAC—FIREexpo firefighters (left) and the control group
(right). The data were corrected for age and BMI. Urinary markers (OH-PAHs) were standardised
for creatinine. Green lines represent positive associations while red signify negative associations
between biomarker levels.

In the firefighters’ network, most PFASs and OH-PAHs clustered together in a com-
munity of the same chemical group. Two communities were created in the PFASs group
(numbers 2 in blue and 4 in orange), and two in the OH-PAHs group (naphthalenes and
fluorenes in community 3 in green, and other OH-PAHs in 1 in red). The exception was
PFBS which was strongly linked to 4-PHEN, and therefore included in the community
of OH-PAHs, rather than PFASs. In the control group network, three communities were
detected: a community of naphthalenes and fluorenes (1, red), a community of seven PFAS
(2, blue), and the rest of the compounds (other OH-PAHs, PFHxA, and PFPeA in the green
community, 3).

In the firefighters’ network, the intra-community links were strong, and there were
weak inter-community links, resulting in more strictly separated PFASs and OH-PAHs
communities, while in the control group, more inter-community links were present, result-
ing in communities with substances from different chemical families. This might be caused
by the firefighting occupation being the predominant exposure factor contributing to the
PAHs and PFASs exposure in firefighters. In the controls, the levels of PFASs and PAHs
are, in general, lower than in firefighters and there might not be a predominant exposure
source contributing to stronger communities of PFASs and PAHs.

3.2.3. GerES V (Germany)

The weighted network for GerES V, allowing for assessment of the strength of the
links between substances, is shown in Figure 10. Ten communities were identified. Links
were stronger (i.e., thicker lines) within substance groups and among metabolites from
the same parent compound; the strongest links were observed within acrylamide, aprotic
solvents, parabens EP and MeP, DINCH, DEHTP, and several phthalates.
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Figure 10. Weighted network for GerES V subsample, using creatinine-standardised and creatinine-
adjusted data. Data were corrected for age and BMI. Green lines represent a positive dependency 
between nodes (biomarkers). 
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was 10 years. Both children older than 10 and 10 years old and younger show a commu-
nity each for PAHs (light pink), two aprotic solvents (HNMP and HMSI, green), and 
DEHTP (light blue) metabolites. Interestingly, DINCH forms a community with NMMA 
and elements selenium and chromium (salmon) in younger but not older children in 
which each element and DINCH belong to three separate communities. In addition, the 
parabens—a sometimes observed standalone community—form their community with 
TBBA in the younger group. 

When comparing participants with a BMI ≤ 25 lower versus participants with a BMI 
> 25 (Figure 13), we observed that for participants with a higher BMI (right panel), com-
munities are more likely to include substances from other substance groups or substances 
which usually stand alone. For example, the PAHs community includes in addition SPMA 
(salmon), the phthalate community of DnBP and DiBP co-occurs with mercury (blue), the 
phthalate community of DiNP, DEHP, DiDP, and BBzP co-occurs with BPA, and DINCH 
metabolites co-occur with chromium. 

 

Figure 10. Weighted network for GerES V subsample, using creatinine-standardised and creatinine-
adjusted data. Data were corrected for age and BMI. Green lines represent a positive dependency
between nodes (biomarkers).

Comparison of the two networks stratified by education (Figure 11) revealed more
differences than similarities. Few communities can be identified as similar between both
groups, namely those of DINCH metabolites (blue), DEHTP metabolites (lavender), and
PAHs (green). However, even within these communities, some remarkable differences can
be observed between the groups. In the subset of participants from households with low
to medium education (left panel), DEHTP co-occurs together with BPA, which is not the
case for the higher educated subset. Similarly, PAHs co-occur with cadmium and benzene
(SPMA) in the lower educated subset, while this co-occurrence was not observed for
participants with a higher level of education. Additionally, the networks for phthalates are
different between the groups, with the major difference being DEHP: this substance is part
of a different community of phthalates in each education group. Furthermore, phthalate
substitutes are more inter-related with communities of phthalates among participants of low
to medium educated households but occur more distinctly in children and adolescents from
higher educated households. In contrast to the 3xG observation, in GerES V, connections
between nodes across communities are more prominent in the lower education group.
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age, and BMI. Low ISCED reflects educational levels 0–4 from the ISCED (International Standard 
Classification of Education) and high ISCED reflects educational level ≥5. Black lines indicate de-
pendency between nodes (biomarkers) within a community; red lines indicate dependency between 
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Figure 12. Stratification of the network for the GerES V subsample by median age (10 years old), 
using creatinine-standardised and creatinine-adjusted data. Data were corrected for sex, smoking 
status, ISCED, and BMI. Black lines indicate dependency between nodes (biomarkers) within a com-
munity; red lines indicate dependency between nodes in different communities. 

Figure 11. Stratification of the network for the GerES V subsample by education (ISCED), using
creatinine-standardised and creatinine-adjusted data. Data were corrected for sex, smoking status,
age, and BMI. Low ISCED reflects educational levels 0–4 from the ISCED (International Standard
Classification of Education) and high ISCED reflects educational level ≥5. Black lines indicate
dependency between nodes (biomarkers) within a community; red lines indicate dependency between
nodes in different communities.

Figure 12 shows stratified networks by the median age of the GerES V subset, which
was 10 years. Both children older than 10 and 10 years old and younger show a community
each for PAHs (light pink), two aprotic solvents (HNMP and HMSI, green), and DEHTP
(light blue) metabolites. Interestingly, DINCH forms a community with NMMA and
elements selenium and chromium (salmon) in younger but not older children in which each
element and DINCH belong to three separate communities. In addition, the parabens—a
sometimes observed standalone community—form their community with TBBA in the
younger group.
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Figure 12. Stratification of the network for the GerES V subsample by median age (10 years old),
using creatinine-standardised and creatinine-adjusted data. Data were corrected for sex, smoking
status, ISCED, and BMI. Black lines indicate dependency between nodes (biomarkers) within a
community; red lines indicate dependency between nodes in different communities.
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When comparing participants with a BMI ≤ 25 lower versus participants with a
BMI > 25 (Figure 13), we observed that for participants with a higher BMI (right panel),
communities are more likely to include substances from other substance groups or sub-
stances which usually stand alone. For example, the PAHs community includes in addition
SPMA (salmon), the phthalate community of DnBP and DiBP co-occurs with mercury
(blue), the phthalate community of DiNP, DEHP, DiDP, and BBzP co-occurs with BPA, and
DINCH metabolites co-occur with chromium.
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3.2.4. BIOAMBIENT (Spain) 
Figure 14 shows the weighted network for the BIOAMBIENT.ES dataset (n = 163). 

The graph shows six communities, with mostly positive dependencies between sub-
stances. As in the other studies, the strongest dependencies were observed in communities 
of substances from the same chemical family. Nonetheless, in addition to communities 
from the same chemical family, dependencies across chemical families were also ob-
served. For example, several metals form communities with phthalates (community 2,3 
and 4).  

Figure 14 also shows separate grouping within parent compounds in the case of 
phthalates: DiBP metabolites (MiBP and OH-MiBP), DEHP metabolites (MEHP, OH-
MEHP, oxo-MEHP, and cx-MEPP), DiNP metabolites (OH-MiNP, oxo-MiNP, and cx-
MiNP), and DiDP metabolites (OH-MiDP, oxo-MIDP, and cx-MIDP). However, for DnBP, 
two metabolites (MnBP and OH-MnBP) were grouped with DiBP, whereas MCPP was 
grouped together with the DiNP metabolites showing strong links to cx-MiNP. 

Figure 13. Stratification of the network for the GerES V subsample by BMI, using creatinine-
standardised and creatinine-adjusted data. Data were corrected for sex, smoking status, age, and
ISCED. Black lines indicate dependency between nodes (biomarkers) within a community; red lines
indicate dependency between nodes in different communities.

3.2.4. BIOAMBIENT (Spain)

Figure 14 shows the weighted network for the BIOAMBIENT.ES dataset (n = 163).
The graph shows six communities, with mostly positive dependencies between substances.
As in the other studies, the strongest dependencies were observed in communities of
substances from the same chemical family. Nonetheless, in addition to communities from
the same chemical family, dependencies across chemical families were also observed. For
example, several metals form communities with phthalates (community 2, 3 and 4).

Figure 14 also shows separate grouping within parent compounds in the case of ph-
thalates: DiBP metabolites (MiBP and OH-MiBP), DEHP metabolites (MEHP, OH-MEHP,
oxo-MEHP, and cx-MEPP), DiNP metabolites (OH-MiNP, oxo-MiNP, and cx-MiNP), and
DiDP metabolites (OH-MiDP, oxo-MIDP, and cx-MIDP). However, for DnBP, two metabo-
lites (MnBP and OH-MnBP) were grouped with DiBP, whereas MCPP was grouped together
with the DiNP metabolites showing strong links to cx-MiNP.

We performed stratified unweighted network analysis for relevant determinants,
including educational level (ISCED), BMI, and fish consumption. The networks identified
with unweighted analysis showed fewer communities than the weighted network, possibly
because of the smaller number of observations within strata (Figures 15–17). Here, metals
tend to appear as standalone compounds, DINCH metabolites form a distinct community,
as generally so do PFAS metabolites and phthalates metabolites (two main big communities
plus MEP). Communities of these two latter substance groups present some differences
depending on the stratification. MEP, a metabolite of the phthalate substance DEP, often
appears separate from other phthalates and substances.
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Figure 14. Weighted network for BIOAMBIENT.ES subsample, using urinary (creati-
nine-standardised) and blood data. Data were corrected for sex, smoking status, age, 
and BMI. Green lines represent positive associations; red lines signify negative associa-
tions between biomarker levels. 
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DEP, often appears separate from other phthalates and substances. 

Figure 15 shows the stratified networks by education level. For phthalates, in the 
lower ISCED level, each substance appears in a separate community, with the exception 
of MCPP, a metabolite of DnBP, which, as seen earlier, appears in the same community as 
the metabolites of DiNP. In contrast, in the high ISCED group, there are two main com-
munities showing dependencies between them. Similar to the GerES V study, the com-
munity of DINCH metabolites was not different between the groups. 

Figure 14. Weighted network for BIOAMBIENT.ES subsample, using urinary (creatinine-
standardised) and blood data. Data were corrected for sex, smoking status, age, and BMI. Green lines
represent positive associations; red lines signify negative associations between biomarker levels.
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Figure 15.  Stratification of the network for the BIOAMBIENT.ES dataset by education (ISCED 
level). Low ISCED (left panel) is defined by participants belonging to educational levels 0–4 accord-
ing to the ISCED (International Standard Classification of Education) and high ISCED (right panel) 
is defined by participants belonging to educational level ≥5. Data were corrected for sex, age, BMI 
and smoking status. Black lines indicate dependency between nodes (biomarkers) within a commu-
nity; red lines indicate dependency between nodes in different communities. 

In the stratification by BMI (Figure 16), we observed that for participants with lower 
BMI (BMI < 25), mercury is included in DEHP, DiNP, and DiDP community, whereas in 
the high BMI group (BMI ≥ 25), mercury and OH-MnBP form a separate community. 

Figure 16.  Stratification of the network for the BIOAMBIENT.ES subsample by BMI. Unweighted 
network for participants with a normal weight (defined as BMI < 25) is shown in the left panel, while 
the network for participants with overweight (BMI ≥ 25) is shown in the right panel. Data were 
corrected for sex, age and smoking status. Black lines indicate dependency between nodes (bi-
omarkers) within a community; red lines indicate dependency between nodes in different commu-
nities. 

Figure 15. Stratification of the network for the BIOAMBIENT.ES dataset by education (ISCED level).
Low ISCED (left panel) is defined by participants belonging to educational levels 0–4 according to the
ISCED (International Standard Classification of Education) and high ISCED (right panel) is defined
by participants belonging to educational level ≥5. Data were corrected for sex, age, BMI and smoking
status. Black lines indicate dependency between nodes (biomarkers) within a community; red lines
indicate dependency between nodes in different communities.
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network for participants with a normal weight (defined as BMI < 25) is shown in the left panel, while 
the network for participants with overweight (BMI ≥ 25) is shown in the right panel. Data were 
corrected for sex, age and smoking status. Black lines indicate dependency between nodes (bi-
omarkers) within a community; red lines indicate dependency between nodes in different commu-
nities. 

Figure 16. Stratification of the network for the BIOAMBIENT.ES subsample by BMI. Unweighted
network for participants with a normal weight (defined as BMI < 25) is shown in the left panel, while
the network for participants with overweight (BMI ≥ 25) is shown in the right panel. Data were cor-
rected for sex, age and smoking status. Black lines indicate dependency between nodes (biomarkers)
within a community; red lines indicate dependency between nodes in different communities.
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When evaluating the effect of fish consumption (Figure 17), we observed communi-
ties, mainly comprising substances from a single chemical family, in both groups. In par-
ticipants with a relatively low fish consumption, MCPP – OH-MnBP and MMP – Co were 
grouped in independent communities. 
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(left) and participants with a relatively high fish consumption (right). The data were corrected for 
sex, age, BMI and smoking status. Low fish consumption is defined as consumption of fish less than 
1–3 times per week and high fish consumption is defined as fish consumption of at least 1–3 times 
per week. Black lines indicate dependency between nodes (biomarkers) within a community; red 
lines indicate dependency between nodes in different communities. 

4. Discussion 
In this study, we applied network analysis to HBM datasets from Belgium, Czech 

Republic, Germany, and Spain, with the aim to further explore its added value for mixture 
risk assessment. The network approach combined with a clustering algorithm (commu-
nity detection) proved to be an intuitive graphical manner to describe the correlation 
structure in a dataset, taking into account all exposure markers in the mixture. Application 
of the network analysis in this study revealed some new insights in inter-dependencies 
within each dataset. Importantly, pan-European application of these methods and their 
interpretation would require harmonisation across Europe in terms of study design, bi-
omarker media, chemical analysis, and the substances that are assessed. Overall, the four 
studies yielded diverse correlations, with more positive than negative associations (Fig-
ures 1–4). With the exception of parent–metabolite relations, correlations were generally 
below 0.8, while negative correlations were generally below 0.3. It should be noted that in 
this study, the focus was rather on the dependencies between biomarkers (correlation 
structure), and not so much on the absolute levels of exposure. Nonetheless, when inter-
preting differences or commonalities in community patterns across studies, one should be 
aware that sometimes marked differences exist between studies in biomarker levels, 
sometimes up to one or two orders of magnitude. These may reflect differences in study 
population, in design, chemical analytical procedures, and actual differences in exposure 
patterns between study populations. In case the output should be used for prioritising 
mixtures of concern, of course the absolute levels should be considered as well. 

The network analysis identified in all four studies, as expected, several communities 
of chemical families, e.g., phthalates and PAHs. Additionally, links between parent sub-
stances and metabolites were observed, e.g., for acrylamide and glycidamide. However, 

Figure 17. BIOAMBIENT.ES: unweighted network for participants with a low fish consumption (left)
and participants with a relatively high fish consumption (right). The data were corrected for sex, age,
BMI and smoking status. Low fish consumption is defined as consumption of fish less than 1–3 times
per week and high fish consumption is defined as fish consumption of at least 1–3 times per week.
Black lines indicate dependency between nodes (biomarkers) within a community; red lines indicate
dependency between nodes in different communities.

Figure 15 shows the stratified networks by education level. For phthalates, in the
lower ISCED level, each substance appears in a separate community, with the exception of
MCPP, a metabolite of DnBP, which, as seen earlier, appears in the same community as the
metabolites of DiNP. In contrast, in the high ISCED group, there are two main communities
showing dependencies between them. Similar to the GerES V study, the community of
DINCH metabolites was not different between the groups.
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In the stratification by BMI (Figure 16), we observed that for participants with lower
BMI (BMI < 25), mercury is included in DEHP, DiNP, and DiDP community, whereas in the
high BMI group (BMI ≥ 25), mercury and OH-MnBP form a separate community.

When evaluating the effect of fish consumption (Figure 17), we observed communities,
mainly comprising substances from a single chemical family, in both groups. In participants
with a relatively low fish consumption, MCPP – OH-MnBP and MMP – Co were grouped
in independent communities.

4. Discussion

In this study, we applied network analysis to HBM datasets from Belgium, Czech
Republic, Germany, and Spain, with the aim to further explore its added value for mixture
risk assessment. The network approach combined with a clustering algorithm (community
detection) proved to be an intuitive graphical manner to describe the correlation structure
in a dataset, taking into account all exposure markers in the mixture. Application of the net-
work analysis in this study revealed some new insights in inter-dependencies within each
dataset. Importantly, pan-European application of these methods and their interpretation
would require harmonisation across Europe in terms of study design, biomarker media,
chemical analysis, and the substances that are assessed. Overall, the four studies yielded
diverse correlations, with more positive than negative associations (Figures 1–4). With
the exception of parent–metabolite relations, correlations were generally below 0.8, while
negative correlations were generally below 0.3. It should be noted that in this study, the
focus was rather on the dependencies between biomarkers (correlation structure), and not
so much on the absolute levels of exposure. Nonetheless, when interpreting differences or
commonalities in community patterns across studies, one should be aware that sometimes
marked differences exist between studies in biomarker levels, sometimes up to one or
two orders of magnitude. These may reflect differences in study population, in design,
chemical analytical procedures, and actual differences in exposure patterns between study
populations. In case the output should be used for prioritising mixtures of concern, of
course the absolute levels should be considered as well.

The network analysis identified in all four studies, as expected, several communities of
chemical families, e.g., phthalates and PAHs. Additionally, links between parent substances
and metabolites were observed, e.g., for acrylamide and glycidamide. However, also
exposure patterns involving substances from different chemical families were observed.
Examples include the dependency between 1-PYR (biomarker for PAHs), TTMA (biomarker
for benzene), and the phthalates MiBP and MnBP in the 3xG study, and the dependency
between acrylamide, its metabolite glycidamide, SPMA (biomarker for benzene), and
aprotic solvents (NMMA, HNMP, and HMSI) in the GerEs V study. In the CELSPAC—
FIREexpo study, the network analysis revealed both positive (e.g., 4-PHEN and PFBS in
firefighters) and negative (e.g., 4-PHEN and PFPeA in controls) dependencies between
PAHs and PFASs. Such communities, comprising substances from different chemical
families, possibly reflect a commonality in exposure patterns and thus reflect real-life
mixture patterns. The communities observed may also be impacted by similarities in
physicochemical properties of the substances involved. Our findings also show that in
the German and Spanish data, metals (e.g., arsenic and mercury) were not always part
of communities, in contrast to the Belgian data. Additionally, in the German weighted
network (Figure 10), BPA was not part of a community, while a relatively strong correlation
between BPA and MEP was observed in the Belgian weighted network (Figure 5). In
contrast to the mostly positive links observed in the weighted networks in the three larger
studies, in the smaller CELSPAC-FIREexpo control group network, a negative dependency
could be observed (between 4-PHEN and PFPeA).

The unweighted network analysis stratified by covariates demonstrated differences in
the community patterns. These may reflect differences in exposure patterns and pathways
between strata, although no clear interpretation can be given at this point. The differences
between strata may also reflect some sample differences between strata. The stratified
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unweighted networks also show many dependencies across communities, as indicated
by the red lines in the graphs. Even though the unweighted network analysis showed
differences between strata, no obvious immediate clues about sources or exposure pathways
were observed. Nonetheless, the communities in the network analysis may hold some
indications about relevant exposure routes. For example, the community of parabens (MeP
and EP), preservatives in cosmetics, with lysmeral (TBBA), a fragrance in cosmetics, in the
German network results would point at the role of cosmetics.

The above (and other) differences between studies may deserve further investigation;
however, we here explicitly abstain from doing so because of the differences in study
designs. Firstly, the populations sampled highly differ across the four studies. The German
study focused on exposure in adolescents, the Spanish study on subjects aged 16 or over,
while the Belgian study combined data from mothers and newborns, with different time
points of sampling, and the Czech study focused on occupational exposure in firefighters.
Additionally, the biomarkers, and thus the substances, included in the four studies vary.
The same applies to the matrices in which biomarkers were determined: in the German
study, only urine samples were used, while in the other three studies also blood samples
were included. Hence, differences observed between the studies may stem not only from
differences in exposure patterns, but also from differences in various aspects of the study
designs. For a better interpretation of cross-country differences, a harmonised sample
collection and laboratory analysis would be beneficial.

The analyses applied comprised both weighted and unweighted network analyses.
The weighted and unweighted network analyses yielded generally similar results (data not
shown). While weighted network analysis is more computationally intensive and less fit for
high dimensional data in comparison to the unweighted networks, a clear advantage is the
indication of the relative strength of the links and the direction of the association [35]. For a
comparison between determinants within a study, only unweighted networks were used
for their ease in interpretation (occurring or not-occurring edges between the biomarkers).
Future work could also include a comparison between determinants based on weighted
correlation networks.

The results of our study clearly show that network methods become more informative
when biomarkers for a larger number of substances are included in the HBM dataset, as
demonstrated, e.g., by the findings for the GerES V study versus the CELSPAC—FIREexpo
study. Existing HBM studies typically have a limited number of individuals in which a wide
range of chemical substances has been measured. This hampers the potential to identify
patterns of chemical mixtures, and even more so to study the role of determinants, with
fewer observations per stratum. For future studies, we therefore recommend to expand,
where possible, the number of observations with a wide(r) range of chemicals, to improve
the ability to identify real-life mixtures and to study determinants of the patterns observed.

Regarding the methodology applied, some aspects certainly deserve further improve-
ment. Firstly, better insight into the stability and consistency of the identified networks
and communities is needed [36]. Further work should also include characterisation of the
uncertainty in the networks, and the decision for the community detection algorithm [26].
Better insight into aspects such as the impact of measurement errors on the networks and
communities identified will enhance the appreciation of the possibilities and limitations
of network analysis of HBM data for mixture risk assessment. This is crucial for its ac-
ceptance and implementation in regulatory risk assessment. Further work should also be
conducted on the interpretation of the communities and the possible impact for regulatory
risk assessment. We consider it crucial to take into account the toxicological properties
and mechanisms of the chemical substances included in a community, because this may
indicate which communities might be of more toxicological concern compared to others.
Furthermore, in cases where chemicals from different families appear together in the same
community, the different families may fall under different legislations and/or regulations.
Such a situation would give rise to the question of how to deal with this in regulatory
risk assessment.
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Taken together, our study demonstrates that network analysis of HBM data allows for
the identification of real-life exposure patterns to chemical mixtures occurring at a single
point in time in the human body. Network analysis can be a good addition to other data
explorative methods, such as heatmaps or principal component analysis. The derived
networks and accompanying communities should, therefore, not replace existing methods,
but rather complement and assist researchers in the description of complex mixtures in
HBM data.

Graphical visualisation of the networks and communities identified greatly aids the
interpretation of the output. Weighted network analysis reveals the strength and direction
of the links between substances identified as co-occurring, while stratification provides
insight into the impact of determinants on the exposure patterns. These features make
network analysis of HBM data a useful, valuable tool for mixture risk assessment.
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Appendix A

Comparison of the Two Unweighted and Weighted Network Estimation Approaches

Two methods to visualise weighted networks were explored with the R Package
EGAnet (v1.2.3 [21]). For the first method, the EGA() function was applied to the correla-
tion matrix of the data. This function estimates the number of dimensions of the correlation
matrix using graphical lasso with extended Bayesian information criterion to select op-
timal regularisation parameters. Figure A1 shows the resulting weighted network from
this method.
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Green lines represent a positive dependency between nodes (biomarkers), while red lines represent a
negative dependency.
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The second method uses the function bootEGA() from the EGAnet R package which
estimates the number of dimensions of n bootstraps using the empirical (partial) correlation
matrix (parametric) or resampling from the empirical dataset (non-parametric). It also esti-
mates a typical median network structure, which is formed by the median or mean pairwise
(partial) correlations over the n bootstraps. Here, a parametric bootstrap (1000 iterations)
was used to estimate the median network structure, which was then plotted as the final
result (shown in Figure A2).
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Figure A2. Weighted network for 3xG using the graphical lasso method with bootstrap of 80 iterations.
Data were corrected for age, smoking, and BMI. Urinary markers were standardised for creatinine;
lipid soluble blood markers were standardised for lipids. Matrices in which biomarkers are measured
appear between brackets. Green lines represent a positive dependency between nodes (biomarkers),
while red lines represent a negative dependency.

Networks obtained using the two different methods maintain the communities consti-
tuted by PFASs, PCBS with HCB and p,p’-DDE, DEHP metabolites, and DiBP metabolites
with 1-PYR. The network of MEP and BPA total is conserved; however, Sb is included in
the bootstrap network, while in the GLASSO network, it constitutes its own community.
The composition of other, less strong communities seems to vary slightly between the two
methods; nevertheless, the overall relationships do not seem to differ heavily between the
two approaches.

Impact of Different Approaches to Correcting Biomarker Levels against Creatinine Levels

The impact of different approaches for standardisation of creatinine (or lack thereof) in
the network analyses was studied in the GerES V sample (Figures A3–A5) with networks
as described above (using a parametric bootstrap of 1000 iterations). We distinguished
between the following terms when taking into account dilution. ‘Standardisation’ means
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that each individual’s raw concentration for the biomarkers studied is divided by its indi-
vidual dilution level (e.g., creatinine). ‘Adjustment’ for dilution reflects that the dilution
was included as a control variable into multivariate regression (see also [38]). Finally, ‘cor-
rection’ is used as the general term of taking into account dilution levels as standardisation,
adjustment, or the combination of both. To illustrate the effect of correction of urinary
dilution with creatinine, Figure A3 shows the resulting communities when standardising
raw concentrations for creatinine and adjusting for creatinine in multivariate analyses (rec-
ommended by HBM4EU). A total of eight communities containing three or more substances
was observed. The communities are grouped into DINCH metabolites (yellow), PAHs
(green), parabens and TBBA (salmon), acrylamide and SPMA (plum), DEHTP metabolites
(blue), aprotic solvent HNMP, NMMA, and acrylamide (plum), selenium, chromium, anti-
mony, and aprotic solvent HMSI (lavender), and two communities of phthalate metabolites.
Among the phthalate communities, MMP co-occurs together with BBzP, and DnBP and
DiBP metabolites (grey), and DEHP metabolites co-occur with DPHP, and DiNP and DiDP
metabolites (blue). Several substances were not part of any community, such as some
elements (mercury, arsenic, and cadmium), BPA, and the phthalate MEP.
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The differences between the network obtained using creatinine-standardised and creatinine-
adjusted data (Figure A3) versus using only creatinine-standardised data (Figure A4) are
limited. The major differences include an additional community (comprising mercury and
arsenic, IX in Figure A4), and a different split of the community that consists of acrylamide,
aprotic solvents, selenium, chromium, antimony, NMMA, and SPMA into two different
communities (II and III). However, not correcting for creatinine in any form results in
considerably different communities. As can be seen in Figure A5, three heavily inter-related
communities (II, IV, V) mask the detailed communities detected in the network when
standardising and adjusting for creatinine, possibly due to a similar degree of dilution
being reflected in stronger correlations. These findings indicate that it is important to
correct for creatinine when aiming at analysing mixtures and at least to standardise the
biomarker concentrations for this parameter; nevertheless, this needs to be confirmed by
further studies. In conclusion, not correcting for dilution effects may create spurious results.
The two methods for correction for dilution effects showed little difference.
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