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Abstract
A rigorous description of a period-doubling bifurcation of limit cycles in retarded func-
tional differential equations based on tools of functional analysis and singularity theory is
presented. Particularly, sufficient conditions for its occurrence and its normal form coeffi-
cients are expressed in terms of derivatives of the operator defining given equations. We also
prove the exchange of stability in the case of a non-degenerate period-doubling bifurcation.
The approach concerns Fredholm operators, Lyapunov–Schmidt reduction and recognition
problem for pitchfork bifurcation.
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Period-doubling bifurcation · Fredholm operator · Lyapunov–Schmidt reduction

Mathematics Subject Classification 34K18 · 37G15

1 Introduction

In the context of continuous-time dynamical systems, period-doubling bifurcation is a qual-
itative change of dynamics characterized by a splitting of a limit cycle which leads to an
emergence of a new limit cycle whose period is approximately two times bigger than the
original one. This phenomenon can be studied by tools of the theory of discrete-time dynam-
ical systems using Poincaré maps. If this discrete-time dynamical system overcomes a flip
bifurcation, then period-doubling occurs in the original dynamical system, Kuznetsov [10].

The mentioned discretization has its limitations which is demonstrated, for example, by
the fact that the method does not provide an easily computable formula for normal form coef-
ficients, Kuznetsov et al. [11]. Calculation of normal form coefficients of codimension one
bifurcations of limit cycles in ordinary differential equations (ODE) was done in Kuznetsov
et al. [11]. Their procedure depend on the normal form of a vector field in a neighbourhood of
a limit cycle deduced in Iooss [8]. Recently, the existence of a smooth periodic center mani-
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fold in a neighbourhood of a non-hyperbolic periodic orbit in retarded functional differential
equations (RFDE) has been proved, Lentjes et al. [12, Preprint]. Moreover, the existence of a
suitable coordinate system on themanifold enables calculation of normal form coefficients of
codimension one bifurcations of limit cycles in RFDE. These results has been accomplished
using sun-star calculus, Diekmann et al. [4].

In this paper an alternative approach is presented. The following text is inspired by the
eighth chapter of Golubitsky and Schaeffer [6]. In fact, we have adjusted techniques applied
to investigation of Hopf bifurcation so that they can be used in the case of period-doubling
bifurcation in RFDE. The first step of our approach consists of regarding periodic solutions
of the original RFDE as zeros of an operator Φ acting between suitable Banach spaces.
Subsequently, Lyapunov–Schmidt reduction can be applied in order to obtain a reduced
map φ operating between finite-dimensional spaces with the property that solutions of the
equation φ = 0 are in one to one correspondence with solutions of the equation Φ = 0.
According to singularity theory and the mechanism of the reduction, derivatives of the map
φ at the bifurcation point determines a shape of its solution set near the point and they can
be computed from derivatives of the original operator Φ.

Sun-star calculus studies bifurcations in RFDE from the classical viewpoint of dynamical
systems theory. On the other hand, the approach used by us consists in implementing very
simple and general results from functional analysis and singularity theory. The computation
of normal form coefficients of period-doubling bifurcation in this text can be considered as
a demonstration of the robustness of these tools and a prospect for the successful application
of this method in other and more general contexts. Although Lentjes et al. [12, Preprint],
announced the computation of these coefficients and Szalai and Stépán [16], derived them
for the special case where delay and period are equal, we provide explicit formulae in full
generality.

We consider an autonomous retarded functional differential equation of the form

ẋ(t) = F(xt , λ) (1)

where F : C × R → R
n is supposed to have enough continuous derivatives. The state

space C = C([−r , 0],Rn) where r is a given non-negative real number is endowed with
the supremum norm ‖·‖. The history xt at time t is an element of the space C given by
xt (θ) = x(t + θ), where θ ∈ [−r , 0]. The symbol λ represents the bifurcation parameter.
We assume that this equation has a p-periodic solution u0 for λ = λ0.

The rest of the paper is organized as follows. In Sect. 2 we reduce the problem of finding
periodic solutions of (1) to a problem of finding zeros of a function of the type R2 → R. We
derive sufficient conditions for an occurrence of period-doubling bifurcation and expressions
for its normal form coefficients. In Sect. 3, the exchange of stability of solutions is proved
in the case of the non-degenerate period-doubling bifurcation. We should emphasize that the
theory is presented in the terminology of germs. Especially, most of the equalities occurring
after Proposition4 are considered as relations between germs rather than functions.

2 Normal form Coefficients

First of all, we want to transform equation (1) to an algebraic equation. Let us define the
following sets of functions:
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C1
q :={ f : R → R

n | f ∈ C1(R) and f (t + q) = f (t) for all t ∈ R},
Cq :={ f : R → R

n | f ∈ C(R) and f (t + q) = f (t) for all t ∈ R}.
In words, the setC1

q contains all continuously differentiable q-periodic functions, meanwhile
the symbolCq represents all continuous q-periodic functions. In order to simplify subsequent
expressions, we reserve the adjective q-periodic for functions satisfying the common defining
condition of sets C1

q and Cq so q is not necessarily their period. Obviously, C1
q is a subset of

Cq . It is easy to see, that the equations

‖u‖1 = max
t∈R

|u(t)| + max
t∈R

∣
∣u′(t)

∣
∣ ,

‖u‖ = max
t∈R

|u(t)| ,

where |·| is a fixed norm inRn , define Banach spaces (C1
q , ‖·‖1) and (Cq , ‖·‖). Next we omit

to mention the norms explicitly.
Since we suppose that u0 is a p-periodic solution of equation (1) and we are going to

study period-doubling bifurcation, it is natural to choose C1
2p and C2p as a domain and range

of the operator Φ, respectively. However, there is a little complication. Generically, a period
of a solution varies with a change in a bifurcation parameter. Hence, if λ is close to λ0, in
general there will be solutions with periods close to p or 2p but not equal to these values. For
this, we introduce an extra parameter to the studied equation, which enable us to solve this
problem. Let us introduce a new time variable s = (1 + τ)t , where τ ∈ R is the mentioned
parameter. This leads to the following equation:

(1 + τ)u̇(s) = F(us,τ , λ), (2)

where us,τ (θ) = u(s + (1 + τ)θ). If u(s) is a 2p-periodic solution of (2), then u((1 + τ)t)
is a 2p/(1 + τ)-periodic solution of (1). On the other hand, if x(t) is a 2p/(1 + τ)-periodic
solution of (1), then x(s/(1 + τ)) is a 2p-periodic solution of (2). Now we can define the
operator Φ : C1

2p × R × R → C2p by the following equation:

Φ(u, λ, τ ):=(1 + τ)u̇(s) − F(us,τ , λ). (3)

According to the previous analysis, solutions of the equation Φ = 0 are in one-to-one
correspondence with periodic solutions of (1) whose period is approximately 2p.

Now we briefly mention an action of the group (R,+) on the set C2p called a phase shift.
An element α ∈ R acts on a function u ∈ C2p in the following way:

(α · u)(s) = u(s − α).

It is easy to see that the previous formula defines a group action correctly. Since

(α · u)s,τ (θ) = (α · u)(s + (1 + τ)θ) = u(s − α + (1 + τ)θ) = us−α,τ (θ)

and (1) is autonomous, the operator Φ commutes with a phase shift:

Φ(α · u, λ, τ )(s) = (1 + τ)
d(α · u)

ds
(s) − F((α · u)s,τ , λ)

= (1 + τ)u̇(s − α) − F(us−α,τ , λ)

= Φ(u, λ, τ )(s − α) = (α · Φ(u, λ, τ ))(s).

Note that each element of the subgroup 2pZ ⊆ R is a symmetry of all functions inC2p which
means that these elements represent transformations acting trivially on C2p . Of course, there
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are functions, such as p-periodic functions, which have more symmetries. Every element of
the subgroup pZ is a symmetry of the solution u0, for example.

The Fréchet differential, Chow and Hale [1], of Φ : C1
2p ×R×R → C2p with respect to

the first variable at (u0, λ0, 0) is given by

(Lv)(s) = ((dΦ)u0,λ0,0 · v)(s) = v̇(s) − (dF)(u0)s ,λ0 · vs, (4)

where (dF)(u0)s ,λ0 is the derivative of F with respect to the first variable evaluated at
((u0)s, λ0). The operator K : R × C → R

n defined by K (s, φ) = (dF)(u0)s ,λ0 · φ is p-
periodic in the first variable and continuous and linear in the second variable. Hence it can
be expressed as follows

K (s, φ) =
∫ 0

−r
dθ η(s, θ)φ(θ),

where η is continuous from the left in θ on (−r , 0), has bounded variation in θ on [−r , 0]
and is normalized so that η(s, θ) = 0 for θ ≥ 0 and η(s, θ) = η(s,−r) for θ ≤ −r , see
Hale [7].

Proposition 1 The linearization L : C1
2p → C2p of the operator Φ is a Fredholm operator

of index zero.

Proof It is easily seen that ˙(·) : C1
2p → C2p is a Fredholm operator of index zero. Accord-

ing to Schechter [14], it is enough to justify compactness of the operator B : C1
2p → C2p

defined by (Bv)(s) = K (s, vs). Let k = maxs∈R ‖K (s, ·)‖L(C,Rn) which exists since
(dF)(u0)·,λ0 : R → L(C,Rn) is continuous and periodic. If M ⊆ C1

2p is bounded, then
there is m ∈ R such that ‖v‖1 ≤ m for every v ∈ M . Since

‖Bv‖ = max
s∈R

|Bv(s)| ≤ max
s∈R

‖K (s, ·)‖L(C,Rn) · ‖vs‖ ≤ km,

the set BM is uniformly bounded. It remains to verify uniform continuity. We start with the
following calculations:

|Bv(s) − Bv(t)| = |K (s, vs) − K (t, vt )|
= ∣

∣(dF)(u0)s ,λ0 · vs − (dF)(u0)t ,λ0 · vt
∣
∣

= ∣
∣(dF)(u0)s ,λ0 · vs − (dF)(u0)s ,λ0 · vt + (dF)(u0)s ,λ0 · vt − (dF)(u0)t ,λ0 · vt

∣
∣

≤ ∥
∥(dF)(u0)s ,λ0

∥
∥L(C,Rn)

‖vs − vt‖ + ∥
∥(dF)(u0)s ,λ0 − (dF)(u0)t ,λ0

∥
∥L(C,Rn)

‖vt‖
≤ k ‖vs − vt‖ + m

∥
∥(dF)(u0)s ,λ0 − (dF)(u0)t ,λ0

∥
∥L(C,Rn)

.

There is δ1 > 0 such that for every v ∈ M and s, t ∈ R satisfying |s − t | < δ1 the following
inequalities hold:

|v(s) − v(t)| <
ε

2k
⇒ |vs(θ) − vt (θ)| <

ε

2k
⇒ ‖vs − vt‖ <

ε

2k
.

On the other hand, continuity and periodicity of (dF)(u0)·,λ0 : R → L(C,Rn) implies its
uniform continuity. Therefore, there is δ2 > 0 such that for every s, t ∈ R satisfying |s − t | <

δ2 we have

∥
∥(dF)(u0)s ,λ0 − (dF)(u0)t ,λ0

∥
∥L(C,Rn)

<
ε

2m
.
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We can conclude that for a given ε > 0 and v ∈ M an appropriate δ = min{δ1, δ2} can be
found so that for every s, t ∈ R satisfying |s − t | < δ the following inequality hold:

|Bv(s) − Bv(t)| ≤ k · ε

2k
+ m · ε

2m
= ε.

The precompactness of the set BM has been proved. 
�

Let us continue with solutions of the equation L = 0. According to Hale [7], for any
σ ∈ R and φ ∈ C there is a unique solution x : [σ − r ,∞) → R

n of the equation L = 0
satisfying the initial condition xσ = φ. The solution operator T (s, σ ) : C → C for s ≥ σ

is defined by T (s, σ )φ = xs . Recall that non-zero eigenvalues of the monodromy operator
T (σ + p, σ ) do not depend on σ and they are called Floquet multipliers of u0. From now
on, we will adopt the following assumption:

(C1) The only Floquet multipliers of u0 satisfying γ 2 = 1 are γ1 = 1 and γ2 = −1 and
these two eigenvalues are simple.

Proposition 2 If u0 satisfies the condition (C1), then dim ker L = 2.

Proof According to the assumption, 1 is an eigenvalue of the operator

T (2p, 0) = T (2p, p)T (p, 0) = T (p, 0)T (p, 0) = T (p, 0)2,

of which both algebraic and geometric multiplicity are equal to two. Let (u̇0)0 and φ be
corresponding eigenvectors such that T (p, 0)φ = −φ. Obviously, the 2p-periodic function
u̇0(s) and the 2p-periodic extension of the function v0(s) = T (s, 0)φ(0) span the kernel of
the operator L , which leads to dim ker L = 2. 
�

It should be emphasized that the function v0 has the following property: v0(s+ p) = −v0(s)
where s ∈ R is arbitrary.

Next, we are going to use the concept of the formal adjoint equation given by the following
relation:

y(s) +
∫ ∞

s
y(β)η(β, s − β) dβ = constant, (5)

where y(s) ∈ R
n∗. Let B0 denote the Banach space of functions ψ : [−r , 0] → R

n∗ of
bounded variation on [−r , 0], continuous from the left on (−r , 0) and vanishing at zero with
norm Var[−r ,0]ψ . According to Hale [7], for every t ∈ R and ψ ∈ B0 there is a unique
function y : R → R

n∗ which vanishes on [t,∞), satisfies the equation (5) on (−∞, t − r ]
and yt = ψ . The solution operator T̃ (s, t) : B0 → B0 for s ≤ t is defined by T̃ (s, t)ψ = y0s
where y0s (0) = 0 and y0s (θ) = y(s + θ) for −r ≤ θ < 0.

Recall that spectra of T (p, 0) and T (2p, 0) = T (p, 0)2 are the same as those of T̃ (0, p)
and T̃ (0, 2p) = T̃ (0, p)2, respectively.Moreover, generalized eigenspaces of these operators
can be used to decompose spaces C and B0 in the following way:

C = ker(I − T (p, 0)) ⊕ Im(I − T (p, 0)) = ker(I + T (p, 0)) ⊕ Im(I + T (p, 0))

= ker(I − T (2p, 0)) ⊕ Im(I − T (2p, 0)),

B0 = ker(I − T̃ (0, p)) ⊕ Im(I − T̃ (0, p)) = ker(I + T̃ (0, p)) ⊕ Im(I + T̃ (0, p))

= ker(I − T̃ (0, 2p)) ⊕ Im(I − T̃ (0, 2p)),
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where

dim ker(I − T (p, 0)) = dim ker(I − T̃ (0, p)) = 1,

dim ker(I + T (p, 0)) = dim ker(I + T̃ (0, p)) = 1,

dim ker(I − T (2p, 0)) = dim ker(I − T̃ (0, 2p)) = 2.

Let ψ1 and ψ2 be eigenvectors of the operator T̃ (0, p) corresponding to eigenvalues 1 and
−1, respectively. Obviously, these vectors span the eigenspace of the operator T̃ (0, 2p)
corresponding to 1. Let v1 and v2 be 2p-periodic extensions of solutions of (5) satisfying
the initial conditions (v1)2p = ψ1 and (v2)2p = ψ2. These functions span the space of
2p-periodic solutions of (5). Moreover, it can be easily seen that v1 and v2 are continuous.

The formal adjoint equation is necessary for decomposition of spaces C1
2p and C2p so

that Lyapunov–Schimdt reduction can be used. This is the right time to recall an important
theorem from Hale [7] (Corollary 5.1 from Chapter 6 or Theorem 1.2 from Chapter 9):

Theorem 1 If f ∈ C2p, then the equation Lv = f has a 2p-periodic solution v if and only
if 〈u, f 〉 = 0 for all 2p-periodic solutions u of the formal adjoint equation.

An important consequence of this statement is the inclusion Im L ⊆ [v1, v2]⊥. We can
conclude the following proposition.

Proposition 3 If the solution u0 satisfies the condition (C1), then the spaces C1
2p and C2p

can be expressed as the following sums:

C1
2p = ker L ⊕ M, C2p = N ⊕ Im L,

where M :=(ker L)⊥ and N :=[L(su̇0(s)), L(sv0(s))]. Moreover, spaces M and N are invari-
ant under the action v(·) �→ v(· + p).

Proof The first splitting is obvious. According to Propositions 2 and 1 it is enough to show
that Im L∩N = 0 in order to verify the second equality. However, it is a simple consequence
of the previous theorem and the following relations

〈v2, L(su̇0(s))〉 = 〈v1, L(sv0(s))〉 = 0,

〈v1, L(su̇0(s))〉 �= 0 �= 〈v2, L(sv0(s))〉, (6)

which will be proven latter. 
�
Before we proceed to Lyapunov–Schmidt reduction, we implement a little modification

of the operator Φ. Let us define an operator Φ̃ : C1
2p ×R×R → C2p ×R by the following

rule:

Φ̃(u, λ, τ ):=
(

Φ(u, λ, τ ),

∫ 2p

0
〈u(s), u̇0(s)〉 ds

)

.

The invariance of the operator Φ under a time shift adds one more unnecessary dimension
to the reduced problem. The reduced map can be simplified by the second component of the
operator Φ̃ which fixes a phase of solutions, Kuznetsov [10]. The Fréchet differential of Φ̃

with respect to the first variable at the point (u0, λ0, 0) can be expressed in the following
way:

L̃v = (dΦ̃)u0,λ0,0 · v =
(

Lv,

∫ 2p

0
〈v(s), u̇0(s)〉 ds

)

.
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Since ker L̃ = [v0] and Im L̃ = Im L × R, spaces C1
2p and C2p × R can be decomposed in

a way similar to the one in the last proposition:

C1
2p = ker L̃ ⊕ M̃, C2p × R = Im L̃ ⊕ (N × {0}),

where M̃ :=M + [u̇0].
Lyapunov–Schmidt reduction is clearly described in Golubitsky and Schaeffer [6], so we

mention only necessary aspects of the procedure. Let E : C2p → C2p denote the projection
ofC2p onto Im L with ker E = N . The range and the kernel of the complementary projection
I − E are N and Im L , respectively. Obviously, the equation Φ̃(u, λ, τ ) = 0 is equivalent to
the following set of equations:

EΦ(u, λ, τ ) = 0, (I − E)Φ(u, λ, τ ) = 0, 〈u, u̇0〉 = 0. (7)

The left-hand sides of the first and last equations can be considered as an operator
(EΦ, 〈·, u̇0〉) : ker L̃ × M̃ × R

2 → Im L̃ . The differential of this operator with respect
to the second variable evaluated at (u0, λ0, 0) is invertible. The implicit function theorem in
Banach spaces implies existence of a functionW : ker L̃ ×R

2 → M̃ defined in a neighbour-
hood of (u0, λ0, 0) which is uniquely determined by equations

EΦ(v + W (v, λ, τ ), λ, τ ) = 0, 〈v + W (v, λ, τ ), u̇0〉 = 0, W (0, λ0, 0) = u0. (8)

where v ∈ ker L̃ . In the last equation we have used the fact that u0 ∈ M̃ . If we substitute
u = v + W (v, λ, τ ) into the left-hand side of the second equation of (7), then we obtain the
reduced mapping φ : ker L̃ × R

2 → N defined by

φ(v, λ, τ ):=(I − E)Φ(v + W (v, λ, τ ), λ, τ ).

An important consequence of the previous analysis is a one-to-one correspondence between
solutions of the equations Φ̃ = 0 and φ = 0.

This is the right time to discuss how symmetry enters our problem. Since Φ commutes
with the action of (R,+), the equalityΦ(αu, λ, τ ) = αΦ(u, λ, τ ) holds for every α ∈ R and
(u, λ, τ ) ∈ C1

2p × R × R. Differentiation with respect to C1
2p and evaluation at (u0, λ0, 0)

gives the following equation:

(dΦ)αu0,λ0,0 · α = α · (dΦ)u0,λ0,0.

Generally, we can not deduce Lα = αL , because u0 is a non-trivial function which means
that the equation αu0 = u0 does not hold for every α ∈ R. However, the function u0 is p-
periodic, hence it has more symmetries than a general element of the space C2p . Particularly,
the isotropy subgroup of u0 is pZ, unlike the isotropy subgroup 2pZ of a general function
in C2p . We can factor R by its subgroup 2pZ and think about the action of the circle group
S1 ∼= R/2pZ on the space C2p . In this context, the isotropy subgroup of u0 is {0, p} ⊆ S1,
which is isomorphic to Z2. We can conclude that the equation Lα = αL holds for every
α ∈ Z2, so the operator L commuteswith the action ofZ2 on the spaceC2p . This result has the
following important consequences, whose proofs can be found in Golubitsky and Schaeffer
[6]. Spaces ker L and Im L are Z2-invariant and the projection E also commutes with the
action of Z2. Moreover, Z2-invariance of spaces ker L̃ and M̃ and the fact that W commutes
with the action of Z2 can be also verified by a simple calculation. Finally, Z2-equivariance
of the reduced mapping φ can be concluded:

φ(αv, λ, τ ) = αφ(v, λ, τ ).

This fact enforces a special form of the reduced mapping which will be seen in a moment.
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In place of abstract subspaces of a Banach space, it is more comfortable to work with
Euclidean spaces, hence we try to find an appropriate coordinate representation of φ. We
can use ordered bases (v0) and (L(su̇0(s)), L(sv0(s))) of spaces ker L̃ and N , respectively,
and consider W and φ as mappings W : R × R

2 → M̃ and φ : R × R
2 → R

2, respectively:
W (x, λ, τ ) = W (xv0, λ, τ ),

φ(x, λ, τ ) =
(

φ1(x, λ, τ )

φ2(x, λ, τ )

)

=
(〈v1, (I − E)Φ(xv0 + W (x, λ, τ ), λ, τ )〉/〈v1, L(su̇0(s))〉

〈v2, (I − E)Φ(xv0 + W (x, λ, τ ), λ, τ )〉/〈v2, L(sv0(s))〉
)

=
(〈v1, Φ(xv0 + W (x, λ, τ ), λ, τ )〉/〈v1, L(su̇0(s))〉

〈v2, Φ(xv0 + W (x, λ, τ ), λ, τ )〉/〈v2, L(sv0(s))〉
)

,

where the penultimate equality can be derived from φ = φ1 · L(su̇0(s)) + φ2 · L(sv0(s))
and (6) and the last equality is a consequence of Im L ⊆ [v1, v2]⊥ and Im E = Im L . The
subsequent calculations can be simplified by involving the linear transformation

S =
(〈v1, L(su̇0(s))〉 0

0 〈v2, L(sv0(s))〉
)

,

which leads to the mapping

g(x, λ, τ ) =
(

g1(x, λ, τ )

g2(x, λ, τ )

)

= Sφ(x, λ, τ ) =
(〈v1, Φ(xv0 + W (x, λ, τ ), λ, τ )〉

〈v2, Φ(xv0 + W (x, λ, τ ), λ, τ )〉
)

.

This function has qualitatively the same solution set as φ and, moreover, the transformation
S has no influence on Z2-equivariance. Therefore, we can deduce the following proper-
ties of components of the reduced map: g1(−x, λ, τ ) = g1(x, λ, τ ) and g2(−x, λ, τ ) =
−g2(x, λ, τ ). This simply says that g1 and g2 are respectively even and odd functions of
x . We can find germs a(z, λ, τ ) and b(z, λ, τ ) satisfying g1(x, λ, τ ) = a(x2, λ, τ ) and
g2(x, λ, τ ) = xb(x2, λ, τ ). A proof of this statement can be found, for example, in Golubit-
sky and Schaeffer [6].

The following proposition enables us to leave out the parameter τ .

Proposition 4 The germ a satisfies the following relations:

a(0, λ0, 0) = 0, aτ (0, λ0, 0) �= 0.

Proof The first statement can be simply proved by substitution:

a(0, λ0, 0) = 〈v1, Φ(W (0, λ0, 0), λ0, 0)〉 = 〈v1, Φ(u0, λ0, 0)〉 = 〈v1, 0〉 = 0.

The inequality requires differentiation:

aτ (0, λ0, 0) = 〈v1, (dΦ)u0,λ0,0 · Wτ (0, λ0, 0) + Φτ (u0, λ0, 0)〉
= 〈v1, Φτ (u0, λ0, 0)〉,

where the inclusion Im L ⊆ [v1, v2]⊥ is used in the last equality. The idea behind verification
of the inequality 〈v1, Φτ (u0, λ0, 0)〉 �= 0 comes from the proof of Theorem 2.2 in Chapter 10
in Hale [7].

Firstly, we evaluate the derivative Φτ at the point (u0, λ0, 0):

Φτ (u0, λ0, 0)(s) = u̇0(s) − (dF)(u0)s · (·)(u̇0)s(·) = u̇0(s) − K (s, (·)(u̇0)s(·)).
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Note that 〈v2, Φτ (u0, λ0, 0)〉 = 0, since Φτ (u0, λ0, 0) is a p-periodic function. Let us sup-
pose that 〈v1, Φτ (u0, λ0, 0)〉 = 0. Consequently, the equation

ż(s) = K (s, zs) + Φτ (u0, λ0, 0)(s) (9)

has a non-trivial 2p-periodic solution z0(s). Let x0(s) = z0(s) − su̇0(s). The following
calculations show that x0 is a solution of the equation L = 0. Since

(z0)s(θ) = z0(s + θ) = x0(s + θ) + su̇0(s + θ) + θ u̇0(s + θ)

= (x0)s(θ) + s(u̇0)s(θ) + θ(u̇0)s(θ),

we can conclude that

ẋ0(s) = ż0(s) − u̇0(s) − sü0(s)

= K (s, (z0)s) + Φτ (u0, λ0, 0)(s) − u̇0(s) − sK (s, (u̇0)s)

= K (s, (z0)s) + u̇0(s) − K (s, (·)(u̇0)s(·)) − u̇0(s) − sK (s, (u̇0)s)

= K (s, (x0)s) + sK (s, (u̇0)s) + K (s, (·)(u̇0)s(·)) − K (s, (·)(u̇0)s(·))
− sK (s, (u̇0)s)

= K (s, (x0)s).

This fact together with the equation

T (s + 2p, s)(x0)s = (x0)s+2p = (z0)s − (·)(u̇0)s − s(u̇0)s − 2p(u̇0)s
= (x0)s − 2p(u̇0)s

implies that (T (2p, 0)− I )(x0)0 = −2p(u̇0)0, which contradicts the fact that the geometric
multiplicity of 1 is equal to its algebraicmultiplicity as an eigenvalue of the operator T (2p, 0).


�

We can conclude that the equation a(x2, λ, τ ) = 0 implicitly defines a function τ(x2, λ) in
a neighbourhood of the point (0, λ0, 0). Consequently, a solution set of the equation g = 0
coincides with a solution set of the equation g2(x, λ, τ (x2, λ)) = 0.

Heretofore, we have discussed only the hypothesis (C1) which is an essential part of the set
of sufficient conditions for an occurrence of period-doubling bifurcation. However, we need
more information about the equationΦ = 0 in order to describe situation around the bifurca-
tion point. Particularly, we should focus on the so called non-degeneracy conditions. For this
purpose, we look at derivatives of g2 at (0, λ0) which can be computed from derivatives of
Φ. Singularity theory enables us to use this data to determine the type of a bifurcation up to
an equivalence of germs. This is the aim of the following proposition taken from Golubitsky
and Schaeffer [6] (Proposition 2.14 from Chapter 6):

Proposition 5 A germ xr(x2, λ) is strongly Z2-equivalent to the germ x(εx2 + δ(λ − λ0))

if and only if r(0, λ0) = 0, sgn rz(0, λ0) = ε and sgn rλ(0, λ0) = δ, where r = r(z, λ) and
ε, δ �= 0.

It is useful to introduce the following notation: r(x2, λ):=b(x2, λ, τ (x2, λ)), hence
g2(x, λ, τ (x2, λ)) = xr(x2, λ). The following identities can be achieved:
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rλ(0, λ0) = 〈v2, (dΦλ)u0,λ0,0 · v0 + (d2Φ)u0,λ0,0(Wλ(0, λ0, 0), v0)〉 (10)

− 〈v1, Φλ(u0, λ0, 0)〉
〈v1, Φτ (u0, λ0, 0)〉 〈v2, (dΦτ )u0,λ0,0 · v0 + (d2Φ)u0,λ0,0(Wτ (0, λ0, 0), v0)〉,

rz(0, λ0) = 〈v2, (d3Φ)u0,λ0,0(v0, v0, v0) + 3(d2Φ)u0,λ0,0(Wxx (0, λ0, 0), v0)〉
6

− 〈v1, (d2Φ)u0,λ0,0(v0, v0)〉
2〈v1, Φτ (u0, λ0, 0)〉 〈v2, (dΦτ )u0,λ0,0 · v0

+ (d2Φ)u0,λ0,0(Wτ (0, λ0, 0), v0)〉. (11)

These values are in fact normal form coefficients. All calculations which are necessary for
derivation of the above formulae together with calculations of derivatives of the implicitly
defined function W are included in the Appendix. Sufficient conditions for an occurrence
of a non-degenerate period-doubling bifurcation are simple consequences of these formulae
and Proposition 5:

Theorem 2 If u0 is a periodic solution of the equation (1) for λ = λ0 with period p such
that the condition (C1) is satisfied and values (10) and (11) are non-zero, then the system (1)
overcomes a non-degenerate period-doubling bifurcation for λ = λ0.

It remains to uncover the relation between the derivative rλ(0, λ0) and the derivative
of the critical multiplier. We need to construct a family of periodic solutions parametrized
by λ to which a family ρ(λ) of Floquet multipliers can be assigned. A possible choice is
W (0, λ, τ (0, λ)). The definition ofW implies annihilation of EΦ. The germ a is also annihi-
lated, according to the definition of the function τ . Finally, g2 = 0 also holds because x = 0.
Consequently, Φ(W (0, λ, τ (0, λ)), λ, τ (0, λ)) = 0 which implies that W (0, λ, τ (0, λ)) is a
family of solutions.

Lemma 1 Functions W (0, λ, τ (0, λ)) are p-periodic.

Proof If we restrict to p-periodic functions only, then the space ker L would be one-
dimensional. This degeneracy is caused by the action of R defined by a phase shift. Hence,
for every λ ≈ λ0 there should be a p-periodic solution of Φ = 0 which is unique up to a
phase shift. Since the variable x corresponds to a direction leading into the space C1

2p , it is
intuitive to choose x = 0 in order to reach these solutions.

Recall, that W : R × R
2 → M̃ is defined implicitly by the equation

EΦ(xv0 + W (x, λ, τ ), λ, τ ) = 0, 〈xv0 + W (x, λ, τ ), u̇0〉 = 0 (12)

in a neighbourhood of (0, λ0, 0). Let us fix x = 0 and consider the following equation:

EΦ(w, λ, τ) = 0, 〈w, u̇0〉 = 0,

where w ∈ M̃ . The differential of left-hand sides with respect to w evaluated at (u0, λ0, 0)
is again invertible, hence the equation uniquely determines a function w(λ, τ). However,
since W (0, λ, τ ) also satisfies the equation, we can conclude w(λ, τ) = W (0, λ, τ ). Let us
considerΦ as an operatorΦ : C1

p ×R×R → Cp for a moment. The differential of left-hand
sides of the equations

ẼΦ(w̃, λ, τ ) = 0,
1

p

∫ p

0
〈w̃(s), u̇0(s)〉 ds = 0

123



Journal of Dynamics and Differential Equations (2024) 36:3233–3257 3243

with respect to w̃ ∈ C1
p evaluated at (u0, λ0, 0) is also invertible. The symbol Ẽ denotes the

projection ofCp onto the space Im L|C1
p
with the kernel [L(su̇0(s))]. Therefore, the equation

uniquely determines a function

w̃(λ, τ ) : R2 → C1
p ⊆ M̃ .

The uniqueness of the function w implies w̃(λ, τ ) = w(λ, τ) = W (0, λ, τ ). Consequently,
W (0, λ, τ ) is p-periodic. 
�

Since a multiplier of W (0, λ, τ (0, λ)) is an eigenvalue of the monodromy operator
T (λ, p, 0), where T (λ, s, σ ) is the solution operator of the equation (dΦ)W (0,λ,τ (0,λ)),λ,τ (0,λ)

= 0, it can be defined implicitly in the following way. LetΣ : R×Im(I +T (p, 0))×R → C
be defined by

Σ(ρ, υ, λ):=T (λ, p, 0)(φ0 + υ) − ρ(φ0 + υ).

Obviously, the point (−1, 0, λ0) satisfies the equation Σ = 0. The differential of Σ with
respect to the first two variables evaluated at (−1, 0, λ0) is given by

Σρ = −φ0, Συ = T (p, 0) + I .

Since C = ker(I + T (p, 0)) ⊕ Im(I + T (p, 0)), the differential is invertible. Consequently,
the equation Σ = 0 defines smooth functions ρ(λ) and υ(λ) in a neighbourhood of the point
(−1, 0, λ0). Therefore, ρ(λ) is the critical Floquet multiplier of the solutionW (0, λ, τ (0, λ))

with the corresponding eigenvector φ0 + υ(λ). We can formulate the following theorem:

Theorem 3 The following equality holds:

rλ(0, λ0) = ρ′(λ0)
p

〈v2, (dΦ)u0,λ0,0(sv0(s))〉,

where 〈v2, (dΦ)u0,λ0,0(sv0(s))〉 �= 0.

Proof Obviously, the function

u(s) = e
log ρ(λ)2

2p se− log ρ(λ)2

2p sT (λ, s, 0)(φ0 + υ(λ))(0) = e
log ρ(λ)2

2p sh(λ, s)

is a solution of the equation (dΦ)W (0,λ,τ (0,λ)),λ,τ (0,λ) = 0. Moreover, the function h(λ, s) is
2p-periodic:

h(λ, s + 2p) = e− log ρ(λ)2

2p (s+2p)T (λ, s + 2p, 0)(φ0 + υ(λ))(0)

= e− log ρ(λ)2

2p s 1

ρ(λ)2
T (λ, s + 2p, 2p)T (λ, p, 0)2(φ0 + υ(λ))(0)

= e− log ρ(λ)2

2p s 1

ρ(λ)2
T (λ, s, 0)ρ(λ)2(φ0 + υ(λ))(0)

= e− log ρ(λ)2

2p sT (λ, s, 0)(φ0 + υ(λ))(0) = h(λ, s).

Differentiation of the equation

(dΦ)W (0,λ,τ (0,λ)),λ,τ (0,λ) exp(s log ρ(λ)2/2p)h(λ, s) = 0

123



3244 Journal of Dynamics and Differential Equations (2024) 36:3233–3257

with respect to λ and evaluation at λ0 leads to the following equation:

(d2Φ)u0,λ0,0(Wλ + Wτ · τλ, v0) + (dΦλ)u0,λ0,0(v0) + (dΦτ )u0,λ0,0(v0) · τλ

+ (dΦ)u0,λ0,0

(

−ρ′(λ0)
p

sv0(s) + hλ(λ0, s)

)

= 0.

Multiplication by the function v2 gives us the desired result.
The inequality 〈v2, (dΦ)u0,λ0,0(sv0(s))〉 �= 0 can be deduced in the same way as it was

done for 〈v1, Φτ (u0, λ0, 0)〉 �= 0. The following lines are spent by verification of this inequal-
ity. Firstly, we show that L(sv0(s)) is periodic:

L(sv0(s)) = v0(s) + sv̇0(s) − K (s, ((·)v0(·))s)
= v0(s) + sv̇0(s) − sK (s, (v0)s) − K (s, (·)(v0)s(·))
= v0(s) + sLv0(s) − K (s, (·)(v0)s(·)) = v0(s) − K (s, (·)(v0)s(·)).

Moreover, this function has the following property: L((s + p)v0(s + p)) = −L(sv0(s))
for every s ∈ R. Consequently, the scalar product 〈v1, L(sv0(s))〉 is equal to zero. Suppose
that 〈v2, L(sv0(s))〉 = 0. According to Theorem1, there is a 2p-periodic solution z(s) of
the equation ż(s) = K (s, zs) + L(sv0(s)). The function x(s) = z(s) − sv0(s) satisfies the
following equation:

ẋ(s) = K (s, zs) + L(sv0(s)) − v0(s) − sv̇0(s)

= K (s, xs) + sK (s, (v0)s) + K (s, (·)(v0)s(·)) − K (s, (·)(v0)s(·)) − sv̇0(s)

= K (s, xs).

This fact together with the equation

T (s + 2p, s)(x)s = (x)s+2p = (z)s − (·)(v0)s(·) − s(v0)s − 2p(v0)s = (x)s − 2p(v0)s

implies that (T (2p, 0) − I )(x)0 = −2p(v0)0, which contradicts the fact that the geometric
multiplicity of 1 is equal to its algebraicmultiplicity as an eigenvalue of the operator T (2p, 0).


�
Note that the condition ρ′(λ0) �= 0 together with the last theorem implies existence of

doubled periodic orbits. If rλ(0, λ0) �= 0, then the equation r(x2, λ) = 0 implicitly defines
a function λ(x2) satisfying r(x2, λ(x2)) = 0 in a neighbourhood of the point (0, λ0). How-
ever, if there are no other non-degeneracy conditions, we are not able to tell anything about
this branch of solutions. The non-degenerate period-doubling bifurcation which resembles
pitchfork bifurcation is achieved by including the condition rz(0, λ0) �= 0.

3 Stability

The aim of this section is verification of exchange of stability in the case of a non-degenerate
period-doubling bifurcation. Alongside the hypothesis (C1) we will assume that

(C2) All Floquet multipliers of the 2p-periodic solution u0 lies inside the unit circle except
of γ1 = 1 and γ2 = (−1)2.

Since the only possible accumulation point of the set of Floquet multipliers is zero, there is
0 < δ < 1 such that all Floquet multipliers γ except of γ1 and γ2 satisfy |γ | ≤ δ.
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Let us introduce the idea behind the following procedure shortly. Firstly, we define an
auxiliary function μ(x, λ) implicitly in virtue of the following proposition taken from Hale
[7].

Proposition 6 A linear q-periodic RFDE has a characteristic multiplier eμq if and only if it
has a solution of the form u(s)eμs where u(s + q) = u(s).

The function μ enable us to connect derivatives of the reduced mapping with derivatives
of the critical multiplier which is going to be defined implicitly as an eigenvalue of the
monodromy operator. We adopt the following notation: Ω(x, λ):=xv0 + W (x, λ, τ (x2, λ))

and f (x, λ):=g2(x, λ, τ (x2, λ)).
According to Proposition 6, ifΩ(x, λ) is a solution of the equationΦ = 0, then its Floquet

exponents satisfy the equation

(dΦ)Ω(x,λ),λ,τ (x2,λ)(e
μsu(s)) = 0

for a suitable 2p-periodic function u. In order to use this equation for an implicit definition of
a function, it is necessary to extend the operator defined by the left-hand side of this equation
and to find an appropriate range for it. The purpose of the following lemma is just to motivate
the choice of the range. Since it can be easily verified by tools built in Hale [7] (Chapter 8),
we state the lemma without a proof.

Lemma 2 Let Λu(s) = u̇(s)− K (s, us) be a linear q-periodic RFDE. If μ ∈ R and u ∈ C1
q ,

then the equation Λ(eμ·u(·))(s) = 0 holds for every s ∈ R if and only if it holds for every
s ∈ [0, q].
Note that the space C([0, 2p],Rn) has the following obvious property:

C([0, 2p],Rn) ∼= C2p ⊕ [se1, . . . , sen], (13)

where ei = (0, . . . , 0, 1, 0, . . . , 0) and 1 is on the i-th position. Now we can define an
operator Ψ : Rn × R

2 × M̃ × R
2 → C([0, 2p],Rn) by the following equation:

Ψ (c, μ, η,w, x, λ)

:=(dΦ)Ω(x,λ),λ,τ (x2,λ)(e
μs(v0(s) + w(s))) + ηΦτ (Ω(x, λ), λ, τ (x2, λ)) + cs,

where the domain of the function defined by the right-hand side is reduced to the interval
[0, 2p]. Finally, in order to reduce the kernel of the linearization of the previous operator, we
define an operator Ψ̃ : Rn × R

2 × M̃ × R
2 → C([0, 2p],Rn) × R with the larger range:

Ψ̃ (c, μ, η,w, x, λ):=(Ψ (c, μ, η,w, x, λ), 〈w, u̇0〉).
It is easily seen that Ψ̃ (0, 0, 0, 0, 0, λ0) = (0, 0).

Lemma 3 The equation Ψ̃ = 0 implicitly defines a smooth function μ(x, λ).

Proof The derivatives of Ψ̃ with respect to the first four variables are given by

Ψ̃ci = (sei , 0), Ψ̃μ = (L(sv0(s)), 0),

Ψ̃η = (Φτ (u0, λ0, 0), 0), dwΨ̃ = (L, 〈·, u̇0〉).
The relations 〈v1, L(sv0(s))〉 = 〈v2, Φτ (u0, λ0, 0)〉 = 0 and 〈v1, Φτ (u0, λ0, 0)〉 �= 0 �=
〈v2, L(sv0(s))〉 together with (13) implies invertibility of the differential of Ψ̃ with respect
to the first four variables. According to the implicit function theorem, the equation Ψ̃ = 0
defines smooth functions c(x, λ), μ(x, λ), η(x, λ) and w(x, λ) in a neighbourhood of the
point (0, 0, 0, 0, 0, λ0). 
�
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Nowwe are going to define a function which coincides with the critical Floquet multiplier.
Let T (x, λ, t, s) be the solution operator of the equation (dΦ)Ω(x,λ),λ,τ (x2,λ) = 0, where t ≥
s and the corresponding monodromy operator will be denoted by U (x, λ):=T (x, λ, 2p, 0).
Finally, let φ = (u̇0)0 and φ0 = (v0)0 be eigenvectors of the monodromy operator
U :=U (0, λ0) corresponding to the eigenvalue 1. We define the operator Ξ : R2 × Im(I −
U ) × R

2 → C by the following expression:

Ξ(σ, ν, ω, x, λ):=U (x, λ)(φ0 + ω) + ν(Ω̇(x, λ))0 − σ(φ0 + ω).

Obviously, the point (1, 0, 0, 0, λ0) satisfies the equation Ξ = 0.

Lemma 4 The equation Ξ = 0 implicitly defines a smooth function σ(x, λ).

Proof The differential of Ξ with respect to the first three variables is given by

Ξσ = −φ0, Ξν = (Ω̇(0, λ0))0 = (u̇0)0 = φ, Ξω = U (0, λ0) − I = U − I .

SinceC = ker(I −U )⊕ Im(I −U ), the differential is invertible. Consequently, the equation
Ξ = 0 defines smooth functions σ(x, λ), ν(x, λ) and ω(x, λ) in a neighbourhood of the
point (1, 0, 0, 0, λ0). 
�
Lemma 5 If f (x, λ) = 0, then σ(x, λ) is the critical Floquet multiplier of the solution
Ω(x, λ) of the equation Φ = 0.

Proof The assumption implies (dΦ)Ω(x,λ),λ,τ (x2,λ)Ω̇(x, λ) = 0 which leads to the equality
U (x, λ)(Ω̇(x, λ))0 = (Ω̇(x, λ))2p = (Ω̇(x, λ))0. Let us use the notation V (x, λ) = φ0 +
ω(x, λ). If the arguments are omitted, then the equations have the following forms:

(U − I )Ω̇0 = 0, (U − σ I )V = −νΩ̇0.

Suppose that σ(x, λ) �= 1. The first equation can be expressed in the following way:

(U − I )Ω̇0 = 0 ⇔ (U − σ I )Ω̇0 = (1 − σ)Ω̇0 ⇔ (U − σ I )

(
ν

1 − σ
Ω̇0

)

= νΩ̇0.

Summing of the two equations gives

(U − σ I )

(

V + ν

1 − σ
Ω̇0

)

= 0,

so σ(x, λ) is a Floquet multiplier of Ω(x, λ). If σ(x, λ) = 1, then the equation Ξ = 0 has
the form (U − I )V = −νΩ̇0. Consequently, (U − I )2V = 0 which implies that σ(x, λ) = 1
is a Floquet multiplier. It remains to connect the eigenvalue σ with the critical multiplier γ2.
According to (C2) and upper semicontinuity of separated parts of a spectrum of a continuous
linear operator, Kato [9], all multipliers except γ1 and γ2 satisfy |γ | ≤ δ < 1 for some δ > 0
so these multipliers do not come into play. Moreover, the sum of generalized eigenspaces
corresponding to γ1 and γ2 is two-dimensional and the multiplier γ1 is associated with the
eigenfunction Ω̇ . Thus, the second multiplier is the only possibility. 
�

The proof of the previous lemma gives us more than just information about the critical
Floquet multiplier. If Ω(x, λ) is a solution of the equation Φ = 0, then the pair B =
(Ω̇(x, λ), φ0 + ω(x, λ)) forms a basis of the sum of generalized eigenspaces corresponding
to eigenvalues of U (x, λ) which are close to 1. Moreover, U (x, λ)B = BM where

M =
(

1 −ν(x, λ)

0 σ(x, λ)

)

.
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Since M is invertible, we can calculate its logarithm:

logM =
⎛

⎝
0 −ν(x, λ) log σ(x, λ)

σ (x, λ) − 1
0 log σ(x, λ)

⎞

⎠ ,

where it is assumed that log σ/(σ − 1) = 1 for σ = 1. If we define B = logM/2p, then

eBs =

⎛

⎜
⎜
⎝

1 − ν(x, λ)

σ (x, λ) − 1

(

exp

(
s

2p
log σ(x, λ)

)

− 1

)

0 exp

(
s

2p
log σ(x, λ)

)

⎞

⎟
⎟
⎠

.

The vector P(s) = T (x, λ, s, 0)Be−Bs with elements in C is 2p-periodic, Hale [7]:

P(s + 2p) = T (x, λ, s + 2p, 0)Be−B(s+2p)

= T (x, λ, s + 2p, 2p)T (x, λ, 2p, 0)Be−2pBe−Bs

= T (x, λ, s, 0)BMM−1e−Bs = T (x, λ, s, 0)Be−Bs = P(s). (14)

This is going to be used in a moment.
Before we accept fulfillment of non-degeneracy conditions, we formulate one more state-

ment giving us a useful identity.

Lemma 6 If Ω(x, λ) is a solution of the equation Φ = 0, then

(dΦ)Ω(x,λ),λ,τ (x2,λ)(sΩ̇(x, λ)(s)) = (1 + τ(x2, λ))Φτ (Ω(x, λ), λ, τ (x2, λ)).

Proof We start with evaluation of the following expression:

((·)u(·))s,τ (θ) = (s + (1 + τ)θ)u(s + (1 + τ)θ)

= su(s + (1 + τ)θ) + (1 + τ)θu(s + (1 + τ)θ)

= sus,τ (θ) + (1 + τ)((·)us,τ (·))(θ).

This together with (dΦ)Ω(x,λ),λ,τ (x2,λ)Ω̇(x, λ) = 0 give us the following set of equalities:

(dΦ)Ω(x,λ),λ,τ (x2,λ)(sΩ̇(x, λ)(s))

= (1 + τ(x2, λ))
(

Ω̇(x, λ)(s) + sΩ̈(x, λ)(s)
)

− (dF)Ω(x,λ)s,τ (x2,λ)
,λ((·)Ω̇(x, λ)(·))s,τ (x2,λ)

= (1 + τ(x2, λ))
(

Ω̇(x, λ)(s) + sΩ̈(x, λ)(s)
)

− s(dF)Ω(x,λ)s,τ (x2,λ)
,λΩ̇(x, λ)s,τ (x2,λ)

− (1 + τ(x2, λ))(dF)Ω(x,λ)s,τ (x2,λ)
,λ((·)Ω̇(x, λ)s,τ (x2,λ)(·))

= s(dΦ)Ω(x,λ),λ,τ (x2,λ)Ω̇(x, λ) + (1 + τ(x2, λ))Φτ (Ω(x, λ), λ, τ (x2, λ))

= (1 + τ(x2, λ))Φτ (Ω(x, λ), λ, τ (x2, λ))

which finishes the proof. 
�
Henceforth,we assume that rλ(0, λ0) �= 0. This implies existence of a functionλ(x2) satis-

fying r(x2, λ(x2)) = 0. Especially,Ω(x, λ(x2)) is a family of solutions bifurcating from the
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point (u0, λ0). Let us denote the second component of P(s)(0) = T (x, λ(x2), s, 0)B(0)e−Bs

by w̃(x)(s) and μ̃(x):= log(σ (x, λ(x2))/2p):

w̃:=ν(x, λ(x2))

e2pμ̃(x) − 1
(1 − e−μ̃(x)s)Ω̇(x, λ(x2))(s)

+ e−μ̃(x)sT (x, λ(x2), s, 0)(φ0 + ω(x, λ(x2)))(0).

According to (14), the function w̃(x)(s) is periodic. Obviously, both components of
T (x, λ, s, 0)B(0) are solutions of the equation (dΦ)Ω(x,λ),λ,τ (x2,λ) = 0 so we can conclude
the following equations:

(dΦ)Ω(x,λ(x2)),λ(x2),τ (x2,λ(x2))

(

T (x, λ(x2), s, 0)B(0)e−BseBs
(

0
1

))

= 0,

(dΦ)Ω(x,λ(x2)),λ(x2),τ (x2,λ(x2))

(

(Ω̇(x, λ(x2))(s), w̃(x)(s))eBs
(

0
1

))

= 0,

(dΦ)...

(−ν(x, λ(x2))

e2pμ̃(x) − 1
(eμ̃(x)s − 1)Ω̇(x, λ(x2))(s) + eμ̃(x)sw̃(x)(s)

)

= 0.

The last equation can be used for calculation of derivatives of the function μ̃(x) which is the
critical Floquet exponent of the solution Ω(x, λ(x2)).

The whole theoretical background has been presented so it remains to perform necessary
calculations the results of which are summarized in the following statements. Since their
proofs are quite technical, they are postponed to the Appendix.

Lemma 7 μxx (0, λ0) = − fxxx (0, λ0)

〈v2, (dΦ)u0,λ0,0(sv0(s))〉
.

In order to simplify notation, we write m(x):=μ(x, λ(x2)).

Lemma 8 mxx (0) = μ̃xx (0).

Theorem 4 μ̃xx (0) = − 4rz(0, λ0)

〈v2, L(sv0(s))〉 .

Now we are prepared to verify the main result of this section.

Theorem 5 In the case of a non-degenerate period-doubling bifurcation the exchange of
stability occurs.

Proof Let us suppose that 〈v2, L(sv0(s))〉 > 0, the opposite case can be solved analogously.
If

0 < rλ(0, λ0) = ρ′(λ0)
p

〈v2, (dΦ)u0,λ0,0(sv0(s))〉,

then ρ(λ) is increasing which means that p-periodic solutions are stable for λ > λ0 and
unstable for λ < λ0. According to Proposition5, in the case rz(0, λ0) > 0 the doubled
solutions appear for λ < λ0 and they are stable because μ̃ is negative in a neighbourhood of
0. Otherwise, these solutions appear for λ > λ0 and they are unstable. The case rλ(0, λ0) < 0
can be investigated in the same way. This proves the exchange of stability for non-degenerate
period-doubling bifurcation. 
�
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4 Discussion and Conclusion

Generally, normal form coefficients are considered to be the quantities a and c in the normal
form of a period-doubling bifurcation:

dτ

dt
= 1 + aξ2 + O(ξ4),

dξ

dt
= cξ3 + O(ξ4),

where τ and ξ are coordinates on the center manifold with ξ being transverse to the orbit
of u̇0, Lentjes et al. [12, Preprint]. On the other hand, normal form coefficients derived in
this work correspond to Taylor coefficients of the reduced mapping φ. The definition of a
and c together with our analysis imply that a, c and rλ(0, λ0), rz(0, λ0) have the same sign,
respectively. Since formulae for these coefficients coincide in the case ofODE, seeKuznetsov
et al. [11], we can expect their agreement also in the case of RFDE.

A next step would be to actually implement the obtained expressions and see how well
they behave numerically. Additionally, the following equations could potentially be used for
the continuation of period-doubling bifurcations of limit cycles in RFDE:

Φ̃(u, λ, τ ) = 0, (dΦ)u,λ,τ · v = 0, 〈v, v〉 = 1, v(p) = −v(0).

This should then be compared with the current implementation in DDE-BifTool and Knut,
see Engelborghs et al. [5] and Szalai [15]. Moreover, the left-hand sides of (10) and (11)
could play the role of a test function for detection of singularities, for the case of ODE see
Dhooge et al. [2], Dhooge et al. [3] and Kuznetsov [10]. The development of appropriate
numerical methods can lead to a strong tool for investigation of real-life models incorporating
delays which overcome period-doubling bifurcation. Examples of such models include, for
instance, the system of coupled Fitzhugh-Nagumo oscillators with two delays studied by
Saha and Feudel [13], and the time-periodic model of machining analyzed by Szalai and
Stépán [16], where authors used sun-star calculus.

The existence of a smooth periodic center manifold in a neighbourhood of a limit cycle
together with a suitable coordinate system is a base of the investigation of period-doubling
bifurcation in Iooss [8], Kuznetsov et al. [11] and Lentjes et al. [12, Preprint]. We have not
needed such information, since the main idea of the presented theory lies in considering a
given differential equation as an algebraic equation. This can be expressed rigorously as the
possibility to find suitable Banach spaces and an operator between themwith the property that
its zero set coincides with solutions of the original equation. The key to success is an appro-
priate choice of an operator of which linearization satisfies conditions imposed on Fredholm
operators so that Lyapunov–Schmidt reduction can be used. In general, this approach could
be applied to another bifurcations and to another types of differential equations, for example,
bifurcations in neutral functional differential equations or Arnold tongues. The second area
would probably lead to equivariant singularity theory.
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5 Appendix

5.1 Calculation of r�

Differentiation of the defining equation r(z, λ) = b(z, λ, τ (z, λ)) with respect to λ leads to

rλ(0, λ0) = bλ(0, λ0, 0) + bτ (0, λ0, 0) · τλ(0, λ0). (15)

If it is not necessary to write down arguments of functions, we will omit them. We can
continue with evaluation of bλ, bτ and τλ. These values are going to be calculated from
equations a(x2, λ, τ (x2, λ)) = 0 and g2(x, λ, τ ) = xb(x2, λ, τ ). Let us recall that z = x2

is the first variable on which the germs a, b and τ depend.

a = 0
/

∂
∂λ

⇒ aλ(0, λ0, 0) + aτ (0, λ0, 0) · τλ(0, λ0) = 0

⇒ τλ = −aλ/aτ

g2 = xb
/

∂
∂x ⇒ (g2)x = b + 2x2bz

/
∂
∂λ

, ∂
∂τ

⇒ (g2)xλ = bλ + 2x2bzλ, (g2)xτ = bτ + 2x2bzτ
⇒ bλ(0, λ0, 0) = (g2)xλ(0, λ0, 0)

⇒ bτ (0, λ0, 0) = (g2)xτ (0, λ0, 0).

Since aτ is computed in Proposition 4, it is enough to evaluate aλ in order to calculate τλ:

aλ(0, λ0, 0) = (g1)λ(0, λ0, 0) = 〈v1, (dΦ)u0,λ0,0 · Wλ(0, λ0, 0) + Φλ(u0, λ0, 0)〉
= 〈v1, Φλ(u0, λ0, 0)〉.

Hence, τλ is given by

τλ(0, λ0) = −〈v1, Φλ(u0, λ0, 0)〉
〈v1, Φτ (u0, λ0, 0)〉 .

The derivative (g2)x (x, λ, τ ) is given by

(g2)x = (〈v2, Φ(xv0 + W (x, λ, τ ), λ, τ )〉)x
= 〈v2, (dΦ)xv0+W (x,λ,τ ),λ,τ (v0 + Wx (x, λ, τ ))〉.
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Now we can calculate (g2)xλ and (g2)xτ :

(g2)xλ(0, λ0, 0) = 〈v2, (dΦλ)W (0,λ0,0),λ0,0(v0 + Wx (0, λ0, 0))〉
+ 〈v2, (d2Φ)W (0,λ0,0),λ0,0(Wλ(0, λ0, 0), v0 + Wx (0, λ0, 0))〉

+ 〈v2, (dΦ)W (0,λ0,0),λ0,0(Wxλ(0, λ0, 0))〉
(g2)xτ (0, λ0, 0) = 〈v2, (dΦτ )W (0,λ0,0),λ0,0(v0 + Wx (0, λ0, 0))〉

+ 〈v2, (d2Φ)W (0,λ0,0),λ0,0(Wτ (0, λ0, 0), v0 + Wx (0, λ0, 0))〉
+ 〈v2, (dΦ)W (0,λ0,0),λ0,0(Wxτ (0, λ0, 0))〉

The lower indices can be simplified by the third equality in (8). Actually, the differentials are
calculated at the point (u0, λ0, 0). Since Im L ⊆ [v1, v2]⊥, the last summands are equal to
zero in both cases. The value Wx (0, λ0, 0) can be deduced from the defining equations (8)
or (12):

EΦ(xv0 + W (x, λ, τ ), λ, τ ) = 0
/

∂
∂x

∣
∣
(0,λ0,0)

E(dΦ)u0,λ0,0(v0 + Wx (0, λ0, 0)) = 0

EL(v0 + Wx (0, λ0, 0)) = 0

LWx (0, λ0, 0) = 0.

The last equation is a consequence of v0 ∈ ker L and EL = L . Note that Wx ∈ M̃ and
L : M → Im L is invertible. We can deduceWx (0, λ0, 0) ∈ [u̇0]. Since 〈Wx (0, λ0, 0), u̇0〉 =
0, the equalityWx (0, λ0, 0) = 0 can be concluded.We can put together all recent calculations
in order to simplify expressions for bλ and bτ :

bτ (0, λ0, 0) = 〈v2, (dΦτ )u0,λ0,0 · v0 + (d2Φ)u0,λ0,0(Wτ (0, λ0, 0), v0)〉,
bλ(0, λ0, 0) = 〈v2, (dΦλ)u0,λ0,0 · v0 + (d2Φ)u0,λ0,0(Wλ(0, λ0, 0), v0)〉.

If we substitute these expressions into the equation (15), then we get (10) which can be
written in the following alternative form:

rλ(0, λ0) = 〈v2, (dΦλ)u0,λ0,0 · v0〉 − 〈v1, Φλ(u0, λ0, 0)〉
〈v1, Φτ (u0, λ0, 0)〉 · 〈v2, (dΦτ )u0,λ0,0 · v0〉

+ 〈v2, (d2Φ)u0,λ0,0(Wλ(0, λ0, 0) + τλ(0, λ0)Wτ (0, λ0, 0), v0), v0)〉.

We finish these calculations by specifying the function Wλ + τλWτ . We can use the fact that
W (0, λ, τ (0, λ)) is a family of solutions of the equation Φ = 0. Therefore, the equation

Φ(W (0, λ, τ (0, λ), λ, τ (0, λ)) = 0

can be differentiated with respect to λ and subsequently evaluated at λ = λ0 which leads to
the fact that Wλ + τλWτ is a 2p-periodic solution of the following equation:

L(Wλ + τλWτ ) + Φλ(u0, λ0, 0) + τλ(0, λ0)Φτ (u0, λ0, 0) = 0.

Moreover, we can say that 〈Wλ + τλWτ , u̇0〉 = 0 which is a consequence of (8) or (12).
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5.2 Calculation of rz

Let us recall the defining equations g2(x, λ, τ ) = xb(x2, λ, τ ) and r(z, λ) = b(z, λ, τ (z, λ)).
Differentiation of the second equation with respect to z leads to

rz(0, λ0) = bz(0, λ0, 0) + bτ (0, λ0, 0) · τz(0, λ0).

Since bτ has been computed, we focus on evaluation of bz and τz :

a = 0
/

∂
∂z ⇒ az(0, λ0, 0) + aτ (0, λ0, 0) · τz(0, λ0) = 0

⇒ τz = −az/aτ .

We digress to compute az :

g1(x, λ, τ ) = a(x2, λ, τ )
/

∂
∂x

(g1)x (x, λ, τ ) = 2xaz(x
2, λ, τ )

/
∂
∂x

(g1)xx (x, λ, τ ) = 2az(x
2, λ, τ ) + 4x2azz(x

2, λ, τ )

(g1)xx (0, λ0, 0) = 2az(0, λ0, 0).

The left-hand side can be evaluated in the following way:

g1(x, λ, τ ) = 〈v1, Φ(xv0 + W (x, λ, τ ), λ, τ )〉
(g1)x (x, λ, τ ) = 〈v1, (dΦ)xv0+W (x,λ,τ ),λ,τ (v0 + Wx (x, λ, τ ))〉

(g1)xx = 〈v1, (d2Φ)(v0 + Wx , v0 + Wx ) + (dΦ)(Wxx )〉
(g1)xx (0, λ0, 0) = 〈v1, (d2Φ)u0,λ0,0(v0, v0) + (dΦ)u0,λ0,0(Wxx (0, λ0, 0))〉

= 〈v1, (d2Φ)u0,λ0,0(v0, v0)〉.
We have found that

τz(0, λ0) = −〈v1, (d2Φ)u0,λ0,0(v0, v0)〉
2〈v1, Φτ (u0, λ0, 0)〉 .

It remains to calculate bz :

g2(x, λ, τ ) = xb(x2, λ, τ )
/

∂
∂x

(g2)x (x, λ, τ ) = b(x2, λ, τ ) + 2x2bz(x
2, λ, τ )

/
∂
∂x

(g2)xx = 2xbz + 4xbz + 4x3bzz = 6xbz + 4x3bzz
/

∂
∂x

(g2)xxx = 6bz + 12x2bzz + 12x2bzz + 8x4bzzz
(g2)xxx (0, λ0, 0) = 6bz(0, λ0, 0).

The left-hand side is given by

g2(x, λ, τ ) = 〈v2, Φ(xv0 + W (x, λ, τ ), λ, τ )〉
(g2)x (x, λ, τ ) = 〈v2, (dΦ)xv0+W (x,λ,τ ),λ,τ (v0 + Wx (x, λ, τ ))〉

(g2)xx = 〈v2, (d2Φ)(v0 + Wx , v0 + Wx ) + (dΦ)(Wxx )〉
(g2)xxx = 〈v2, (d3Φ)(v0 + Wx , v0 + Wx , v0 + Wx )〉

+ 〈v2, 3(d2Φ)(Wxx , v0 + Wx ) + (dΦ)(Wxxx )〉
(g2)xxx (0, λ0, 0) = 〈v2, (d3Φ)u0,λ0,0(v0, v0, v0)〉

+ 〈v2, 3(d2Φ)u0,λ0,0(Wxx (0, λ0, 0), v0)〉.
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We can conclude (11) which can be written in the following alternative form:

rz(0, λ0) = 1

6
· 〈v2, (d3Φ)u0,λ0,0(v0, v0, v0)〉

− 〈v1, (d2Φ)u0,λ0,0(v0, v0)〉
2〈v1, Φτ (u0, λ0, 0)〉 · 〈v2, (dΦτ )u0,λ0,0 · v0〉

+ 1

2
〈v2, (d2Φ)u0,λ0,0(Wxx (0, λ0, 0) + 2τz(0, λ0)Wτ (0, λ0, 0), v0)〉.

Finally, we are going to focus on the function Wxx + 2τzWτ . The function Ω(x, λ) =
xv0 + W (x, λ, τ (x2, λ)) satisfies the following equations:

EΦ(Ω(x, λ), λ, τ (x2, λ)) = 0, 〈v1, Φ(Ω(x, λ), λ, τ (x2, λ))〉 = 0.

The second derivatives of the left-hand sides evaluated at (0, λ0) lead to

E((dΦ)u0,λ0,0Ωxx (0, λ0) + (d2Φ)u0,λ0,0(v0, v0) + 2τz(0, λ0)Φτ (u0, λ0, 0)) = 0,

〈v1, (dΦ)u0,λ0,0Ωxx (0, λ0) + (d2Φ)u0,λ0,0(v0, v0) + 2τz(0, λ0)Φτ (u0, λ0, 0)〉 = 0.

Since the equation

〈v2, (dΦ)u0,λ0,0Ωxx (0, λ0) + (d2Φ)u0,λ0,0(v0, v0) + 2τz(0, λ0)Φτ (u0, λ0, 0)〉 = 0

is also valid, we can conclude

LΩxx (0, λ0) + (d2Φ)u0,λ0,0(v0, v0) + 2τz(0, λ0)Φτ (u0, λ0, 0) = 0. (16)

Moreover, we can say that 〈Wxx + 2τzWτ , u̇0〉 = 0 which is a consequence of (8) or (12).

5.3 Proof of Lemma 7

If it does not cause any confusion, we omit arguments of functions. Firstly, we calculate
derivatives of f :

f (x, λ) = 〈v2, Φ(Ω(x, λ), λ, τ (x2, λ))〉
fx (x, λ) = 〈v2, (dΦ)Ω(x,λ),λ,τ (x2,λ)Ωx (x, λ)

+ 2xτz(x
2, λ)Φτ (Ω(x, λ), λ, τ (x2, λ))〉

fxx = 〈v2, (d2Φ)(Ωx ,Ωx ) + 2xτz(dΦτ )Ωx + (dΦ)Ωxx

+ 2τzΦτ + 4x2τzzΦτ + 2xτz(dΦτ )Ωx + 4x2τ 2z Φττ 〉
fxxx (0, λ0) = 〈v2, (d3Φ)u0,λ0,0(v0, v0, v0) + 2(d2Φ)u0,λ0,0(Ωxx (0, λ0), v0)

+ 2τz(0, λ0)(dΦτ )u0,λ0,0v0 + (d2Φ)u0,λ0,0(Ωxx (0, λ0), v0)

+ (dΦ)u0,λ0,0Ωxxx (0, λ0) + 4τz(0, λ0)(dΦτ )u0,λ0,0v0〉
= 〈v2, (d3Φ)u0,λ0,0(v0, v0, v0) + 3(d2Φ)u0,λ0,0(Ωxx (0, λ0), v0)

+ 6τz(0, λ0)(dΦτ )u0,λ0,0v0〉.
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Let us focus on derivatives of μ. Differentiation of the equation Ψ = 0 with respect to x
leads to

(d2Φ)(Ωx , e
μs(v0 + w)) + 2xτz(dΦτ )(e

μs(v0 + w))

+ (dΦ)(μx se
μs(v0 + w) + eμswx )

+ ηxΦτ + η(dΦτ )Ωx + 2xητzΦττ + cx s = 0.

If we evaluate the previous equation at (x, λ) = (0, λ0), we get the following result:

(d2Φ)u0,λ0,0(v0, v0) + (dΦ)u0,λ0,0(μx (0, λ0)sv0(s) + wx (0, λ0))

+ ηx (0, λ0)Φτ (u0, λ0, 0) + cx (0, λ0)s = 0.

Since the first three summands are 2p-periodic, we can conclude cx (0, λ0) = 0. Multiplica-
tion by vectors v1 and v2 gives the following identities:

μx (0, λ0) = 0,

ηx (0, λ0) = −〈v1, (d2Φ)u0,λ0,0(v0, v0)〉
〈v1, Φτ (u0, λ0, 0)〉 = 2τz(0, λ0),

where the first equality is a consequence of p-periodicity of (d2Φ)u0,λ0,0(v0, v0). Let us
emphasize that wx (0, λ0) satisfies the following equation:

(dΦ)u0,λ0,0wx (0, λ0) + (d2Φ)u0,λ0,0(v0, v0) + 2τz(0, λ0)Φτ (u0, λ0, 0) = 0. (17)

Now we can proceed to the second derivative evaluated at (0, λ0):

(d3Φ)(v0, v0, v0) + (d2Φ)(Ωxx , v0) + (d2Φ)(v0, wx ) + 2τz(dΦτ )v0

+ (d2Φ)(v0, wx ) + (dΦ)(μxx sv0(s) + wxx )

+ ηxxΦτ + ηx (dΦτ )v0 + ηx (dΦτ )v0 + cxx s = 0,

(d3Φ)(v0, v0, v0) + (d2Φ)(Ωxx , v0) + 2(d2Φ)(v0, wx ) + 6τz(dΦτ )v0

+ ηxxΦτ + (dΦ)(μxx sv0(s) + wxx ) + cxx s = 0.

Periodicity of all summands except the last one implies cxx (0, λ0) = 0.
It remains to prove the identity 〈v2, (d2Φ)(Ωxx , v0)〉 = 〈v2, (d2Φ)(wx , v0)〉. According

to (16) and (17), functions Ωxx (0, λ0) and wx (0, λ0) satisfy the same equation so we can
conclude L(Ωxx − wx ) = 0 which can be equivalently expressed by Ωxx − wx ∈ ker L .
The last step consists of verification of the relation 〈v2, (d2Φ)(v0, u)〉 = 0 for u ∈ ker L .
Since 〈v2, (d2Φ)(v0, v0)〉 = 0, it is enough to show that 〈v2, (d2Φ)(v0, u̇0)〉 = 0. If we
differentiate the equation (dΦ)Ω̇(x, λ(x2)) = 0 with respect to x and evaluate it at (0, λ0)
we arrive to

(d2Φ)u0,λ0,0(v0, u̇0) + (dΦ)u0,λ0,0v̇0 = 0.

Multiplication by the vector v2 gives us the desired result.

5.4 Proof of Lemma 8

Since μ is implicitly defined by the equation Ψ = 0, the function m satisfies the following
equation:

(dΦ)Ω(x,λ(x2)),λ(x2),τ (x2,λ(x2))(e
m(x)s(v0(s) + w(x, λ(x2))(s)))

+ η(x, λ(x2))Φτ (Ω(x, λ(x2)), λ(x2), τ (x2, λ(x2))) + c(x, λ(x2))t = 0.
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However, we can use Lemma 6 in order to get more appropriate form of this equation:

(dΦ)Ω(x,λ(x2)),λ(x2),τ (x2,λ(x2))

(

em(x)s(v0(s) + w(x, λ(x2))(s))

+ η(x, λ(x2))

1 + τ(x, λ(x2))
sΩ̇(x, λ(x2))(s)

)

+ c(x, λ(x2))s = 0.

Differentiation with respect to x leads to

(d2Φ)(Ωx + 2xλzΩλ, . . .) + 2xλz(dΦλ)(. . .) + (2xτz + 2xλzτλ)(dΦτ )(. . .)

+ (dΦ)

(

mxse
ms(v0 + w) + ems(w(x, λ(x2)))x +

(
η

1 + τ

)

x
sΩ̇

+ η

1 + τ
s(Ω̇x + 2xλzΩ̇λ)

)

+ (c(x, λ(x2)))x s = 0,

where the dots represent the expression between large parentheses in the previous equation.
The following equalities can be deduced from the proof of Lemma 7:

mx (0) = 0,
∂

∂x

∣
∣
∣
∣
x=0

(
η(x, λ(x2))

1 + τ(x2, λ(x2))

)

= 2τz(0, λ0).

The second differentiation gives

(d3Φ)(v0, v0, v0) + (d2Φ)(Ωxx + 2λzΩλ, v0) + (d2Φ)(v0, wx + 2τzsu̇0)

+ 2λz(dΦλ)v0 + 2(τz + λzτλ)(dΦτ )v0 + (d2Φ)(v0, wx + 2τzsu̇0)

+ (dΦ)(mxxsv0 + (w(x, λ(x2)))xx +
(

η

1 + τ

)

xx
su̇0 + 4τzsv̇0)

+ (c(x, λ(x2)))xx s = 0. (18)

It can be easily shown that (c(x, λ(x2)))xx = 0.
Let us continue with the function μ̃. In order to simplify notation, we will use the abbre-

viation j(x) = (eμ̃(x)s − 1)/(e2pμ̃(x) − 1). We emphasize that j(0) = s/2p.

(d2Φ)(Ωx + 2xλzΩλ,−ν jΩ̇ + eμ̃sw̃)

+ 2xλz(dΦλ)(−ν jΩ̇ + eμ̃sw̃) + (2xτz + 2xλzτλ)(dΦτ )(−ν jΩ̇ + eμ̃sw̃)

+ (dΦ)
(

− ((ν(x, λ(x2)))x j + ν jx )Ω̇ − ν j(Ω̇x + 2xλzΩ̇λ)

+ μ̃x se
μ̃sw̃ + eμ̃sw̃x

)

= 0.

If we evaluate the left-hand side at x = 0 and multiply the equation by v1 and v2, then we
arrive to

μ̃x (0) = 0,
∂

∂x

∣
∣
∣
∣
x=0

ν(x, λ(x2))

2p
= 〈v1, (d2Φ)u0,λ0,0(v0, v0)〉

〈v1, Φτ (u0, λ0, 0)〉 = −2τz(0, λ0).

Moreover, the function w̃x satisfies the following equation:

(dΦ)u0,λ0,0w̃x + (d2Φ)u0,λ0,0(v0, v0) + 2τz(0, λ0)Φτ (u0, λ0, 0) = 0.
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The second derivative evaluated at zero satisfies the equation

(d3Φ)(v0, v0, v0) + (d2Φ)(Ωxx + 2λzΩλ, v0) + (d2Φ)(v0, 2τzsu̇0 + w̃x )

+ 2λz(dΦλ)v0 + 2(τz + λzτλ)(dΦτ )v0 + (d2Φ)(v0, 2τzsu̇0 + w̃x )

+ (dΦ)(−(ν(x, λ(x2)))xx j u̇0 + 4τzsv̇0 + μ̃xx sv0 + w̃xx ) = 0.

If we multiply this equation and equation (18) by v2 and we subtract the second one from
the first one, then we get

2〈v2, (d2Φ)(v0, wx − w̃x )〉 + 〈v2, (dΦ)u0,λ0,0(sv0(s))〉(mxx − μ̃xx ) = 0.

The first summand is zero because of the same reasons as in the proof of Lemma 7. The
lemma is proven.

5.5 Proof of Theorem 5

This is a simple consequence of the previous lemmas, so we just need to untangle the estab-
lished notation. We start with the derivative mxx :

m(x) = μ(x, λ(x2)),

mx (x) = μx (x, λ(x2)) + 2xλz(x
2)μλ(x, λ(x2)),

mxx (0) = μxx (0, λ0) + 2λz(0)μλ(0, λ0).

The derivative λz(0) can be calculated from the definition of the function λ(x2):

r(z, λ(z)) = 0 ⇒ rz(0, λ0) + λz(0)rλ(0, λ0) ⇒ λz(0) = − rz(0, λ0)

rλ(0, λ0)
.

This together with previous lemmas lead to the equation

μ̃xx (0) = mxx (0) = − fxxx (0, λ0)

〈v2, (dΦ)u0,λ0,0(sv0(s))〉
− 2

rz(0, λ0)

rλ(0, λ0)
μλ(0, λ0).

The derivative fxxx (0, λ0) can be expressed in terms of the derivative rz(0, λ0):

f (x, λ) = xr(x2, λ),

fx (x, λ) = r(x2, λ) + 2x2rz(x
2, λ),

fxx (x, λ) = 2xrz(x
2, λ) + 4xrz(x

2, λ) + 4x3rzz(x
2, λ),

fxxx (0, λ0) = 6rz(0, λ0).

We need to express the derivative rλ(0, λ0) in terms of μλ(0, λ0). If we differentiate the
defining equation for μ with respect to λ and we evaluate the result in (0, λ0), then we get

(d2Φ)u0,λ0,0(Wλ + Wτ · τλ, v0) + (dΦλ)u0,λ0,0(v0) + (dΦτ )u0,λ0,0(v0) · τλ

+ (dΦ)u0,λ0,0 (μλ(0, λ0)sv0(s) + wλ(0, λ0))

+ ηλ(0, λ0)Φτ (u0, λ0, 0) + cλ(0, λ0)s = 0.

Since all summands except the last one are 2p-periodic, we can conclude cλ(0, λ0) = 0.Mul-
tiplication by the function v2 gives us the identity rλ(0, λ0) = −μλ(0, λ0)〈v2, L(sv0(s))〉.
The following equality can be deduced

μ̃xx (0) = − 6rz(0, λ0)

〈v2, L(sv0(s))〉 + 2
rz(0, λ0)

〈v2, L(sv0(s))〉 = − 4rz(0, λ0)

〈v2, L(sv0(s))〉 .
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