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1 Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czech Republic,

2 RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic, 3 Institute of Biostatistics and

Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic, 4 Institute of Health Information

and Statistics of the Czech Republic

* pribylova@math.muni.cz

Abstract

We present a novel approach to estimate the time-varying ascertainment rate in almost

real-time, based on the surveillance of positively tested infectious and hospital admission

data. We also address the age dependence of the estimate. The ascertainment rate estima-

tion is based on the Bayes theorem. It can be easily calculated and used (i) as part of a

mechanistic model of the disease spread or (ii) to estimate the unreported infections or

changes in their proportion in almost real-time as one of the early-warning signals in case of

undetected outbreak emergence. The paper also contains a case study of the COVID-19

epidemic in the Czech Republic. The case study demonstrates the usage of the ascertain-

ment rate estimate in retrospective analysis, epidemic monitoring, explanations of differ-

ences between waves, usage in the national Anti-epidemic system, and monitoring of the

effectiveness of non-pharmaceutical interventions on Czech nationwide surveillance data-

sets. The Czech data reveal that the probability of hospitalization due to SARS-CoV-2 infec-

tion for the senior population was 12 times higher than for the non-senior population in the

monitored period from the beginning of March 2020 to the end of May 2021. In a mechanistic

model of COVID-19 spread in the Czech Republic, the ascertainment rate enables us to

explain the links between all basic compartments, including new cases, hospitalizations,

and deaths.

Introduction

In mathematical epidemiology, compartmental models of type SIR or SEIR are widely used to

describe and explain outbreaks of epidemics [1–8]. The classical SEIR models monitor com-

partments (i) S Susceptible individuals (those who have not yet been infected by the disease

and may become so), (ii) E Exposed individuals (those in the incubation period), (iii) I Infec-

tious individuals (those able to spread the disease) and (iv) R Recovered/Removed individuals
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(those who cannot become infectious anymore; they are either recovered or deceased). Appli-

cation of SEIR-type models to the COVID-19 pandemic is problematic due to the existence of

a non-observable variable of infectious that spread the virus asymptomatically. This problem

was studied even before SARS-CoV-2 emergence, and an additional cohort was introduced to

model respiratory infection outbreaks, such as the first SARS outbreak in 2002–2003 [9, 10].

These SEIAR models are modifications of the standard SEIR models. Papers [9, 10] provide

valuable information on their derivation, R0 computations, and other related topics. In Supple-

ment, you will find a basic comparison of the SEIR and SEIAR models and the derivation of R0

for the SEIAR model. The main issue addressed in the manuscript is the estimation of the

unreported A compartment.

In the real-world data, positive subjects are not necessarily symptomatic and, on the con-

trary, not all symptomatic subjects are detected. Without knowing what part of the epidemic is

observed, we cannot rely on case reports. This detected part of the infectious individuals is

known as the ascertainment rate (AR) and it has to be estimated. Although the compartmental

approach is widely used for modeling COVID-19 epidemics in a broad modeling community,

most of the time the observational layer estimation is missing [11, 12], or if an undetected

infectious compartment is part of such a model, the AR is calibrated as an unknown parameter

along with other parameters, as demonstrated in several other studies [13–15]. Information

about both the observed and unobserved proportions of the epidemic is crucial for estimating

predicted admissions to hospitals and setting up effective and timely interventions [16]. Of

course, rough estimations can be performed and used as a fixed value for a long period [17],

but changes in the testing and tracking strategy may significantly affect the volume of the

observed epidemic and lead to biased estimates of disease spread.

Excess deaths certainly provide the most accurate information about AR, but their usage

is possible only retrospectively. Similarly, the case fatality rate (CFR) is unsuitable for model-

ing an ongoing epidemic in real-time due to the long delay from infection to death [13, 18].

Another option to estimate AR is to use virological and serological participatory surveil-

lance, but again it cannot be done in real time and must also be done retrospectively.

According to some estimates [19], only 31% of people with symptoms similar to COVID-19

sought medical attention in a monitored period; such results were confirmed by serological

studies [20].

Here, we offer an approach to AR estimation that can be used both retrospectively and in

real time. We demonstrate the applicability of our approach of real-time AR estimate on data

from hospital admissions due to SARS-CoV-2 infection in the years 2020–21 and show our

results on a specific model. In SEIR models, the number of susceptible individuals determines

the dynamics of the epidemic, so the peak is primarily driven by the rate of connectivity and

mixing. SEIR-type models can still be used if there are reasonably good estimates of the factors

influencing the transmissibility rate (related to mixing, environmental variables, etc.), but

obtaining this information is difficult when a new virus emerges or when new control inter-

ventions are introduced. Therefore, we used modified ZSEIAR model in our case study of

COVID-19 in the Czech Republic that uses the dependence of transmissibility purely on

mobility data, and all other dependencies such as environmental or social variables are moved

to be optimized by feeding Z to S, which replaces social network connectivity or temperature

dependence or other unknown variables to estimate the driving force of real-world epidemics.

The model is described in the Supplement in detail and is enclosed as an R script.

Another challenging issue is that even studies of the early pandemic period monitoring the

almost immune-naive population showed that mild cases of COVID-19 are significantly

understated because the severity of symptoms of COVID-19 is age-dependent [21, 22]. We

will therefore address the age-dependency of our AR estimate in the paper as well.
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Research methods

Ascertainment rate independent estimation principle

The basic principle for the estimation of the moving AR estimate is based on the Bayes rule for

conditional probabilities and on the assumption that the average probability of hospitalization

of an infected person P(H) at time t is given or estimated. We also derive an estimation proce-

dure depending on the age structure.

We will use the following notation:

(P1) P(Det|H)—the probability that a person admitted to a hospital for the infectious disease

was previously detected at time t; to estimate this probability, we use the 7-day or 14-day

moving proportion of patients reported before admission to hospital from all patients hos-

pitalized for the infectious disease (including those not detected before admission to hospi-

tal) with respect to the date of the positive test report

(P2) P(H|Det)—the probability that if an individual was detected at time t, he or she would be

hospitalized; to estimate this probability, we use the 7-day or 14-day moving proportion of

all reported hospitalized patients detected before admission to the hospital, from all that

time already detected subjects with respect to the date of the positive test report, that is,

except those detected in the hospital afterward who are part of the undetected compartment

at time t

(P3) P(H)—the probability that an infected individual is / was / will be hospitalized for the

infectious disease (irrespective of whether it was detected or not) at time t; should be

derived for each community/country separately since it is highly dependent on the struc-

ture of the age of the population, a possible estimation method is described below

We can calculate the estimation of p(t) = P(Det) as the moving average relative to the date t
of the positive test report according to the Bayes formula

pðtÞ ¼ PðDetÞ ¼
PðDetjHÞPðHÞ

PðHjDetÞ
: ð1Þ

Therefore, to summarize the principle of estimation, we estimate the invisible part of the

epidemic using knowledge about late-detected individuals (i.e., undetected infectious subjects)

who end up in hospitals with a severe symptoms of the infectious disease and who are con-

firmed there afterward. At least a 7-day window has to be used for the moving average due to

the week oscillations. A 14-day window is possible in case there is a low number of hospitaliza-

tions since a low number of hospitalizations results in greater variability of all estimates. On

the other hand, 14 days moving average flattens the curve also in case of sudden changes,

which can hide early information about the outbreak.

An unknown value in the Bayes formula (1) is the specific probability of hospitalization P
(H), which needs to be estimated, for example, from surveillance studies [23–25]. Other meth-

ods can also be used without an additional surveillance data set: (1) infection-fatality rate (IFR)

and hospitalization-fatality rate (HFR) estimates, since the average probability of hospitaliza-

tion due to the infection is HFR/IFR, (2) nationwide non-indicated antigen test screening data

with comparison to hospitalized and observed infectious cases or retrospectively also (3) excess

deaths data. All these methods are presented in the Results section for the data on the COVID-

19 epidemic in the Czech Republic. These indirect pieces of evidence support our estimate of

the average probability of hospitalization due to COVID-19 infection for the Czech population

in the monitored period. The approach can be adapted by analogy for use in another commu-

nity/country.
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Because the probability of hospitalization due to an infectious disease is usually age-depen-

dent, we propose a method based on a rough estimate of the relationship between total and

age-specific probabilities of hospitalization and the age structure of the monitored population

divided into n age categories, that is

PðHÞ ¼
Xn

i¼1

wiPðHiÞ; ð2Þ

where wi� 0, satisfying
Pn

i¼1
wi ¼ 1, are proportions of the age-structured monitored popula-

tion, and P(Hi) are the age-specific probabilities of hospitalization due to infection for given

i = 1, . . ., n. In case of COVID-19, the minimum necessary division of the weighted average is

into two groups: non-seniors (65-, i.e. individuals under 65) and seniors (65+, i.e. individuals

over 65).

Necessary data for real-time AR estimation

To estimate AR in real time, it is necessary to continuously collect both hospital data and labo-

ratory data. The minimum personal record must include age or age group, date of positivity,

and if hospitalized, then date of admission to the hospital due to the infectious disease.

In the Czech Republic, data on reported SARS-CoV-2-positive individuals and COVID-19

patients and their hospital stays are collected and processed by the Information System of

Infectious Diseases (ISID) almost in real-time [26]. ISID includes a complete health care infor-

mation record for a person; we used a dataset (shared at [27] that includes variables describing

the infection case: district and regional number, sex, age group (0–19, 20–64, over 65), date of

the first symptom, date of sampling collection, date of a positive result, date of report, date of

isolation, date of admission to a hospital, end of hospitalization, date of recovery, date of

death.

An unspoken but important assumption is that all hospital patients are tested for the infec-

tious disease. In case of a positive test, the result should be entered into the data collection sys-

tem even if the patient had not tested positive before admission. However, this is common

practice in most developed countries. In the case of COVID-19, persons requiring hospital

health care with severe respiratory problems are almost all tested for SARS-CoV-2 immediately

after admission.

Ascertainment rate usage in modeling epidemics

SEIR-type models are commonly used for epidemic monitoring, primarily to predict the num-

ber of severe cases that require hospital care. It is common practice to assume a fixed propor-

tion of observed infectious or hospitalized individuals during the course of an epidemic, unless

new drugs are discovered, the population structure changes significantly, or other major epide-

miological factors come into play. The compartment of hospitalized subjects H is usually cali-

brated through observed epidemics as its fixed part [17, 28–30]. Using accurate real-time data

to estimate AR p(t) can improve epidemic and hospitalization surveillance. Fig 1 shows a

scheme of the classical SEIR/SEIAR model with the observed (bright colored circles with solid

border) and unobserved (pale colored circles without border). Here, P(H) is the probability of

hospitalization due to an infectious disease, as discussed in the previous subsection.

Results

Our main result is a novel method to estimate AR and its changes that can be used in real time.

To show this method’s successful use, we present a case study of the COVID-19 epidemic
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based on data from monitored period from March 2020 to May 2021 in the Czech Republic,

where we used this real-time estimation in a model that is described in detail in S1 Appendix.

The model code in R is also included.

Probability of hospitalization due to SARS-CoV-2 infection—Derivation of

the age-structure dependence

In our case study on the Czech population, the probability of hospitalization due to SARS--

CoV-2 infection described by formula (2) can be simplified using the minimum division into

non-senior and senior population parts as

PCRðHÞ ¼ 4

5
PðH65� Þ þ

1

5
PðH65þÞ; ð3Þ

since about 1/5 of the population is over 65 years old in the Czech Republic [31]. On the con-

trary, the majority of hospitalized patients were in the elderly population. The anonymized

dataset [27] from ISID used for real-time COVID-19 monitoring contains information about

age. There are three age groups: those aged 0 to 19 years (0–19y) and 20 to 26 years (20–64y)

will be referred to as non-senior or 65- population, whereas those aged 65 years or older will

be referred to as senior or 65+ population. The long-term proportion of the hospitalized popu-

lation over 65 was 3/4 resulting in a risk ratio of 12 for the senior versus the non-senior popu-

lation. Similarly, a rough estimate of the age-dependent hospitalization risk ratio can be made

for other data sets.

This rough estimate is also consistent with the log-linear relationship between the infection

fatality rate (IFR) and age, as published in a study by Levin et al. [32] and our recent analyses

of Czech data [33, 34]. Using this estimate and the known age structure of the reported infec-

tious individuals, we obtain a rough estimate of the time-dependent probability of

Fig 1. SEIAR model scheme. The compartment H of hospitalized patients due to infectious disease is recruited from the exposed compartment E with

a given probability P(H). We can estimate the size of the exposed compartment using the estimation of the ascertainment rate p(t) at time t from the

reported epidemic (i.e., the observed cases I), while the compartment A remains unobserved.

https://doi.org/10.1371/journal.pone.0287959.g001
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hospitalization that varies according to the age of the infected

PðHÞ ¼ pþ
65�

PðH65� Þ þ pþ
65þ

PðH65þÞ ¼

�

1þ 11pþ
65þ

�

PðH65� Þ; ð4Þ

where pþ
65þ

and pþ
65�

are 7-day moving averages of the senior and non-senior (children

included) population ratio in the reported cases. We obtained the dependence of the probabil-

ity of hospitalization on the ratio of the infected senior population.

Note that it is necessary to use some average level of probability of hospitalization due to

COVID-19 infection in the Czech Republic PCR(H). This level can be estimated using various

methods based on indirect evidence, but high precision is not important for short- and

medium-term predictions of hospital admissions. However, a good estimate of this average

level of hospitalization probability is necessary for long-term forecasts and herd immunity esti-

mates. In the following, we present the options that can be used to estimate the average level of

hospitalization probability. For the Czech Republic, we used PCRðHÞ ¼ 1

50
, which is employed

later on. Average PCR(H), estimations (3) and P(H65+) = 12P(H65−) imply formula (4) in the

form

PðHÞ ¼ 1

160
ð1þ 11pþ

65þ
Þ:

The method based on HFR and IFR ratio must rely on data from countries where contact

tracing was performed more thoroughly. Countries such as South Korea, Malaysia, Thailand,

and Singapore showed an observed case-fatality ratio 0.5% [35–38], which is assumed to be

close to the IFR [18, 22, 32, 39, 40]. Our estimate PCRðHÞ ¼ 1

50
together with an average of 22%

HFR (from MZ CR data [27]) during autumn 2020 gives IFR of 0.44%.

The estimate of the average probability of hospitalization due to the infection can be sup-

ported by surveillance studies, or we can use wide non-indicated or other representative test-

ing data as full-scale testing of employees, schoolchildren, and students. The nationwide non-

indicated antigen test screening in the Czech Republic showed an average test positivity of 5%

in December 2020. This is another strong supporting argument for estimating the probability

of hospitalization as PCRðHÞ ¼ 1

50
since the consequence of this PCR(H) level was the estimation

of AR around 0.25, and half a million infected active cases fully corresponds to the observed

quarter of 120,000 active cases at that time.

Retrospectively, excess mortality can be used. In the Czech Republic, excess mortality dur-

ing autumn and winter 2020 (from [41]) is highly correlated with the epidemic wave and gave

approximately 0.5 excess unreported deaths to each reported patient who died with COVID-

19 (using an anonymized dataset created from ISID data that can be downloaded from the MZ

CR portal [27]), see Fig 2.

Since about half of the hospitalized were detected only after admission to a hospital (which

implies that half of them were not reported during the infectious period), meaning that seri-

ously ill people were detected late, we can deduce that the observed part of the infectious com-

partment could be around 33% at the beginning of the year 2021 which corresponds to the AR

estimate at that time and is also in agreement with a study published by Pullano et al. [19].

An improvement can be made in the age structure dependence of the probability of hospi-

talization. We improved it to depend on three age groups from May 2021. Until then, the

probability of hospitalization in the Czech Republic was distinguished only between two age

groups (under/over 65), but this started to be non-sufficient since COVID-19 spread across

younger people and mandatory testing has been introduced in schools. The children were

hardly tested before due to the age specificity of the symptoms. Retrospective data analysis

shows that people under 20 were hospitalized with almost zero probability and three age
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compartments (under 20, 20–65, and over 65) appear to be enough for the basic improvement

of the P(H) estimate in the form

PðHÞ ¼ 1

160
ð1 � pþ

20�
þ 11pþ

65þ
Þ;

where pþ
20�

is a 7-day moving average of the under 20 population ratio in the reported cases.

The need for this modification is also visible in Fig 3.

Ascertainment rate estimate usage—Epidemic monitoring

We have been using a compartmental model including AR for epidemic monitoring during

the years 2020–21 in the Czech Republic (see S1 Appendix). The initial outbreak is set to the

time when the first person in the Czech Republic tested positive for SARS-CoV-2 at the begin-

ning of March 2020. The period described here includes the dominance of wild-type and alpha

variants of SARS-CoV-2 until May 2021. Later, we used more complex models of SEIAR and

SEIARS types, which included data on vaccinations and reinfections. Fig 3 shows the estimated

exposed using real new cases divided by AR estimate, real new cases, real daily admissions to

hospitals and deaths (black circles) and the optimized fit to hospitalization data (solid blue

line) with the AR estimate average baseline PCRðHÞ ¼ 1

50
. You can see here that the model

explains all the compartments in the whole period except for a short period of Christmas. This

period was burdened with several unknowns. The main one was the arrival of the new alpha

variant; in the Czech Republic at that time, there was no surveillance either by variant multi-

plex PCR method or sequencing, so we could not change the model parameters according to

the variants in proper time and proportion. The second unknown was people’s behavior

Fig 2. Excess deaths in the Czech Republic. Excess deaths in weeks of the years 2020 (red thick dashed line) and 2021 (blue

thick dashed line) according to average week deaths in years 2011–2019 (thin solid lines show excess deaths in weeks of the years

2011 to 2019) [41], weekly reported SARS-CoV-2 positive subjects that died (red and blue thick solid lines), and weekly reported

deaths (red and blue thin solid lines) [27]. Our model works with data related to the date of the report, including fatal reports

(thick line), and excess deaths (dashed line) and COVID-19 deaths (thin line) are related to the day of death.

https://doi.org/10.1371/journal.pone.0287959.g002
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during Christmas time. They postponed hospitalizations more than usual. And the third was a

significant change in testing strategy before Christmas—the government introduced free anti-

gen tests for everyone. This should be the minor problem since the estimate is robust against

testing strategy changes outside hospitals. Despite these unknowns, the model fits very well.

We used the AR estimate and the transmissibility rate as strictly dependent on the number

of contacts or mobility. Other dependencies were included in the estimate of affected suscepti-

ble compartment S, which was supplied from an additional fitted compartment. This simu-

lated the first outbreak very well from April 4, 2020, until the summer; see Fig 4. During the

first 35 days, the laboratories’ capacity and the testing and tracing system capacity increased

substantially. For this period, we could not even estimate the AR due to the small number of

hospitalized. We let it constantly grow due to the lack of data at the beginning of the outbreak,

since it corresponds to an increase in test capacity in this period, and started to compute the

moving average of AR from time t = 35 (t = 0 marks the first detection day—March 1, 2020).

Assuming that the probability that the infected person will be hospitalized is PCRðHÞ ¼ 1

50
, we

calculated p(35)¼
:

0.13 from the data of hospitalized subjects by Bayes formula (1) at the begin-

ning of April 2020.

The usefulness of using moving AR is shown in Fig 3. On a logarithmic scale, it shows the

first two waves (the waves differed in scale), including the period of July 2020. During this

period, a local outbreak in OKD mines led to mass PCR testing in the whole of OKD mines

employees (OKD mines carry out hard coal mining in Karviná part of the Ostrava-Karviná

Fig 3. Epidemic monitoring. Exposed (new cases divided by AR estimate), new cases, hospital admissions and daily deaths (black), and model fit

optimized to hospital admissions (blue).

https://doi.org/10.1371/journal.pone.0287959.g003
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district in Moravian-Silesian region). Since the prevalence of COVID-19 was low in other

regions of the Czech Republic at that time, this outbreak enormously changed AR. It is obvious

that the model fitted to hospitalizations corresponds to real data of new cases compartments

only in the case of using moving AR, while it does not in the case of using the average constant

AR (different AR in the two waves visibly led to different CFR or hospitalization rate in the

two waves); therefore, the fluctuation due to the change in testing during the OKD outbreak is

not reproducible at all.

Ascertainment rate estimate usage—Early warning

The AR estimate can be used as an early-warning indicator. As we saw in the previous subsec-

tion, retrospective analysis provides a good explanation of the OKD wave: new cases did not

significantly affect the dynamics of hospitalized patients and deaths (see Fig 4). Similarly, if the

increase in the number of new cases is offset by a decline in AR, the outbreak may remain

hidden.

Actually, the AR estimate shows the likely decrease in the effectiveness of tracing by the

Regional Public Health Authorities (RPHAs), which occurred in the second half of September

(Fig 5, grey period). A significant decrease in the AR estimate was a signal of contact tracing

and testing system overload. There are other declines—during the epidemic waves (see Oct-

Nov). But these are related to the peak period of the epidemic. The detection rate was limited

due to a more or less linear increase in capacities of RPHAs and call centers, but an

Fig 4. Comparison of using constant AR and moving AR. The model (blue) fitted to the data (black) of new hospitalizations (bottom right)

reproduces the actual new cases (top black) only when using moving AR, whereas using constant AR does not account for either the number of cases in

the first wave or the fluctuation due to the change in testing during the OKD outbreak (Jul).

https://doi.org/10.1371/journal.pone.0287959.g004
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approximately exponential increase of cases. The September decline before the wave was an

early-warning signal.

Between mid-September and mid-December 2020, we observed a high correlation of the

proportion of newly hospitalized non-detected in the community 1 − P(Det|H) and the subse-

quent number of COVID-19 patients treated at intensive care units (Fig 6, correlation coeffi-

cient 0.92). This confirmed the suitability of this parameter as a good indicator of the future

burden of hospital care. Based on the fact that the positivity of the tests changed after the intro-

duction of antigen screening tests (and therefore ceased to be a proxy variable for AR), we

instead introduced this indicator to the epidemic Risk Index in the Czech Republic.

Ascertainment rate estimate usage—Effectiveness of non-pharmaceutical

interventions (NPIs)

Another possible application of AR is the opportunity to monitor the effectiveness of NPIs ret-

rospectively. By estimating the actual number of infections, it is possible to visualize the data,

including the ‘invisible’ part (with a proper delay given by the incubation period and the mean

time to the report), and discuss directly how the established NPIs have possibly worked in the

Czech Republic. Fig 7 shows several specific dates: 2020-09-01 (beginning of the school year),

2020-10-22 (partial lockdown), 2020-11-14 (announcement of the first measure release, partial

school reopening 2020-11-18), 2020-12-03 (shops reopening), 2020-12-27 (a partial lock-

down), 2021-01-11 (partial school reopening), and 2021-02-23 (mandatory and widespread

introduction of respirators followed with partial lockdown).

Fig 5. Insufficiency of tracing in the second half of September 2020. The peak of the second wave is marked on 2020-11-04. The dates in the chart

denote: 2020-09-01—the beginning of the school year; 2020-09-15 to 2021-10-01—tracing overload; 2021-11-04—peak of the second wave; and 2021-

01-01—New Year.

https://doi.org/10.1371/journal.pone.0287959.g005
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Time series for fits to cases, estimated exposed, hospitalized, and deaths are depicted in

Fig 2.

Discussion and conclusion

In the paper, we presented a method for moving AR estimates that can be continuously moni-

tored during the epidemic in real-time. It can also be used retrospectively. The method is

based on the Bayes formula and compiling information from independent datasets of posi-

tively tested infectious individuals and hospital admissions with a principal diagnosis of the

monitored infectious disease.

Fig 6. Correlation with ICUs. Proportion of undetected in the community (PU) and number of COVID-19 patients

treated in intensive care units after 30 days (ICU30d).

https://doi.org/10.1371/journal.pone.0287959.g006

Fig 7. Exposed population and NPIs. Exposed estimated using new cases divided by AR estimate compared to the introduction of

NPIs: 2020-09-01 (beginning of the school year), 2020-10-22 (a partial lockdown), 2020-11-14 (announcement of the first measure

releases after 2020-11-18), 2020-12-03 (shops reopening), 2020-12-27 (a partial lockdown), 2021-01-11 (partial school reopening),

2021-02-23 (mandatory respirators).

https://doi.org/10.1371/journal.pone.0287959.g007
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The main advantage of this method is that the estimate is rigorous and independent, so

there is no need for calibration in a compartmental model with undetected compartments.

From 2021 onwards, many modeling teams used mechanistic compartmental models as a

starting point and developed their own models to monitor the epidemic [42]. Those models

are collected on platforms such as the European Covid-19 Forecast Hub [43, 44], coordinated

by the European Centre for Disease Prevention and Control (ECDC). European Covid-19

Forecast Hub is coordinated by ECDC, and the models for the ongoing COVID-19 pandemic

are collected and monitored at this platform; model performances are evaluated, and ensemble

models are made [43, 45]. In some models from the European Covid-19 Forecast Hub, the

authors empathize with the role of the observable part of the epidemic (such as the FIAS_FZ-

J-Epi1Ger team [46], or the DSMPG-bayes team [47]) and use their own methodology to

model it. The compartmental approach is used in a broader community than just at ECDC

Forecast Hub, but usually either AR estimation is missing [11, 12] or it is calibrated as an

unknown parameter [13–15]. To the best of our knowledge, there is no other modeling group

that estimates the time-varying observable part of the epidemic independently from hospital

data in real time. We are unaware of any other published method of estimating time-varying

real-time AR (except using proxy variables that include the proportion of positive tests, unfor-

tunately, sensitive to changes in testing strategies). We submitted predictions with outstanding

evaluations [48] since March 2021 at the ECDC Forecast Hub [43], our model continuously

showed high-quality predictions for the Czech Republic. The relative measure of our model’s

two-week forecast performance called relative weighted interval score (relative WIS [44]) eval-

uated for the first 30 weeks was the best of all modeling teams (0.37) and even better than the

Eurocovidhub-ensemble score (0.42). We believe that if a similar real-time hospital data collec-

tion system exists in other countries, the method may significantly refine and simplify many

existing models despite the type of infectious disease.

The AR estimate can also monitor the overall increase of infected in the population and real

prevalence, so it can monitor possible approaching herd immunity (in case of a low rate of

reinfections) and better predict possible scenarios for later epidemic dynamics. For the Czech

Republic, this provides indirect evidence that it was very far from approaching herd immunity

in summer 2020. When we calibrated and optimized our model with the average level

PCRðHÞ ¼ 1

50
, we obtained a total number of at most 80,000 overall infected individuals (0.8%

of the population) in May 2020 (after the first wave). This estimate is entirely consistent with

the SARS-CoV-2-CZ-Preval prevalence study [49] that estimated the range of prevalence val-

ues for SARS-CoV-2 antigen positives between 0% and 0.22% in regions where active cases at

that time corresponded to 40 positively tested per 100,000 inhabitants and between 0% and

0.4% in regions where active cases at that time corresponded to 140 positively tested per

100,000 inhabitants.

If it is possible to use the method to calculate the AR estimate at the regional level, it can be

used to compare the situation in selected regions. A problem for regional use may be the high

variability in the case of low numbers of hospital admissions, which can be reduced by extend-

ing the moving average window from 7 to 14 days. Supplement elaborates on these limitations

and possess an illustrative example with a restriction and comparison of the AR estimate calcu-

lation from the whole Czech Republic and the Moravian-Silesian region, enclosed in R code

AR_comparison.R. Regional reduction of the data at periods of low disease prevalence implies

high variability and inaccuracy of the estimate, whereas at times of outbreak, stratification and

calculation for the affected region gives a better estimate for the area. Moreover, assuming that

there is no significant difference in the probability of hospitalization in individual regions, we

can measure the relative AR by the ratio of regional AR with respect to the reference region.
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This measure was used as one of the regional tracing effectiveness indicators in the Czech

Republic during the epidemic in 2020–2021 in regional weekly reports for key stakeholders.

There are also limitations of the described approach. Some principal limits are related to

data collection. First of all, hospitalized subjects’ data must be collected continuously in almost

real-time. Data collection may be inaccurate if, for example, hospitals are overwhelmed. In the

Czech Republic, there has never been a period in which emergency care was not provided dur-

ing the COVID-19 epidemic, but during some periods when case numbers peaked, there were

delays of several days in reporting. The second limit is the lack of data due to low hospitaliza-

tions (for example, during European summer). Extending the moving window for calculations

flattens the AR estimate. There is also more significant variability at times of lower hospitaliza-

tion numbers. However, the technique seems robust to different testing regimens because it

relies on unmissable severe cases (and if oxygen support data collection in real-time is avail-

able, it can also be used). Various testing regimes were held in the Czech Republic (also screen-

ing with antigen tests) during the monitored period, and the method was effective over time.

There are limitations related to the used method based on the estimated fixed average prob-

ability of hospitalization due to the disease. Changes in the virulence or other characteristics of

viral variants must be considered. The estimate PCRðHÞ ¼ 1

50
is valid for wild-type coronavirus

lineages. In 2021, a new variant alpha B.1.1.7 spread in the Czech Republic and dominated.

According to studies [50, 51], we increased the transmissibility rate to a 1.5 times higher level

during this time in the model; higher average probabilities of hospitalization and death were

also to be taken into account. The data show interesting information that the mutation did not

affect the ratio of death rates in hospitals between categories 65- and 65+, more precisely P
(Death|H and 65-)/P(Death|H and 65+)¼

:
1/4 during the entire epidemic before the vaccina-

tion introduction. Let us note that the ratio then changed to the disadvantage of non-seniors,

which can be considered evidence of the effectiveness of vaccines against hospitalization

(seniors were prioritized in the vaccination schedule). The unaltered ratio of non-senior and

senior death rates implies that the increase in the death rates due to the new variant in both

age categories must also be proportional. Our model fits a rough estimate of a 10% increase in

the hospital death rate and an approximately 25% increase in the probability of hospitalization

during the spring outbreak of a new variant B.1.1.7 in 2021.

Another issue that has to be incorporated is the ongoing vaccination process, which

strongly influences the probability of hospitalization. It is a more complicated problem. This

paper shows the modeling method on data with the model fixed and conserved in time before

summer 2021 (before delta variant B.1.617.2 dominance). In the model whose predictions we

continuously published on the ECDC hub until June 2022, we solved this problem in a simpli-

fied way, namely by reducing the transmissibility rate and the probability of hospitalization

and death proportionally to the percentage of vaccinated people based on effectiveness com-

puted in [33, 34]. Various later recalibrations and minor model changes were continuously

specified in the description of the MUNI_DMS-SEIAR model at the ECDC Forecast Hub [43]

as they arose over time due to new variants’ emergence or vaccination, etc. The model

described in the Supplement is limited to the period when the population was mostly unvacci-

nated—not because the AR estimation method could not be used, but because of the chosen

model. The effects of vaccination and its waning change the probability of hospitalization of

the vaccinated, and the models we used further were more complicated. We wanted to show

the usage of AR in various ways in the most simple but realistic model. The lineages from the

delta variant B.1.617.2 dominance period are not included in this paper for the same reason.

Challenging issues arise with lineages evolving from the omicron variant, where the proba-

bility of hospitalization dropped significantly. The omicron variant is really a game-changer
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that shows an increase in the number of cases included in hospitalization dataset that are

“with” covid, and not “for” covid when it is the principal diagnosis. Patients hospitalized for

COVID-19 generally need some respiratory support, so if there is enough data, those data can

be used instead of only hospital admissions data. In our data set, we also have the date of the

oxygen support recorded. However, patients usually arrive in a serious condition with a delay,

so it is more convenient to work with hospital admission data. An open dataset [52] shows that

during the analyzed period 2020–21, the proportion of the most severe cases (ICU need) was

very stable. That also justifies using hospital admissions data in the Czech Republic in the

monitored period. That is not true for the omicron variant period. Moreover, the level of rein-

fections became significant during the omicron variant dominance period. In that case, the

SEIARS-type model had to be used instead of the SEIAR-type model.

Another issue that arises from using AR in the SEIR-type model using data is related to

data stratification. In the case of the Czech Republic, stratification is not necessary and our

approach can be applied without stratification due to the relatively small size of the country

and the homogeneity of population density. However, in the case of countries with varying

population densities, stratification may be necessary. Our approach can be easily adapted to

include such stratification, by using region-specific AR estimates, mobility data or other rele-

vant variables to capture the spatial dynamics of the epidemic.

We believe that a moving estimate of AR is essential for monitoring the ongoing epidemic,

and our approach brings a credible estimate in almost real time. We hope that our results will

be helpful both for the modeling community in other countries and for further research in the

field, as many countries collect data from hospitals [53].
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