J 2023

Extraction, labeling, clustering, and semantic mapping of segments from clinical notes

ZELINA, Petr, Jana HALÁMKOVÁ a Vít NOVÁČEK

Základní údaje

Originální název

Extraction, labeling, clustering, and semantic mapping of segments from clinical notes

Autoři

ZELINA, Petr (203 Česká republika, garant, domácí), Jana HALÁMKOVÁ (203 Česká republika, domácí) a Vít NOVÁČEK (203 Česká republika, domácí)

Vydání

IEEE TRANSACTIONS ON NANOBIOSCIENCE, UNITED STATES, IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2023, 1536-1241

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10201 Computer sciences, information science, bioinformatics

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

URL

Impakt faktor

Impact factor: 3.900 v roce 2022

Kód RIV

RIV/00216224:14330/23:00131334

Organizační jednotka

Fakulta informatiky

DOI

http://dx.doi.org/10.1109/TNB.2023.3275195

UT WoS

001082250700011

Klíčová slova anglicky

NLP; EHR; Clinical Notes; Information Extraction; Text Classification

Štítky

14110811, Artificial Intelligence, knowledge acquisition, knowledge extraction, machine learning, medical informatics, text mining

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 7. 4. 2024 23:08, RNDr. Pavel Šmerk, Ph.D.

Anotace

ORIG CZ

V originále

This work is motivated by the scarcity of tools for accurate, unsupervised information extraction from unstructured clinical notes in computationally underrepresented languages, such as Czech. We introduce a stepping stone to a broad array of downstream tasks such as summarisation or integration of individual patient records, extraction of structured information for national cancer registry reporting or building of semi-structured semantic patient representations that can be used for computing patient embeddings. More specifically, we present a method for unsupervised extraction of semantically-labelled textual segments from clinical notes and test it out on a dataset of Czech breast cancer patients, provided by Masaryk Memorial Cancer Institute (the largest Czech hospital specialising exclusively in oncology). Our goal was to extract, classify (i.e. label) and cluster segments of the free-text notes that correspond to specific clinical features (e.g., family background, comorbidities or toxicities). Finally, we propose a tool for computer-assisted semantic mapping of segment types to pre-defined ontologies and validate it on a downstream task of category-specific patient similarity. The presented results demonstrate the practical relevance of the proposed approach for building more sophisticated extraction and analytical pipelines deployed on Czech clinical notes.

Česky

This work is motivated by the scarcity of tools for accurate, unsupervised information extraction from unstructured clinical notes in computationally underrepresented languages, such as Czech. We introduce a stepping stone to a broad array of downstream tasks such as summarisation or integration of individual patient records, extraction of structured information for national cancer registry reporting or building of semi-structured semantic patient representations that can be used for computing patient embeddings. More specifically, we present a method for unsupervised extraction of semantically-labelled textual segments from clinical notes and test it out on a dataset of Czech breast cancer patients, provided by Masaryk Memorial Cancer Institute (the largest Czech hospital specialising exclusively in oncology). Our goal was to extract, classify (i.e. label) and cluster segments of the free-text notes that correspond to specific clinical features (e.g., family background, comorbidities or toxicities). Finally, we propose a tool for computer-assisted semantic mapping of segment types to pre-defined ontologies and validate it on a downstream task of category-specific patient similarity. The presented results demonstrate the practical relevance of the proposed approach for building more sophisticated extraction and analytical pipelines deployed on Czech clinical notes.

Návaznosti

MUNI/A/1339/2022, interní kód MU
Název: Rozvoj technik pro zpracování dat pro podporu vyhledávání, analýz a vizualizací rozsáhlých datových souborů s využitím umělé inteligence
Investor: Masarykova univerzita, Rozvoj technik pro zpracování dat pro podporu vyhledávání, analýz a vizualizací rozsáhlých datových souborů s využitím umělé inteligence
MUNI/G/1763/2020, interní kód MU
Název: AIcope - AI support for Clinical Oncology and Patient Empowerment (Akronym: AIcope)
Investor: Masarykova univerzita, AIcope - AI support for Clinical Oncology and Patient Empowerment, INTERDISCIPLINARY - Mezioborové výzkumné projekty
Zobrazeno: 9. 11. 2024 06:57