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Candidate genes for obstructive
sleep apnea in non-syndromic
children with craniofacial
dysmorphisms – a narrative
review
Zuzana Marincak Vrankova1,2,3, Jan Krivanek4, Zdenek Danek2,3,
Jiri Zelinka2, Alena Brysova1, Lydie Izakovicova Holla1, James
K. Hartsfield Jr5 and Petra Borilova Linhartova1,2,3*
1Clinic of Stomatology, Institution Shared with St. Anne’s University Hospital, Faculty of Medicine, Masaryk
University, Brno, Czech Republic, 2Clinic of Maxillofacial Surgery, Institution Shared with the University
Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic, 3RECETOX, Faculty of
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Pediatric obstructive sleep apnea (POSA) is a complex disease with multifactorial
etiopathogenesis. The presence of craniofacial dysmorphisms influencing the
patency of the upper airway is considered a risk factor for POSA development.
The craniofacial features associated with sleep-related breathing disorders
(SRBD) – craniosynostosis, retrognathia and micrognathia, midface and maxillary
hypoplasia – have high heritability and, in a less severe form, could be also
found in non-syndromic children suffering from POSA. As genetic factors play a
role in both POSA and craniofacial dysmorphisms, we hypothesize that some
genes associated with specific craniofacial features that are involved in the
development of the orofacial area may be also considered candidate genes for
POSA. The genetic background of POSA in children is less explored than in
adults; so far, only one genome-wide association study for POSA has been
conducted; however, children with craniofacial disorders were excluded from
that study. In this narrative review, we discuss syndromes that are commonly
associated with severe craniofacial dysmorphisms and a high prevalence of
sleep-related breathing disorders (SRBD), including POSA. We also summarized
information about their genetic background and based on this, proposed 30
candidate genes for POSA affecting craniofacial development that may play a
role in children with syndromes, and identified seven of these genes that were
previously associated with craniofacial features risky for POSA development in
non-syndromic children. The evidence-based approach supports the
proposition that variants of these candidate genes could lead to POSA
phenotype even in these children, and, thus, should be considered in future
research in the general pediatric population.
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1. Introduction

Both pediatric (POSA) and adult obstructive sleep apnea

(OSA) count among sleep-related breathing disorders (SRBD).

POSA is considered a multifactorial disease triggered by the

combination of genetic predispositions and several risk factors,

including obesity, neuromuscular factors, adenotonsillar

hypertrophy, and specific craniofacial features (1, 2). In adults,

the genetic background leading to the OSA phenotype has been

studied more intensively than in children.

So far, several studies on candidate genes, phenome-wide

association studies of OSA genomic variation, and genome/phenome-

wide association studies (GWAS/PheWAS) on adult patients with

OSA have been published (3–5), while only a single GWAS focusing

on children has been reported (6). That study included 1,486 subjects,

1 week to 18 years old, 46.3% of whom were European-Americans

and 53.7% African-Americans. The study identified genomic loci

associated with POSA at 1p36.22, 15q26.1, 18p11.32 (rs114124196),

1q43 (rs12754698), 2p25 (rs72775219). 8q21.11 (rs6472959), 11q24.3

(rs4370952), and 15q21.1 (rs149936782); children with craniofacial

disorders were excluded from that study (6).

Moreover, single nucleotide polymorphisms (SNPs) in genes

encoding apolipoprotein E, fatty-acid binding protein 4,

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase,

and the macrophage migration inhibitory factor were associated

with increased or decreased odds of POSA development in

children (7–9). These genes are considered to be candidate genes

for POSA development (i.e., they are likely to be related to this

disease because of their genomic location or known function).

All four mentioned genes are associated with lipid metabolism

and/or immune system function. It is, therefore, possible that the

susceptibility of carriers of these SNPs to POSA is associated

with their role in the development of obesity.

However, genetic background is involved, to some extent, in all

of the most commonly reported POSA risk factors – besides

obesity, body fat distribution, ventilation control mechanisms,

upper airway neural control, and soft tissue morphology, genetic

background plays a role also in craniofacial dysmorphisms (10–

13). In this narrative review, we closely focus on specific genes

involved in the development of the orofacial area and of certain

craniofacial features, which makes them possible candidate genes

for POSA. Thus, we aimed to (i) describe craniofacial anomalies

associated with POSA development, (ii) select syndromes

characterized by severe craniofacial dysmorphisms associated

with OSA and/or high prevalence of pediatric SRBD, (iii)

summarize information about the genetic background of these

syndromes, and (iv) suggest candidate genes for POSA in non-

syndromic patients with craniofacial dysmorphisms.
2. Craniofacial characteristics
associated with POSA development

As the upper airway dimensions and morphology of the

craniofacial area are closely related, it is no surprise that some
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abnormalities in its soft and bony structures may contribute to

the narrowing and easier collapse of the airway, resulting in

OSA, both in children and adults (14–16). Patients suffering

from severe skeletal craniofacial malformations could be at a

three times higher risk of POSA development than the general

pediatric population (17). The importance of craniofacial

morphology in OSA development was confirmed also by Kim

et al., who reported the presence of craniofacial dysmorphisms,

such as the narrow nasomaxillary complex or underdeveloped

mandible, in 93.3% of children diagnosed with sleep-disordered

breathing (18).

Multiple studies described craniofacial characteristics that are

more often present in children suffering from SRBD than in

children without these conditions (19–24). These include the size

of the maxillo-mandibular complex, their (absolute and mutual)

position, and growth pattern, as well as dental occlusion and

facial appearance. The craniofacial dysmorphisms associated with

the increased risk of POSA development are summarized in

Figure 1. Extended facial profile and retrognathia have also been

suggested to be more common in children with OSA; however, a

recent systematic review by Fagundes et al. did not confirm this

association (25).
2.1. Skeletal anomalies in the orofacial area
risky for POSA development

Premature bone fusion, craniosynostosis, is one of the key

features playing role in the narrowing and easier collapse of the

airways. It is often diagnosed together with midface hypoplasia,

i.e., a combination of the underdevelopment of the maxilla,

cheekbones, and eye sockets (although both these features may

occur also independently). Even though these features are well-

recognized factors in POSA development, the etiology is usually

multifactorial and many children suffer from multilevel airway

obstruction (24). Underdevelopment of the upper jaw, i.e.,

maxillary hypoplasia or, in the case of more pronounced

narrowing, maxillary constriction, which are often associated also

with narrow and/or high arched palate and lateral crossbite, are

other characteristics often present in children suffering from

POSA (19, 23, 24, 26). Severe reduction of the naso- and oro-

pharyngeal airway space may be present in children with

craniosynostosis, in patients with clefts originating from prenatal

incomplete tissue fusion (20, 21, 27), or in those with anomalies

of the mandible, especially if the mandible is undersized, (i.e.,

micrognathia; (19, 23, 24, 26). However, the underdevelopment

of the maxillo-mandibular complex is not the only factor

decreasing the airway patency. According to cephalometric

studies, sagittal and vertical maxillo-mandibular complex

discrepancies, such as mandibular retrognathia, often diagnosed

as skeletal class II malocclusion, and increased overjet or open

bite, which may appear due to increased mandibular plane angle,

are overrepresented in children diagnosed with POSA (22, 26, 28,

29). This hyperdivergent skeletal pattern may lead to the

development of the long-face syndrome, which is another facial

appearance typical of patients with SRBD (28, 30, 31). Negative
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FIGURE 1

Craniofacial dysmorphisms as risk factors for pediatric obstructive sleep apnea development.
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anterior overjet and skeletal class III malocclusion are not as often

associated with POSA; still, the association is possible, especially if

they are caused by severe maxillary deficiency (32). The lower

position of the hyoid bone is another skeletal risk factor that can

be diagnosed in a cephalogram. As some lingual muscles

insert on that bone, their pull in a downward direction can

also cause the narrowing of the airway space and, in effect, apnea

(14, 33–35).
2.2. Soft tissue anomalies in the orofacial
area risky for POSA development

The morphology of soft tissues plays an important role, too.

Adeno-tonsillar hypertrophy is a well-described etiological factor

of POSA. The deviation or deformity of the nasal septum,

hypertrophy of nasal turbinates, or nasal polyps may also

increase nasal resistance (36–38) and contribute towards mouth

breathing, often accompanied by unphysiological head posture,

insufficient lip seal or open bite, all of which are characteristics

often present in patients with POSA (16). The lack of nasal

breathing accompanied by an imbalance in muscle activity, often

associated with the hypotony of orofacial muscles, have a huge

impact on the development and growth of the maxillo-

mandibular complex and may contribute to its abnormal shape

and size (16, 39, 40).
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The tongue is another factor playing a key role in the

narrowing and collapse of the upper airway. The short

sublingual frenulum (or ankyloglossia) in its most severe form

leads to a low tongue position and disrupted tongue movement

and has been already associated with the POSA phenotype (16,

41–43). An insufficient stimulation of the palatal suture, caused

by this unphysiological tongue position, may result in the

formation of a narrow palate and decreased volume of nasal

cavities, which, again, contributes to the preference for mouth

breathing and airway narrowing (16, 33). POSA has also a high

prevalence in patients with glossoptosis, which is a down- and

backward position of the base of the tongue (44). The

combination of glossoptosis with micrognathia or retrognathia

leads to a high risk of tongue-based airway obstruction (24,

45). In addition, macroglossia and/or an elongated soft palate

could reduce airway volume and contribute to airway

obstruction (14, 34).

These craniofacial characteristics are associated with several

syndromes; however, they could be also found in non-

syndromic children (14, 15, 19). Even though they are usually

present in less severe forms, they could still contribute to

airway obstruction. Craniofacial features associated with

POSA could be easily diagnosed and their heritability is

estimated to be high. This is especially true for the size of

the maxillo-mandibular complex and the timing of its growth

(11, 13, 46).
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3. Craniofacial syndromes associated
with a high prevalence of pediatric
SRBD

The prevalence of SRBD, including POSA, may be very high in

syndromic children with a severe form of craniofacial

dysmorphism. In a population-based case-control study, an OSA

diagnosis was associated with the presence of craniofacial

anomalies, in particular with orofacial clefting and Down

syndrome (46). To better understand the role of genetic factors

in both POSA and craniofacial anomalies associated with this

diagnosis, we have reviewed the current body of literature and

selected syndromes, which: (1) are characterized by severe

craniofacial abnormalities associated with POSA, (2) have a high

prevalence, or have been already related to the co-incidence of

SRBD and POSA in children, and (3) have a known genetic

background.

Based on these criteria, 26 syndromes and disorders were

selected, namely achondroplasia, Antley-Bixler, Apert,

Auriculocondylar, Beare-Stevenson, Cohen, and Collins

syndromes, congenital central hypoventilation, craniofacial

microsomia (Goldenhar syndrome, oculo-auriculo-vertebral

spectrum), craniofrontonasal dysplasia, Crouzon, Down, Ehlers-

Danlos, Ellis-van Creveld, Jackson-Weiss, Marfan, and Marshall-

Stickler syndromes, mucopolysaccharidosis IV and VI, Muenke,

Noonan, abd Pfeiffer syndromes, Pierre Robin sequence, Prader-

Willi, Saethre-Chotzen and Treacher-Collins syndromes. From

the craniofacial dysmorphisms associated with OSA,

craniosynostosis, oral clefts, midface and maxillary hypoplasia,

narrow high-arched palate, micrognathia, retrognathia, choanal

atresia, macroglossia, and glossoptosis were the features found

most frequently in these syndromes (21, 4–70). It is necessary to

mention that in syndromes associated with high POSA

prevalence, a combination of several of these features is often

present. For example, the Pierre Robin sequence associated with

high POSA prevalence consists of the following: micrognathia,

glossoptosis, narrow and/or high-arched palate, and cleft palate (45).

The information about the genetic background and

prevalence of SRBD in these syndromes, including POSA, is

summarized in Supplementary Table S1 in the Supplement.

The prevalence of pediatric SRBD in children suffering from

the mentioned syndromes ranges between 10%–87.5%, which is

much higher than in the common pediatric population (2%–

4%) (21, 45, 53, 54, 56, 58, 63, 69–87). High prevalences of

SRBD were found particularly in populations of children with

Treacher-Collins syndrome, mucopolysaccharidosis IV and VI,

Apert, and Prader-Willi syndrome, in which limited midfacial

development is a characteristic feature (21, 53, 54, 69, 70, 72).

Despite their shared relationship to craniofacial dysmorphisms

and high SRBD prevalence, these syndromic phenotypes are

associated with different genes. In total, aneuploidy in Down

syndrome and variations in 30 genes in the other 25

mentioned syndromes (see Supplementary Table S1 in the

Supplement) are considered causative or risk factors for SRBD

development.
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4. Possible candidate genes for POSA
development in children with
craniofacial dysmorphisms

We prepared an overview of possible candidate genes and loci

for pediatric SRBD. Figure 2 depicts genes and loci associated both

with POSA in children without craniofacial features, and those

associated with syndromes manifested by craniofacial features

risky for SRBD in children (6–9).

Although these syndromes do not share the same genetic

background, some of the associated genes affect similar processes,

such as the skeletal system development (including the cranial

area), organ growth, or embryonic organ morphogenesis.

Figure 3 demonstrates both known and predicted interactions

and similarities among 30 considered genes; their functions and

importance are described below.
4.1. Genes associated with non-/syndromic
craniosynostosis

The etiology of craniosynostosis may involve genetic,

epigenetic, and/or environmental factors (88). Craniosynostosis is

associated with a high prevalence of POSA. It is a common

feature in patients with Antley-Bixler, Apert, Beare-Stevenson,

Crouzon, Pfeiffer, Muenke, Jackson-Weiss, Craniofrontonasal,

and Saethre-Chotzen syndromes (89–92). SRDB was present also

in 50% of children suffering from non-syndromic

craniosynostosis (NSC) (89).

Deviations in the development of the craniofacial area are also

associated with a variability in the fibroblast growth factor receptor

(FGFR) genes, which are important for cell specialization as well as

for bone growth and modeling, especially in the process of

ossification and bone fusion (48, 93, 94). Severe mutations in

FGFR genes are associated with premature cranial bone fusion

and craniosynostosis. These mutations were found in several

craniofacial syndromes with a high prevalence of SRBD in

children, such as achondroplasia, Antley-Bixler, Beare-Stevenson,

Jackson-Weiss, Apert, Crouzon, Pfeiffer, and Saethre-Chotzen

syndromes (21, 51, 92, 95–99). These FGFR-related

craniosynostosis syndromes are autosomal-dominantly inherited.

Moreover, variants in FGFR genes could also lead to NSC (95,

100, 101). Genes most commonly mutated in familial

craniosynostosis include, besides FGFR2 and FGFR3, the twist

family bHLH transcription factor 1 (TWIST1) and ephrin-B1

(EFNB1) (102). More than 100 mutations in the EFNB1 gene

have been found to cause the craniofrontonasal syndrome, which

was confirmed in a study with knockout mice models (103). This

rare x-linked disorder shows paradoxically greater severity in

heterozygous females than in hemizygous males. TWIST1 acts

through Eph–ephrin interactions to regulate the development of

the boundary that forms the coronal suture (104). The TWIST1

gene associated with the Saethre-Chotzen syndrome is believed to

regulate bone formation through other genes, such as FGFR and

RUNX2 (63, 64). Genetic testing of FGFR1, FGFR2, FGFR3, and
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FIGURE 2

An overview of possible candidate genes for pediatric sleep-related breathing disorders (SRBD), especially pediatric obstructive sleep apnea (POSA) in
children with craniofacial dysmorphisms. APOE, apolipoprotein E; ARSB, N-acetylgalactosamine-4 sulfatase; COLs (- ED), collagens gene family
(genes associated with Ehlers-Danlos syndrome); EFNB1, ephrin-B1; EDN1, endothelin 1; EVC1, EvC ciliary complex subunit 1; EVC2, EvC ciliary
complex subunit 2; FABP4, fatty acid-binding protein 4; FBN1, fibrillin 1; FGFR1, fibroblast growth factor receptor 1; FGFR2, fibroblast growth factor
receptor 2; FGFR3, fibroblast growth factor receptor 3; GALNS, galactosamine-6-sulfatase; GLB1, b-D-galactosidase; MAGEL2, MAGE-like protein 2;
MIF, macrophage migration inhibitory factor; NDN, necidin; NOX, NADPH oxidase 1; PHOX2B, paired like homeobox 2B; POR, cytochrome P450
oxidoreductase; PTPN11, protein tyrosine phosphatase non-receptor type 11; SF3B2, splicing factor 3B subunit 2; SOX9, SRY-box 9; SNORD116, CD
box 116; TCOF1, treacle ribosome biogenesis factor 1; TGFBR1, transforming growth factor-β receptor 1; TGFBR2, transforming growth factor-β
receptor 2; TWIST1, twist family bHLH transcription factor 1; VPS13B, vacuolar protein sorting 13 homolog B.
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TWIST1 was even suggested as a first-line test for patients with

NSC (101).

Interestingly, not only rare mutations of these genes but also

SNPs of these genes are associated with craniofacial dysmorphia.

For example, Da Fontoura et al. found an association between

SNPs rs11200014 and rs2162540 in FGFR2 and sagittal maxilla-

mandibular discrepancy, so-called skeletal malocclusion (both

skeletal class II and III). They also found an association between

the SNP rs2189000 in TWIST1 and a larger body and shorter

ramus of the mandible (62). Although FGFR3 gene variants are

associated with Muenke and Crouzon syndromes manifested by

craniosynostosis, this feature, surprisingly, was not exhibited in

the FGFR3 A385E/+ mice model (105–107). Thus, FGFR2 seems to

be more important for craniosynostosis development than

FGFR3. On the other hand, a mutation in FGFR3 causes

achondroplasia, which, according to a recent study by Legare

et al., has craniosynostosis as a co-occurring feature (108).

A missense mutation in the Protein Tyrosine Phosphatase

Non-Receptor Type 11 (PTPN11) gene was found in almost

50% of patients diagnosed with Noonan syndrome (109). This

gene encodes tyrosine phosphatase Shp-2, an enzyme involved

in multiple signal transduction cascades including receptors for

growth factors involved in the developmental processes, such as

FGFR (110). The Noonan syndrome is manifested by
Frontiers in Pediatrics 05
micrognathia, maxillomandibular discrepancy, narrow and/or

high-arched palate, and long face syndrome (hyperdivergence)

(111, 112). Also, craniosynostosis was described in some patients

suffering from this syndrome. Mutations in the PTPN11, KRAS,

or Leucine-Rich Repeat Scaffold Protein (SHOC2) gene are

causally involved in craniosynostosis (113–115). In patients with

the Antley-Bixler syndrome, characterized by craniosynostosis,

brachycephaly, midface hypoplasia, and choanal atresia and/or

stenosis, variants have been found not only in FGFR2, but also

in the gene encoding cytochrome p450 oxidoreductase (POR)
(116–119). This enzyme transfers electrons from NADPH to all

microsomal cytochrome P450 enzymes. While individuals with

an ABS-like phenotype and normal steroidogenesis are carriers

of FGFR2 mutations, those with genital anomalies and

disordered steroidogenesis should be recognized as having a

POR deficiency (116).
4.2. Genes associated with non-/syndromic
retrognathia and/or micrognathia

The SRY-box 9 transcription factor (SOX9) gene plays an

important regulatory role during craniofacial development (120).

In a rat model with upper airway obstruction, SOX9 level was
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FIGURE 3

Clusters of candidate genes for pediatric obstructive sleep apnea (POSA) development in children with craniofacial dysmorphisms and their interactions
(created in string, https://string-db.org/cgi/network?taskId = bF5B2GAcAUOE&sessionId = bSUqeCIqj6OL). Proteins encoded by these genes are
clustered into 3 main groups using the Markov Clustering Algorithm. yellow dots: genes associated with non-/syndromic craniosynostosis. red,
purple, and green dots: other genes associated with non-/syndromic retrognathia and/or micrognathia. grey and blue dots: other genes associated
with non-/syndromic midface or maxillary hypoplasia. ARSB, N-acetylgalactosamine-4 sulfatase; COL1A1, collagen type I alpha 1 chain; COL2A1,
collagen type II alpha 1 chain; COL3A1, collagen type III alpha 1 chain; COL5A1, collagen type V alpha 1 chain; COL5A2, collagen type V alpha 2
chain; COL5A3, collagen type V alpha 3 chain; COL11A1, collagen type XI alpha 1 chain; EFNB1, ephrin-B1; EDN1, endothelin 1; EVC1, EvC ciliary
complex subunit 1; EVC2, EvC ciliary complex subunit 2; FBN1, fibrillin 1; FGFR1, fibroblast growth factor receptor 1; FGFR2, fibroblast growth factor
receptor 2; FGFR3, fibroblast growth factor receptor 3; GALNS, galactosamine-6-sulfatase; GLB1, b-D-galactosidase; MAGEL2, MAGE-like protein 2;
NDN, necidin; PHOX2B, paired like homeobox 2B; POR, cytochrome P450 oxidoreductase; PTPN11, protein tyrosine phosphatase non-receptor type
11; SF3B2, splicing factor 3B subunit 2; SOX9, SRY-box 9; SNORD116, CD box 116; TCOF1, treacle ribosome biogenesis factor 1; TGFBR1,
transforming growth factor-β receptor 1; TGFBR2, transforming growth factor-β receptor 2; TWIST1, twist family bHLH transcription factor 1; VPS13B,
vacuolar protein sorting 13 homolog B.
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found to be downregulated, which explains the bone architecture

abnormalities (121). This gene is also associated with the Pierre

Robin sequence (122). Repressed SOX9 expression leads to

changes in the expression of genes essential for normal

development of the mandible, causing micrognathia, and,

consequently, glossoptosis, airway obstruction, and often, cleft

palate (123). The expression of SOX9 is influenced, among

others, by FGFR3. Therefore, dysregulation of SOX9 levels, a

major regulator of chondrogenesis, is an important underlying

mechanism in skeletal diseases caused by mutations in FGFR3

(124–126). Interestingly, the SNP rs12941170 of SOX9 was

associated with non-syndromic orofacial clefting. However, its

role in these non-syndromic clefts remains unclear (124).

Similarly to SOX9, variants in endothelin 1 (EDN1), the

Splicing factor 3B subunit (SF3B2), and Treacle ribosome

biogenesis factor 1 (TCOF1) were associated with syndromes

manifesting in children by both micrognathia and glossoptosis.

EDN1 encodes a vasoactive peptide belonging to the family of

endothelins and is associated with the auriculocondylar

syndrome (127), a rare syndrome that usually affects facial
Frontiers in Pediatrics 06
features. It is characterized by micrognathia, microstomia, and

anomalies in the temporomandibular joint and the condyle

(127). Also, studies using mice models with the EDN1 gene

knocked out or deficient have shown several craniofacial

dysmorphisms, mandibular dysfunction, and severe

retrognathism (62, 127). SF3B2 may be, according to a study by

Timberlake et al., an important factor in the development of

craniofacial microsomia, which was also confirmed by a recent

review covering this congenital facial anomaly (128, 129). TCOF1
presents an important factor for the undisrupted formation and

development of the craniofacial area, cartilage, and skeleton (55,

130, 131). Mutations in these genes were found in patients with

Treacher-Collins syndrome (130, 131).

Ehlers-Danlos syndrome, manifesting through retrognathia,

micrognathia, and maxillary constriction, has been previously

proposed as a genetic model for pediatric OSA (60, 61, 132).

Variants in genes encoding and/or influencing the expression of

collagens (COL gene family) and others (see Supplementary

Table S1 in the Supplement) were associated with this rare

connective tissue disorder (60, 133). The minor allele of SNP
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rs2249492 in the Collagen type I alpha 1 chain (COL1A1) has been
previously associated with the increased risk of a sagittal maxilla-

mandibular discrepancy (skeletal class III malocclusion) in non-

syndromic children (62). The results of the study by Topârcean

et al. showed a tendency towards a class II skeletal malocclusion

pattern determined by mandibular retrognathism rather than

maxillary prognathism among the individuals possessing the

mutant allele of this SNP (134).

Other genes for collagens, COL2A1 and COL11A1, are

associated with Marshall-Stickler syndrome (86). Collagens II

and XI are present throughout the Meckel’s cartilage, which

provides mechanical support for the developing mandible. The

characteristic craniofacial features of Marshall-Stickler syndrome

are midface hypoplasia, micrognathia, cleft palate, and Pierre

Robin anomaly (50). Variants in COL2A1 and COL11A1 were

also associated with the Robin sequence in nonsyndromic

patients (135).

Besides collagens, fibrillin and elastin are also present in the

architectural scaffolds that impart specific mechanical properties

to tissues and organs. The FBN1 gene is essential for the

production of fibrillin, and its mutation could cause Marfan

syndrome (57, 136).

Fibrillin is crucial for bone and muscle rigidity; hence, its

disruption can increase the laxity of airway connective tissues

and predispose them to easier collapsibility (56). At the same

time, patients often have their maxillo-mandibular complex in a

retrognathic position, with a narrow maxilla and palate, and a

“long face” appearance (56–58, 137).

Besides FBN1, mutations in the transforming growth factor-β

receptor 1 (TGFBR1) and transforming growth factor-β receptor

2 (TGFBR2) may also be found in Marfan syndrome (138).

TGFBR2 protein forms a complex with TGFBR1, and both are

involved in a signaling pathway responsible for the proliferation,

differentiation, and apoptosis of cells throughout the body (139).

They are extremely important for bone growth and extracellular

matrix formation; moreover, they play a role in the fusion of

craniofacial sutures (140). The development of micrognathia and

retrognathism was observed in mice with an impaired TGFB2

gene, giving evidence to its importance in craniofacial

morphology (141).

The gene for vacuolar protein sorting-associated protein 13B

(VPS13B), also called the COH1 gene, encodes a protein forming

a part of the Golgi apparatus membrane. Its disruption may be

involved through various cellular mechanisms, in several clinical

features of Cohen syndrome (142, 143), including micrognathia,

constricted hard palate, insufficient lip seal, and truncal obesity.

All of these issues increase the risk of the collapse of the upper

airway and the development of POSA (65, 66, 142, 143).

Mutations in necidin (NDN) and the melanoma antigen family

member L2 (MAGEL2), both localized on chromosome 15, were

found in the Prader-Willi syndrome, a complex genetic disorder

characterized by several features, such as midface hypoplasia and

micrognathia (144). The phenotype of this syndrome includes

hypoplastic midface area, hypotonia, and a changed viscosity in

secretions. All these factors facilitate the collapse of upper

airways and apnea (52, 53, 144). Some polymorphisms in NDN
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adolescents as well as in neonates examined by

polysomnography. However, there was a lack of association with

juvenile-onset human obesity or sleep and respiratory parameters

(145, 146).
4.3. Genes associated with non-/syndromic
midface or maxillary hypoplasia

Midface or maxillary hypoplasia are typical features of several

syndromes, including mucopolysaccharidosis, Ellis-van Creveld,

or congenital central hypoventilation syndrome, the genetic

backgrounds of which are described below.

Mucopolysaccharidosis (MPS) is a metabolic disorder

characterized by the deficiency or total absence of enzymes

responsible for the degradation of glycosaminoglycans. It can be

classified into 7 types based on the specific malfunctioning

enzyme and clinical manifestations (147). The Morquio

syndrome (MPS IV) can be caused by a mutation either in the

N-acetylgalactosamine-6-sulfatase (GALNS) gene (MPS type

IVA), or in the gene for galactosidase beta 1 (GLB1; MPS type

IVB). Among other clinical manifestations, the Morquio

syndrome includes also craniofacial dysmorphisms such as mid-

facial hypoplasia, condylar deformities, open bite, macroglossia,

or abnormal teeth (148, 149).

The mutated gene for arylsulfatase B (ARSB) leads to the

reduced function of the enzyme, causing a lysosomal storage

disorder – MPS type VI, also known as Maroteaux-Lamy

syndrome (117). This syndrome is associated with orofacial

manifestations such as macroglossia, malocclusions, or disrupted

dental eruption (150).

In syndromic children, the TWIST gene and the genes of the

FGFR family, described in detail above, were associated with

maxillary hypoplasia. In addition, the EvC ciliary complex

subunit 1 (EVC1) and subunit 2 (EVC2) genes were found to be

causative for the formation of the Ellis-van Creveld syndrome

manifested also by maxillary hypoplasia and mandibular

prognathism (151, 152). They encode proteins, the functions of

which are not completely understood yet, but appear to be

important in the physiological growth and development of bones

and teeth (153).

The paired-like homeobox 2B (PHOX2B) transcription factor

plays a crucial role in the autonomic nervous system

development. Mutations in the PHOX2B gene are known to

cause the congenital central hypoventilation syndrome with a

specific craniofacial phenotype – maxillary hypoplasia, box-

shaped face, and brachycephaly (68). However, a “silent”

mutation in this gene was found in children with class III

skeletal malocclusion and a history of sleep apnea (63, 154, 155).
5. Discussion

As POSA may cause serious health problems in young, growing

patients, it would be highly beneficial to diagnose the increased risk
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of its development as soon as possible. While much of the POSA

etiopathogenesis remains underexplored, craniofacial

dysmorphisms leading to the narrowing of the airways

undoubtedly play an important role (15, 17). Their severe forms

can be found in craniofacial syndromes, which are also

associated with a much higher prevalence of SRBD and POSA

compared to the general pediatric population (21, 45, 53, 54, 56,

58, 63, 69–87). However, similar craniofacial features may be

present also in healthy, non-syndromic patients. These skeletal

variations could be mild when compared to syndromic

phenotypes, but they could still lead to the collapse of the upper

airways and POSA development. This is supported by Kim et al.

who reported that the majority of non-syndromic, non-obese

children diagnosed with POSA have craniofacial anomalies that

are possible risk factors for POSA (18).

Several studies have already explored genes associated with OSA

etiopathogenesis in adults, including the genes associated with the

craniofacial area and characteristic features (4, 156). The

heritability of craniofacial traits varies but is generally estimated to

be high and very similar in healthy subjects and in patients

suffering from OSA (11, 13, 46, 157). This is supported by several

studies reporting an increased incidence of the above-mentioned

OSA risk features among relatives (157–160). The first phenome-

wide association study of genomic variation in adult OSA was

recently published by Veatch et al. (5). None of the three SNPs in

the leptin receptor (LEPR), the matrix metallopeptidase 9 (MMP9),

and the Gamma-aminobutyric acid type B receptor subunit 1

(GABBR1), the association of which with OSA diagnosis was

validated in their study, was associated with other non-OSA

clinical traits once they controlled for multiple testing (5).

Cade at al. performed a GWAS investigating genetic

associations of OSA in Hispanic/Latino Americans from three

cohorts. They identified two loci (rs11691765 in the G protein-

coupled receptor 83 gene, GPR83; and rs35424364 in the

pseudogene CCDC162P) associated with the AHI and the

respiratory event duration, respectively (3). Another GWAS

study, focusing on European Caucasians, reported five genes to

be associated with facial characteristics, namely the paired-box

gene 3 (PAX3), the PR-set domain 16 (PRDM16), the

transcription factor TP63, small integral membrane protein 23

(C5orf50), and the Collagen type XVII alpha 1 chain

(COL17A1A), the variants of which contribute to the facial

morphology in young adults (4). Some variants of these genes

and their possible association with craniofacial abnormalities

were also explored in another GWAS study focusing on young

adults of European-ancestry from the Avon Longitudinal Study

of Parents and Children (161) as well as in mice models (162, 163).

Unfortunately, most publications focus on the genetic

background of OSA in adult patients, not the pediatric

population. To this date, only one GWAS has been performed in

relation to POSA, including European American and African

American children without craniofacial disorders (6). The study

identified several genomic loci (see the Introduction). However,

only one genetic marker, located at 18p11.32, was shared by

groups of both ancestries. Their study, therefore, emphasizes the

importance of study populations with diverse ethnic backgrounds
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the heterogeneity of POSA (6).

It follows that specific genes involved in the development of the

orofacial area and associated with craniofacial OSA features should

be also considered as candidate genes for POSA. Here, we provide

an overview of genes that are known to be involved in the

development of craniofacial syndromes in children with high

SRBD prevalence, including POSA, see Supplementary Table S1

in the Supplement. All these genes are, to some extent, involved

in the formation of tissues of the orofacial area. The candidate

genes for POSA can be classified into three major groups based

on their involvement in the development of specific craniofacial

features. These groups would consist of genes associated with

non-/syndromic (i) craniosynostosis, (ii) retrognathia and/or

micrognathia, and (iii) midface or maxillary hypoplasia. While

certain mutations cause various rare syndromes, other variants in

these same genes were suggested to be associated with non-

syndromic skeletal variations in the orofacial area (62, 63, 101,

154, 164). So far, variants in FGFR1, FGFR2, FGFR3, TWIST,
SOX9, COL1A1, and PHOX2B are known to play a role in

syndrome development as well as in the development of skeletal

malocclusions (sagittal maxillo-mandibular complex discrepancies

in non-syndromic patients). These genes, therefore, can be

considered promising candidate genes for testing of genetic

susceptibility to POSA development in various populations.

Although the inheritance pattern of POSA as well as OSA is

unclear, most cases with these diseases do not adhere to classical

models of inheritance, suggesting that multiple genes could be

involved in their development. We believe that besides the

GWAS approach, strategies based on candidate genes are also

necessary for further research of both these multifactorial

diseases. Considering the results of the mentioned genetic

association studies (3–9) it appears that there is not much

overlap between candidate variants/genes for the POSA and OSA

development. In addition, these studies also revealed a high

interpopulation variability that should be taken into account in

the further research of these disorders. The low match in

candidate genes for OSA between children and adults is to be

expected since those diseases differ in their etiopathogenesis,

clinical presentation as well as polysomnographic characteristics;

there are also major differences in therapy approaches and

possible consequences if left untreated (165).

Recently, Yoon et al. proposed a clinical guideline for

application of multidisciplinary care in children with SRBD,

emphasizing the importance of dentofacial interventions that

target variable growth patterns (166). In the last years,

craniofacial modification by orthodontic techniques is

increasingly incorporated into the multidisciplinary management

of SRBD in children and adolescents. In view of the

multifactorial etiology of POSA, a better understanding of the

risk factors contributing to its development may be useful not

only for predicting the risk of POSA development but, even

more importantly, for selecting the best therapeutic approach.

Research of genetic predispositons to OSA in children as well as

in adults may improve our understanding of the underlying

biological mechanisms of susceptibility to these diseases.
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6. Conclusion

Genetic background plays an important role in both POSA and

craniofacial dysmorphisms. Therefore, genes associated with

specific craniofacial features more common in patients suffering

from POSA may be also considered candidate genes for this

disease. We have reviewed a large body of literature and focused

on the genes known to be involved in the development of

cranio-facial syndromes with a high POSA prevalence. Based on

the review, we chose 30 candidate genes for pediatric SRBD.

Variants in seven of them (FGFR1, FGFR2, FGFR3, TWIST,
SOX9, COL1A1, and PHOX2B) are known to play a role not

only in syndrome development but also in skeletal malocclusions

that are typical of pediatric orthodontic patients. Considering

this, these seven genes appear to have the highest potential for

targeted analysis of POSA risk in non-syndromic children.
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