J 2023

Muddying the unexplored post-industrial waters: Biodiversity and conservation potential of freshwater habitats in fly ash sedimentation lagoons

KOLAR, Vojtech, Eliška CHMELOVÁ, Martina BÍLKOVÁ, Jakub BOROVEC, Bruno M. CARREIRA et. al.

Basic information

Original name

Muddying the unexplored post-industrial waters: Biodiversity and conservation potential of freshwater habitats in fly ash sedimentation lagoons

Authors

KOLAR, Vojtech, Eliška CHMELOVÁ, Martina BÍLKOVÁ (203 Czech Republic, belonging to the institution), Jakub BOROVEC, Bruno M. CARREIRA, Martin ČERNÝ, Tomáš DITRICH, Petra HORKÁ, Ľuboš HRIVNIAK, František HRUBÝ, Jiří JAN, Andrea LANDEIRA-DABARCA, Olga LEPŠOVÁ-SKÁCELOVÁ, Zuzana MUSILOVÁ, Šárka OTÁHALOVÁ, Martina POLÁKOVÁ (203 Czech Republic, belonging to the institution), Vendula POLÁŠKOVÁ (203 Czech Republic, belonging to the institution), Veronika SACHEROVÁ, Jan ŠPAČEK, Pavel SROKA, Lucie VEBROVÁ, David S. BOUKAL and Robert TROPEK (guarantor)

Edition

Science of The Total Environment, Elsevier, 2023, 0048-9697

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10500 1.5. Earth and related environmental sciences

Country of publisher

Netherlands

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 9.800 in 2022

RIV identification code

RIV/00216224:14310/23:00131443

Organization unit

Faculty of Science

UT WoS

001051962900001

Keywords in English

Aquatic communities; Biodiversity conservation; Energetic industry; Environmental pollution; Post-industrial sites; Restoration ecology

Tags

Tags

International impact, Reviewed
Změněno: 12/10/2023 13:32, Mgr. Marie Šípková, DiS.

Abstract

V originále

Deposits of fly ash and other coal combustion wastes are common remnants of the energy industry. Despite their environmental risks from heavy metals and trace elements, they have been revealed as refuges for threatened terrestrial biodiversity. Surprisingly, freshwater biodiversity of fly ash sedimentation lagoons remains unknown despite such lack of knowledge strongly limits the efficient restoration of fly ash deposits. We bring the first comprehensive survey of freshwater biodiversity, including nekton, benthos, zooplankton, phytoplankton, and macrophytes, in fly ash lagoons across industrial regions of the Czech Republic. To assess their conservation potential, we compared their biodiversity with abandoned post-mining ponds, the known strongholds of endangered aquatic species in the region with a shortage of natural ponds. Of 28 recorded threatened species, 15 occurred in the studied fly ash lagoons, some of which were less abundant or even absent in the post-mining ponds. These are often species of nutrient-poor, fishless waters with rich vegetation, although some are specialised extremophiles. Species richness and conservation value of most groups in the fly ash lagoons did not significantly differ from the post-mining ponds, except for species richness of benthos, zooplankton, and macrophytes, which were slightly lower in the fly ash lagoons. Although the concentrations of some heavy metals (mainly Se, V, and As) were significantly higher in the fly ash lagoons, they did not significantly affect species richness or conservation value of the local communities. The differences in species composition therefore does not seem to be caused by water chemistry. Altogether, we have shown that fly ash lagoons are refuges for threatened aquatic species, and we thus suggest maintaining water bodies during site restoration after the cessation of fly ash deposition. Based on our analyses of environmental variables, we discuss suitable restoration practices that efficiently combine biodiversity protection and environmental risk reduction.