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Abstract. One of the fundamental challenges in developing autonomous
cybersecurity agents (AICA) is providing them with appropriate train-
ing environments for skills acquisition and evaluation. Current reinforce-
ment learning (RL) algorithms rely on myriads of training runs to instill
proper behavior, and this is reasonably achievable only within a sim-
ulated environment. In this paper, we explore the topic of simulation
models and environments for RL and compile a set of properties and
goals necessary to aid the development of AICA with real-world deploy-
ability. We also present an assessment framework to compare simulation
models designed for simulating cyberattack scenarios. We examine four
existing simulation tools, including a new one by the authors of the pa-
per, and discuss their properties, particularly in terms of deployability,
to support RL-based AICA. On the example of complex scenarios, we
compare in-depth the two most sophisticated simulation tools and dis-
cuss their strengths. The paper thus contributes to the state-of-the-art
by introducing a theoretical framework for evaluating RL-focused simu-
lation environments, surveying the currently available environments, and
introducing and evaluating a novel and complex simulation environment
for next-generation autonomous cybersecurity systems.

Keywords: simulation environments, autonomous decision-making, cy-
bersecurity

1 Introduction

The proliferation of AI-based technologies is likely to have a transformative effect
on every aspect of society, cybersecurity not being an exception.

The seemingly unending thirst for workers in cybersecurity is promised to
be quenched by autonomous systems driven by AI. Despite all the recent ad-
vancements, the genuine autonomy of cybersecurity solutions is an elusive goal.
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The reason is multi-faceted, but one of the fundamental challenges is providing
appropriate training environments where autonomous systems can be trained
and evaluated. Reinforcement learning (RL) methods, which are likely to be a
cornerstone of such future systems, rely on myriads of training runs to instill the
proper behavior. However, such a volume of repeated executions in real or rea-
sonably complex virtualized environments is infeasible. Simulation, when done
properly, provides an instinctive and realistic option to address this problem.

RL-focused simulation environments in the cybersecurity context are cur-
rently an under-researched topic. As we demonstrate in this paper, existing works
are often approached from an engineering angle, i.e., as a means to evaluate or
develop specific RL solutions. The underlying simulation models appear to be
ad-hoc developed as a part of the implementation, so it is challenging to do more
than superficial comparisons between existing solutions. In this paper, we aim
to introduce a more formal theoretical grounding for RL-focused cybersecurity
simulation by answering the following research questions:

1. How can we formalize a description of simulation models to enable compar-
ison between various simulator implementations?

2. What are the properties of simulation models and their implementations that
facilitate the development of deployable autonomous (especially RL-based)
cybersecurity systems?

3. How close are we to having a simulation environment that enables the de-
velopment of deployable autonomous cybersecurity systems?

The paper is divided into seven sections, which gradually supply answers to
these questions. In Section 2, we provide an overview of relevant simulation tech-
nologies. In Section 3, we derive the properties of simulation models that are the
most conducive to facilitating the development of deployable autonomous cyber-
security systems. In Section 4, we introduce a framework for assessing simulation
models, which is built on top of the Cyber Terrain and Capability, Opportunity,
Intent (COI) models. In Section 5, we employ this assessment framework for
an in-depth analysis of the four most prominent simulation environments. In
Section 6, we present an in-depth qualitative comparison between CYST and
CybORG [26], which are two of the most feature-rich simulators based on our
assessment. We then discuss the specific properties of both simulation environ-
ments and their implications. Section 7 summarizes the answers to the research
questions and discusses the promising future directions for RL-focused cyberse-
curity simulation.

2 Related Work

The facilitation of the development of autonomous decision-making based on
reinforcement learning requires suitable training environments. These environ-
ments have to offer an adequate interface for passing observation spaces and re-
wards (such as OpenAI Gym [5]) and enable efficient world-building and restora-
tion due to the desired quantity of repetitions.
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Contrary to some fields, the complexity of the cybersecurity domain ren-
ders abstraction-less training infeasible; thus, simulations, emulations, or their
combination are required. Simulations implement high-abstraction models and
are, therefore, very lightweight but may suffer from a loss of crucial details,
complicating the transfer of learned behavior into the real world. Emulations
compromise higher runtime complexity for fewer abstractions.

Existing network simulators, such as OMNet++ [28] and ns-3 [22], are being
extended with interfaces for AI/ML interoperability [11, 24]. While they are in-
valuable for researching autonomous intelligence for network-related tasks, their
models’ specificity limits their usability in developing more generic and multi-
purpose autonomous intelligent cyber-defense agents (AICA) [12]. Security-focused
environments are vital for developing AICA.

The DETER Project [15], VINE [8], and SmallWorld [9] provide an emu-
lated environment for cybersecurity experimentation; however, they were not
developed with reinforcement learning in mind. Thus, they lack the AI/ML in-
teroperability interface. The same holds for Insight [10], an attack-oriented, pure
simulation solution based on modeling system calls and I/O descriptors.

CANDLES [23] and Galaxy [25] were created to support the development
and evaluation of evolutionary algorithms. The former is a simulation environ-
ment, with simple attack and defense actions, allowing multi-agent rivalry-driven
training. The latter is an attack-oriented emulator used to explore enumeration
method enhancement.

Environments specifically targeting reinforcement learning differ not just in
abstraction level but also in their fundamental goal.

The FARLAND [17] framework aids the development of AICA utilizing net-
work traffic. It builds upon probabilistic behaviors for action and state spaces.
Being a hybrid approach, it leverages a training loop consisting of many simu-
lated learning runs followed by an emulated evaluation round. It also explores the
possibility of deceptive adversaries, who can interfere with the learning process
of the developed agents.

CyGil [13] builds upon virtualized emulation and leverages the adversary
emulation platform CALDERA [16] to define its action space and help collect
data for the AI/ML interoperability layer to report observations and rewards
to the agents. The environment provides means for single-agent or multi-agent
rivalry-based training instances.

Well-known for its use in the CAGE challenge [27], CybORG [26] is a hy-
brid, multi-agent training environment for AICA development and evaluation.
Its simulation part is based on a finite state machine that describes all the pos-
sible states of the scenario infrastructure. Agents then transition between these
states with the help of predefined actions. Once the simulation loop is finished,
the agents are taken into the emulation to be evaluated in a more realistic setting.

Microsoft’s take on the topic is CyberBattleSim [14], a purely simulation-
based environment with its focus skewed towards attacking techniques. The en-
vironment targets experimentation with the post-breach lateral movement phase
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of an attack, with the ultimate goal of getting control over as many devices in
the environment as possible.

The most recent environment is Yawning Titan [3]. It is purely simulation-
based with very high levels of abstraction because it aims to aid the testing of
the specific RL algorithms in a simplified cybersecurity context.

3 AICA development’s requirements for simulations

The topic of full cybersecurity autonomy has been spearheaded by the NATO
IST-152 research task group and later picked up by the AICA-IWG group. These
groups attempted a holistic approach to delineate the research domain and iden-
tify key research objectives and obstacles. As a result, an informal specification
of a reference architecture for autonomous cybersecurity agents was created [12],
and thirteen problem domains were identified. These cover infrastructure, archi-
tecture, engineering; individual and collective decision-making; stealth and re-
silience; and societal aspects. Even though simulation represents only a part of
one extensive problem domain, it is related to most of its components. Therefore,
considering its role, we specify several high-level goals for simulation environ-
ments and their models best to facilitate the development of reliably deployable
autonomous cybersecurity systems. Simulations should:
– enable the creation of deployable cybersecurity systems;
– enable multiple deployment domains and abstraction levels;
– enable human-in-the-loop;
– enable multi-agent and self-learning systems.

As these goals are rather broad, we extracted several more specific requirements
for simulations that – collectively – enable reaching these goals.
General requirements:
– should support a multi-agent mode;
– should be dynamic and developing to track changes in the cybersecurity

domain;
– should support different application and deployment domains;
– simulation fidelity shall track action granularity.

Requirements for actions:
– should allow integration of actions with different abstraction levels;
– should enable both agent-environment and agent-agent action types;
– should enable action parametrization;
– should enable action artifacts and side effects specification;
– may allow optional stochasticity.

Behavior control requirements:
– should not have fixed observation and reward systems;
– should provide an interface for RL frameworks.

Requirements for beyond-simulation interfacing:
– should enable the mapping of simulated actions to real-world equivalents;
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– should enable the transformation of simulation artifacts to real-world effects;
– should enable integration of simulation and emulation;
– should provide a comprehensive mechanism to handle simulation timing.

These requirements enable assessing how much a simulation model and its im-
plementation can facilitate the development of deployable autonomous cyberse-
curity systems and in which aspects they have deficiencies. Together with the
ontology and actor framework defined later in this work, it enables the evalua-
tion of both the current state and the potential of a simulation model and its
implementation.

4 An Assessment Framework for Autonomous Cyber
Agent Simulation

This work explores and assesses simulation environments that support attack
scenario manifestation with RL-based cyber agents. A simulation is an imple-
mentation of an abstract model of a domain in reality (see Figure 1).

To help with the analysis, we define an ontology describing simulation mod-
els. This description stems from the Cyber Terrain model [21]. For actors in the
simulation, we use and extend the Capability, Opportunity, Intent model, de-
scribed in [19]. To assess the overall quality of the models, we build upon [4] that
presents a qualitative, class-based framework for evaluating specific attributes
of abstract representations.

Ontology Simulation
Model

Simulation
Environment

Instantiation Implementation

Reality

Fig. 1. Levels of abstractions for simulations.

4.1 Ontology for Cyber Terrain Simulation

The high-level architecture of the ontology has five components and a varying
quantity of sub-components, as shown in Figure 2.

The Topology Plane This plane describes the physical topology of the infras-
tructure. It describes the devices in the cyber domain with optional differentiat-
ing attributes and the communication channels that connect them. Most often,
this plane is realized with the help of a discrete graph structure. The plane can
be instantiated as dynamic (new hosts can be added together with connections)
or static.

The Logic Plane This plane defines the functionality of the simulation. It de-
scribes attributes and nuances critical for the domain and the simulation context.
This plane can be further divided into the following sub-planes:
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Fig. 2. The SICTO framework for describing simulation environments.

– Host Configurations – details about operating systems and their components,
services, processes, executables, and data.

– User Configurations – details about user accounts, authentication methods,
memory, and userspace isolation (including access to data).

– Network Configurations – addressing, communication rules, traffic shaping
capabilities.

– Weaknesses – particularly crucial for actors, these describe deviations from
the ideal, secure operation flow.

The Meta-Communication Plane While the name might suggest a con-
nection with network communication, this plane describes the underlying (and
possibly hidden from RL observations) signaling between the components de-
fined in other planes. This signaling is exceptionally crucial when we want to
have lightweight mechanisms for propagating the effects of events in the domain,
and the propagation mechanism itself is irrelevant for AICA.

The Supervision/Observation Plane This plane is critical for creating ob-
servation spaces for RL. While the quality and detail of this plane can not elevate
the overall quality of the simulation (above the threshold defined by the other
components), an inadequate design can be detrimental.

This plane specifies the timing of the environment to control the interactions
between active components of the model. It also provides an interface for external
interactions, which are useful for monitoring, human interfacing, and allowing
cooperation with external services.

The Actor Plane The actors introduce state-changing events into the simu-
lation. Actors are defined by their behavioral model, a more complex primitive
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described in Section 4.2. Well-defined actors are critical, as AICA can be seen
as their decision-making guide.

4.2 Actor Behavior Framework and Types

The COI framework [19] provides a four-layer description of actor behavior; they
are:
– Intent – the existential goal of the actor.
– Opportunities – the domain of events that can be invoked by this actor.
– Capabilities – atomic predicates limiting the actor’s opportunities in real-

time.
– Preferences – prioritization inside opportunity equivalence classes based on

secondary intents.
We extend this framework with one additional layer: sophistication. Sophisti-
cation helps with the cost and risk assignment of taking specific opportuni-
ties, effectively providing another layer of long-term filtering. Thus, the COPSI
framework offers a way to express the time and financial effectiveness of the
actors.

In the case of AICA development, COPSI attributes might not be fixed
(e.g., be loosely constrained or entirely volatile). Moreover, allowing alternatives
might benefit a simulator (as it enables deeper tailoring of AICA properties).

When analyzing a simulation environment, we will use COPSI to describe
what the environment allows.

While many options exist for actor intent, we can define four actor types on
a high level. The four types, by no means exhaustive, are the following:

Adversaries The adversary intends to compromise data or service availability,
integrity, or confidentiality. It is the most dynamic actor regarding capabilities,
as they generally start with a minimal set and need to acquire new ones to
accomplish their goal(s). Their opportunities are actions they can take as steps
to reach their goal. Possible secondary intents defining preferences might be
stealth, cost, complexity, etc. Sophistication can be represented by vague classes
or structurally (e.g., based on NIST SP 800-30 [20]).

Defenders Defending actors aim to thwart and ultimately eliminate the possi-
bility of attackers achieving their goals without disrupting standard operations.
While their capability set and opportunities are almost static, their preferences
might change throughout the scenario as it evolves. Their sophistication is heav-
ily influenced by the technologies they are built upon.

Benign Participants Users, administrators. They intend to mimic human activity
and react to events happening in the simulation (such as clicking email links,
agreeing to a UAC prompt, etc.) Their capabilities are mostly predetermined
but can be extended due to events invoked by other actors. Their preferences
and sophistication can result from security education, role in the company, etc.
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The Fates Encompassing the invocation of sporadic events and the pattern and
impulse-based flow of common phenomena in the domain, these entities cover
the events out of the control of other actor types.

4.3 Metrics to Measure Quality

The framework provided by MITRE [4] defines qualitative metrics for represen-
tations’ comprehensiveness and concreteness (C&C).

– The classes for concreteness are: abstract, notional, representative, and fully
realized.

– The classes for comprehensiveness are: fragmentary, partially specified, and
fully specified.

The metrics are defined for adversary characteristics, adversary behavior, techni-
cal environments, operational architectures, and defender actions. Table 1 shows
how we map the various simulation model components to the MITRE’s C&C
perspectives.

Model Component MITRE Perspective
Attack vectors
Attack actionsAdversarial actor
Adversary characteristics

Defending actors’ opportunities Defender actions
Topology plane
Logic plane
Meta-Communication plane

Technical architecture

Logic plane - Weaknesses Technical vulnerabilities
Table 1. MITRE C&C mapping to model components.

Assessment of concreteness and comprehensiveness helps us with assessing
the fitness of the environment for RL-based AICA development because:

– the more concrete and comprehensive the attacker and defender models are,
the more tailorable and capable will the trained AICA be;

– with more concrete and comprehensive technical architecture and vulnera-
bilities, information used for autonomous decision-making can be more nu-
anced.

Simulation environments are pivotal in shaping the choice domain over which
AICA does its decision-making. The shape of this domain is given by its size and
structure. The domain can be flat (all options are equal) or hierarchical. A hierar-
chical structure can be best described with the example of an adversarial AICA,
which makes sequential choices over the MITRE ATT&CK® framework’s TTP
scheme (first choosing a tactic, then the target, followed by a technique allowing
it, and lastly, a specific procedure). A flat domain would be an immediate choice
from the procedures over a fixed target. Thus the choice domain shape is an
additional property we use for assessment. Unfortunately, this domain has to be
textually described, as no unified qualitative ladder can be defined.
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5 Comparison of Existing Simulations’ Models

In this section, we use the proposed framework to analyze existing simulation
environments structurally. The analysis helps us assess these simulators’ limits
and what they excel at. This, in turn, helps us spot possible neglected or un-
derdeveloped fragments in these environments and serves as an excellent pointer
for where to improve.

We analyze the Yawning Titan [3], CyberBattle Sim [14], CybORG [26]
and CYST [7] simulation environments as they are the four most promising
candidates for RL. CYST is an environment by the authors of this paper.

5.1 Yawning Titan

This simulation environment aims to test new RL algorithms in a simplified
cybersecurity setting. Thus the model is very high level(for example the only
attribute of a host is its compromitation status) to limit the size of the explorable
state.

This model design is most suitable for exploring the “territorial contest” in the
cybersecurity domain. The model’s simplicity results in a two-level adversarial
choice domain of target selection and deciding whether to use a guaranteed
attack. The defensive choice domain is similar, with target selection as the top
layer and then action selection from a small-size sub-domain. Thus, this simulator
is not suitable for the development of full-fledged AICA.

Actors and their Events The simulator has only two types of actors, defensive
and adversarial. The adversarial actor, based on COPSI (4.2), looks like:

– Intent : Maximizing territorial control over the network hosts.
– Opportunities: Attacking a host with either known techniques or zero-day

exploits.
– Capabilities: A set of hosts accessible from already controlled ones. Avail-

ability of a zero-day exploit.
– Preferences: Limitedly configurable.
– Sophistication: A numerical skill level that affects the success of attacking a

host based on its vulnerability score compared to this value. Time-to-develop
of zero-day exploits that allow always-successful attacks.

The defensive actors, based on the COPSI framework, can be characterized as:

– Intent : Minimizing the attacker’s control in the network.
– Opportunities: An action set consisting of: reducing the vulnerability of a

host, scanning the network for compromised hosts, regaining a compromised
node, resetting a node to its original state, deploying deceptive hosts (analogy
with honeypots), isolating a host from the network and lifting this isolation.

– Capabilities: Nonexistent.
– Preferences: Nonexistent.
– Sophistication: Probability of successfully discovering compromised hosts.
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5.2 CyberBattleSim

Microsoft’s model has much more granularity than Yawning Titan. It is designed
to examine autonomous intelligence in more complex cybersecurity scenarios. It
allows CTF-like scenarios (gathering specific data) or an availability disruption
campaign.

CyberBattleSim’s model is more fitting for training higher-level adversarial
decision-making with a limited, hierarchical choice domain. The hierarchy con-
sists of a layer of target selection, then a layer of high-level action selection,
followed by a layer of vulnerability selection.

Actors and their Events CyberBattleSim allows for adversarial and defensive
actors. The adversarial actor, represented by COPSI, is:

– Intent : Customizable.
– Opportunities: The action set consisting of scanning for vulnerabilities, ex-

ploiting a local vulnerability, exploiting a remote vulnerability, and signing-on
to a machine.

– Capabilities: A set of accessible hosts and level of control over them. Available
vulnerabilities on the target.

– Preferences: Can be customized by tweaking the action to RL reward rela-
tion.

– Sophistication: Can be customized by tweaking the action to RL reward
relation.

And the defensive counterpart:

– Intent : Countering the attacker.
– Opportunities: An action set consisting of node reimaging, overriding firewall

rules, starting and stopping services.
– Capabilities: Nonexistent.
– Preferences: Can be customized in the probabilistic model.
– Sophistication: Can be customized in the probabilistic model.

5.3 CybORG

CybORG aims to provide an environment for creating AICA with real-world
usability. It is a hybrid simulation-emulation environment, but in this paper, we
are strictly interested in the simulation part. CybORG views the simulation as
a state machine with states representing the overall state of the infrastructure,
thus mappable to our ontology.

CybORG allows for training more realistic and multi-purpose AICA, as it
provides for a two-level hierarchical choice domain (a sizable action selection
layer followed by an action parametrization layer – including target selection)
for both defensive and adversarial AICA.
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Actors and their Events Besides adversarial and defensive actors, CybORG
allows a very simple benign type actor with an action set consisting of connecting
to a host, sending data, ping scanning, and port scanning or a subset of it.

The adversarial actor, via COPSI is:
– Intent : Customizable.
– Opportunities: The action set is a freely chosen subset of a vast option set.

It consists of common exploit tactics and techniques from well-known tools
such as Metasploit.

– Capabilities: A set of accessible hosts and level of control over them. Logic
plane configuration values encoding action applicability.

– Preferences: Customizable by tweaking reward computation.
– Sophistication: Customizable by tweaking reward computation.

The defensive actor:
– Intent : Customizable.
– Opportunities: A freely chosen subset of a provided set of typical defender

actions and techniques sampled from tools such as Velociraptor.
– Capabilities: Nonexistent.
– Preferences: Customizable by tweaking reward computation.
– Sophistication: Customizable by tweaking reward computation.

5.4 CYST

CYST aims to achieve the goals presented in Section 3. CYST is built on the
message-passing discrete event-processing paradigm and is freely available [6].
Like CybORG, it is a hybrid simulation-emulation environment, enabling concur-
rent training of multi-agent systems. It supports extensive customization using
a comprehensive API, which also enables dynamic changes in the simulation en-
vironment during simulation runs. It also enables on-the-fly transformations of
simulation messages to other representations (such as flow or packet traces) and
using these representations to interact with systems outside simulations (such
as IDS systems). This way, it sidesteps the issue of reimplementing realistic cy-
bersecurity services within a simulation and enables mixed simulation-emulation
training of agents in a more realistic environment. Unlike the previous environ-
ments, CYST does not provide state space representations and reward computa-
tions – these are intrinsic to agents, and they must construct them from received
messages.

Actors and their Events CYST enables the creation of actions with arbitrary
semantics, so the actors are not limited in their capabilities by their assigned role.
The effect of these actions is expressed through the use of API, which enables
modifying the entire simulation.

The adversarial actor, via COPSI is:
– Intent : Customizable.
– Opportunities: The action set is a freely chosen subset of various action sets.

The current implementation supports the Action-Intent Framework [18] and
CYST-specific actions. MITRE ATT&CK framework implementation is on
the roadmap.
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– Capabilities: Capabilities are expressed through the possession of various
in-simulation artifacts, such as authentication or authorization tokens, and
network sessions.

– Preferences: Intrinsic to agents’ implementation. Not expressible in the en-
vironment.

– Sophistication: Intrinsic to agents’ implementation. Not expressible in the
environment.

The defensive actor:
– Intent : Customizable.
– Opportunities: The action set is a freely chosen subset of various action sets.

The current implementation supports only a limited subset of the MITRE
D3FENSE framework. The rest is on the roadmap.

– Capabilities: Capabilities are expressed through the possession of various
in-simulation artifacts, such as authentication or authorization tokens, and
network sessions.

– Preferences: Intrinsic to agents’ implementation. Not expressible in the en-
vironment.

– Sophistication: Intrinsic to agents’ implementation. Not expressible in the
environment.

5.5 Structured Comparison

To summarize the commonalities and differences of the analyzed simulation mod-
els in a concise way, we compiled Table 4, which uses the SICTO framework.
Furthermore, in Table 2 and Table 3, we compare some attributes of the models
based on the MITRE C&C assessment suite.

Property Y.Titan C.BattleSim CybORG CYST
Adversary characteristics Abstract Abstract Abstract Full. real.*
Attack vectors Abstract Notional Notional Notional
Attack actions Abstract Abstract Full. real. Full. real.*
Defender actions Notional Notional Full. real. Full. real.*
Technical architecture Abstract Notional Represent. Represent.
Technical vulnerabilities Abstract Represent. Represent. Represent.
* - depends on the external implementation but allows up to the class.

Table 2. Concreteness comparison of model properties.

6 In-depth comparison of CybORG and CYST

According to Table 4, it can be seen that there are two simulators that are
conducive to creating real-world deployable AICA – CybORG and CYST. Both
are hybrid simulation-emulation environments, and their level of abstraction is
low enough to map to real-world tools and processes. According to the SICTO
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Property Y.Titan C.BattleSim CybORG CYST
Adversary characteristics Fragmentary Fragmentary Fragmentary Full. spec.*
Attack vectors Fragmentary Part. spec. Part. spec. Part. spec.
Attack actions Fragmentary Part. spec. Full. spec. Full. spec.*
Defender actions Part. spec. Part. spec. Full. spec. Full. spec.*
Technical architecture Fragmentary Part. spec. Part. spec. Part. spec.
Technical vulnerabilities Fragmentary Part. spec. Part. spec. Part. spec.

* - depends on the external implementation but allows up to the class.
Table 3. Comprehensiveness comparison of model properties.

Property Yawning Titan CyberBattleSim CybORG CYST
Overall Abstraction Very high High Moderately low Moderately low

Topology
Dynamic changes Allowed Not supported Allowed Allowed
Representation Unidirected graph Non-directed graph Non-directed graph Unidirected graph

Logic
Network

Rule direction Bidirectional Bidirectional Bidirectional Bidirectional
Rule granularity Per-host Per-protocol Per-protocol Per-protocol
Additional capabilities None None None Jitter, traffic shaping

Hosts
OS Not supported Not supported Available Via software components
Software Not supported List of network services Processes and executables Active and passive services
Software properties Not supported State, downtime penalty Owners, identities Message handling function
Data Not supported Not supported Files Service data
Extendability No Yes, with boolean expressions No With custom message handling

Users
Account granularity Not supported Privilege levels, per-device Accounts, groups, per-device Accounts, per-service
Credentials Not supported Primary, per-service Primary, per-account Primary, MFA
Authorizations Not supported Not supported Not supported Yes, with federated auth.
Remote access control Not supported Per-service Per-device Per-service
Local access control Not supported Not supported Files only Not yet available

Weaknesses
Realism Low Medium High High
Representation Host vulnerability score Applicable adversary actions Applicable adversary actions Enablers *
Applicability guard Attacker skill value Host attribute prerequisites Host attribute prerequisites Service attribute prerequisites
Additional action attributes None Cost, success probability None None

Meta-communication
Event invocation Supervision intervention Supervision intervention Supervision intervention Via messaging
Event propagation Supervision intervention Supervision intervention Supervision intervention Via messaging

Supervision & Observation
Observation space Provided Provided Provided Not provided
Timing Sequential, turn-taking Sequential Sequential Concurrent
Reward computation Provided Provided Provided Not provided
Multiagent support No No Yes Yes

* – CWE [1], CVE [2], misconfigurations, bad-practices

Table 4. Comparison of simulation models’ attributes structured by the SICTO frame-
work.

framework, their difference is minimal, with CYST being more customizable and
supporting some sophisticated features at the expense of not providing state
representations and reward computations.

To provide a more in-depth comparison between those two simulators, we
analyze them in terms of their intended users, i.e., what it entails to develop
agents in their contexts. For CybORG, we use as a reference point the second
CAGE challenge [27]. For CYST, there is not yet a published testing setup, thus,
we introduce it in the following text. We then compare the required tasks for
both environments to draw observations of their capabilities and strong points.
Both CybORG and CYST provide open access to their code, so the interested
reader is free to build on this text and follow with environment investigation in
their specific niche.
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Environment and scenario setup
The CybORG environment is described in-depth here [27], so we provide only a
quick summary. The goal of the user is to develop a defense agent that can with-
stand attackers with different strategies. The topology of the scenario consists
of three subnetworks, and the attacker always starts from one computer in one
of the subnetworks. The vulnerability of hosts is specified on a per-port basis.

The CYST environment is tailored toward the training of attack agents. The
infrastructure and kill chain are depicted in Figures 4 and 3, in the appendix.
The scenario contains two routers and is partitioned into four isolated subnet-
works with additional routing rules enabling, for example, limited communica-
tion between operational servers and DMZ. These networks are populated with
a bare minimum number of machines, which are all critical for executing the
complete kill chain. The kill chain consists of seven alternating reconnaissance
and exploitation phases. While the reconnaissance is not strictly necessary, it is
included as it better mimics what an attacker would have to do.

The same infrastructure is used also for emulation via Docker, and agents can
transition between those two environments transparently. However, as CybORG
does not support emulation for the second CAGE challenge, we are omitting this
aspect from the comparison.

Agent’s observations and actions
CybORG provides observations in response to agents’ actions. Thanks to pre-
made wrappers, they can be directly used with e.g., OpenAI Gym environment.
These observations simulate that a defender has monitoring services deployed
on each host in the infrastructure, thus providing observations matching the
objective state. There are 4+7 actions (monitor, analyze, remove, restore, and
service decoys) parametrized by hostname.

CYST provides neither the observation space nor rewards for agents’ ac-
tions. The reasoning is that agents dependent on external observations and their
rewards would not be able to progress with their training in the emulated envi-
ronment, where this information is generally inaccessible. Agents are then forced
to form their belief state from the incoming messages and develop reward systems
according to their goals.

Agents are given a set of actions they can execute to progress within the
infrastructure. These actions are scanning, password brute-forcing, session cre-
ation, credentials extraction, and data extraction. These actions are not stochas-
tic to provide a more realistic experience for trained agents. They work only if
the agent satisfies all action conditions, such as correctly adding an exploit or
an authentication token.

Discussion
It is exciting and reassuring that both simulation environments are gravitating
to similar goals and are using similar approaches, despite being developed in
isolation. Table 5 summarises the strong points of both CYST and CybORG,
which may be critical when deciding which solution to use. Properties that are
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essentially the same between both are left out, as they can either be extrapolated
from the model description, or they are discussed concerning achieving the goals
mentioned above.

It can be said that, in general, many of the functionalities described in Ta-
ble 5 can be implemented by either of the simulators provided there is enough
incentive. However, it is likely that the implementation of the properties related
to interfacing with humans or services besides simulation would require consid-
erable changes to the CybORG simulation model and implementation. The same
is likely for agent-agent interaction and non-singular actions.

CYST CybORG
Infrastructure & Logic

Network traffic shaping. Service and OS knowledge base.
Modeling the traffic. Modeling OS.
Support for complex authentication and
authorization.

Host level information down to PID and
files and their permissions.

Supervision, Actors & Agents
Unbounded action and observation spaces. Provides global and local observations.
Complex action parametrization to mimic
real-world actions tailored for RL.

Integrated rewards.

Non-singular action handling. Rich action space.
Transaction support for faster training.
Agent-agent interaction in addition to
agent-environment.

External & Miscellaneous
Strong focus on deployability. Ready wrappers and interfaces for Ope-

nAI.
Maximizing extensibility, stand-alone
packages, usable as a library, and plugin
support.
Integration with outside running services.
Human-machine interface.

Table 5. Strong features of CYST and CybORG.

7 Conclusion

In this paper, we discussed the current landscape of simulation environments
for training RL-based cybersecurity solutions. We proposed a theoretical frame-
work to assess existing simulation models systematically and compared three
recent works. Through this study, we answer the three originally posed research
questions as follows:

1. How can we formalize a description of simulation models to enable compar-
ison between various simulator implementations?
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In Section 4, we present an assessment framework built on the Cyber Terrain
ontology, an extended Capability, Opportunity, Intent model, and a quality
metric by MITRE. We use this framework in Sections 5 and 6 to analyze
the four advanced RL-focused simulation environments, including a newly
introduced CYST simulation framework.

2. What are the properties of simulation models and their implementations that
facilitate the development of deployable autonomous (especially RL-based)
cybersecurity systems?
In Section 3, we compile a set of properties for an appropriate simulation
model. These properties are formulated from the general goals extracted
from the pioneering works on autonomous intelligent cyber defense agents
(AICA) by NATO IST-152 and AICA-IWG members.

3. How close are we to having a simulation environment that enables the de-
velopment of deployable autonomous cybersecurity systems?
In Section 6, we compare the usage between CYST and CybORG, and based
on this, we compile a list of strong points for both simulation environments.
We then argue that both environments gravitate towards the appropriate
properties introduced in Section 3. However, both solutions still need to
be considerably extended to enable the training of future deployable au-
tonomous cybersecurity systems.

This paper contributes to the state-of-the-art in several ways. Introducing
and applying the assessment framework provides a systematic approach to de-
veloping and assessing RL-focused cybersecurity simulators. Formulating goals
and properties of appropriate simulation models sets a clear path toward ca-
pable RL-focused simulation models and environments that others can follow.
And finally, by presenting a new simulation environment CYST, it introduces
technological diversity to existing simulators.

7.1 Future Work

The properties of an appropriate simulation model described in Section 3 indicate
the areas the research community should focus on. In addition, we see several
areas that will require concentrated research and development efforts to support
future deployable AICA better. These include:

– Development of environments for orchestration of simulation runs to enable
at-scale training of AICA.

– Mechanisms for procedural generation of cyber terrains to provide variability
to agents’ training.

– High-fidelity implementation of industry-proven attack and defense action
sets to increase the realism of simulations.
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A Appendix – Scenario Infrastructure and Killchain

Stage 1a Stage 2a

Stage 1b Stage 2bDMZ
reconnaissance

Infrastructure & WordPress
vulnerability scanning.

WordPress
exploitation

Using a brute force attack to
guess user credentials.
Uploading a malicious

WordPress module to get a
session.

server-subnet
reconnaissance
Finding the subnet's

address, creating a routing
table, and host
enumeration.

FTP server
exploitation

Using a known vulnerability
to get access to the FTP

server. Accessing the logs
with the login information.

Stage 3a Stage 4a

Stage 3buser-subnet
reconnaissance 

Updating the routing table
with the network details
gathered from the FTP
server. Checking if the

target station is running.

Getting access to
the user station
Using the discovered

username as input for a
brute force attack.

Establishing a session.

Data exfiltration

Finding the access
credentials to the database

server and extracting its
data afterwards.

Fig. 3. The kill chain of the scenario.

Internal network

Server-subnet
192.168.92.0/24

User-subnet
192.168.94.0/24

DMZ
192.168.93.0/24

Cryton network
192.168.90.0/24

Worker
cryton-> 192.168.90.30
public -> 192.168.91.30

Wordpress
public -> 192.168.91.10
dmz -> 192.168.93.10

server-net -> 192.168.92.10
user-net -> 192.168.94.10

FTP server
192.168.92.20

Postgres DB
server-net -> 192.168.92.21
user-net -> 192.168.94.21

wordpress DB
192.168.93.11

User
192.168.94.20

Public network
192.168.91.0/24

Fig. 4. The infrastructure of the scenario.


