THE ROAD TOWARDS AUTONOMOUS CYBERSECURITY: REMEDIES FOR SIMULATION ENVIRONMENTS

Martin Drašar, Ádám Ruman, Pavel Čeleda, Shanchieh Jay Yang drasar@ics.muni.cz SECAI 2023

HOW TO GET TO AUTONOMOUS CYBERSECURITY?

- DESPITE ALL THE PROMISES OF AI, WE ARE NOT GETTING ANYWHERE WITH AUTONOMY
- Numerous reasons:
 - DOMAIN COMPLEXITY
 - INSUFFICIENT TRAINING DATASETS
 - INSUFFICIENT TOOLING
- THIS PRESENTATION ADDRESSES THOSE REASONS THROUGH THE PRISM OF TRAINING ENVIRONMENTS

STATE OF THE ART

- TRAINING ENVIRONMENTS ARE UNDER-RESEARCHED AND UNDER-DEVELOPED
- GENERIC SOLUTIONS CANNOT BE USED, THEY DO NOT CAPTURE THE COMPLEXITY
- CYBERSECURITY SOLUTIONS ARE EITHER TOO ABSTRACT, OR TOO SPECIFIC
- NARROW SCOPE OF TOOLING
- NO REAL PUSH FOR CREATING DEPLOYABLE SOLUTIONS

SIMULATION ENVIRONMENTS

- OFTEN BUILD AS MEANS TO AN END
- No solid theoretical foundation
- IN EFFECT, DIFFERENT ENVIRONMENTS ARE INCOMPARABLE
 - AT LEAST UNTIL TODAY...

ASSESSMENT FRAMEWORK FOR AUTONOMOUS CYBER AGENT SIMULATION

- SIMULATIONS CYBER TERRAIN ONTOLOGY
- ACTOR EVALUATION FRAMEWORK
- COMPREHENSIVENESS AND CONCRETENESS MEASUREMENT

SIMULATIONS CYBER TERRAIN ONTOLOGY

- TOPOLOGY PLANE: PHYSICAL TOPOLOGY OF
 THE INFRASTRUCTURE
- LOGIC PLANE: FUNCTIONALITY OF SIMULATION
- META-COMMUNICATION PLANE: INTER-PLANE SIGNALING
- SUPERVISION/OBSERVATION PLANE: OBSERVATION SPACES AND TIMING
- **ACTOR PLANE:** STATE-CHANGING ENTITIES

ACTOR EVALUATION FRAMEWORK

- Based on COI framework
 - INTENT: EXISTENTIAL GOAL OF ACTOR
 - OPPORTUNITIES: DOMAIN OF EVENTS THAT CAN BE INVOKED BY ACTORS
 - CAPABILITIES: PREDICATES LIMITING ACTOR'S OPPORTUNITIES
 - Preferences: Prioritization based on secondary intents
 - SOPHISTICATION: COST AND RISK ASSIGNMENT OF TAKING SPECIFIC OPPORTUNITIES
- FOUR GENERIC ACTOR TYPES: ADVERSARIES, DEFENDERS, BENIGN PARTICIPANTS, FATES

COMPREHENSIVENESS AND CONCRETENESS MEASUREMENT

- BASED ON MITRE'S METRICS
- **Perspectives**: Attack vectors, attack actions, adversary characteristics, defender actions, Technical architecture, technical vulnerabilities
- CONCRETENESS: ABSTRACT, NOTIONAL, REPRESENTATIVE, FULLY REALIZED
- COMPREHENSIVENESS: FRAGMENTARY, PARTIALLY SPECIFIED, FULLY SPECIFIED

ASSESSMENT OF DEPLOYABILITY

- WE ASSERT THAT TO CREATE DEPLOYABLE SOLUTIONS, THE TRAINING ENVIRONMENT HAS TO:
 - APPROACH MINIMAL ABSTRACTION
 - PROVIDE ACTIONABLE DESCRIPTIONS OF THE TERRAIN, USERS, VULNERABILITIES, ETC.
 - BE DYNAMIC AND ABLE TO EVOLVE
 - Be concrete and comprehensive
- TO THIS END WE ANALYZED THE FOLLOWING ENVIRONMENTS:
 - YAWNING TITAN, CYBERBATTLESIM, CYBORG, CYST, AND NASIMEMU (NOT IN THE PAPER)

COMPARISON OF CYBORG AND CYST

- ACCORDING TO ASSESSMENT FRAMEWORK THE TWO MOST SOPHISTICATED TOOLS
- We made a qualitative evaluation based on 2ND CAGE challenge and similar custom scenario for CYST
- WE EVALUATED STRONG POINTS FROM THE POINT OF VIEW OF A DEVELOPER OF AUTONOMOUS CYBERSECURITY SYSTEM.

CAGE challenge

CYST scenario

- BOTH ENVIRONMENTS GRAVITATE
 TO SIMILAR GOALS AND USE
 SIMILAR APPROACHES
- CYBORG IS MORE READILY USABLE AT THE EXPENSE OF ADVANCE FEATURES
- CYBORG DROPPED EMULATION SUPPORT, SO IT IS UNUSABLE IN THE FUTURE

CYST	CybORG												
Infrastructure & Logic													
Network traffic shaping.	Service and OS knowledge base.												
Modeling the traffic.	Modeling OS.												
Support for complex authentication and authorization.	d Host level information down to PID and												
	files and their permissions.												
Supervision, Actors & Agents Unbounded action and observation spaces. Provides global and local observations.													
•	0												
Complex action parametrization to mimic	Integrated rewards.												
real-world actions tailored for RL.													
Non-singular action handling.	Rich action space.												
Transaction support for faster training.													
Agent-agent interaction in addition to													
agent-environment.													
External & I	Miscellaneous												
Strong focus on deployability.	Ready wrappers and interfaces for OpenAI.												
Maximizing extensibility, stand-alone													
packages, usable as a library, and plugin													
support.													
Integration with outside running services.													
Human-machine interface.													

INFO PANE

- lsing flumbers it disp imulated network
- successful attacks on th
- Saves all successful a node into a table and s

- MULTI-AGENT DISCRETE-EVENT SIMULATION FRAMEWORK TAILORED FOR CYBERSECURITY
- Highly extensible and flexible (action spaces, observation spaces, \ldots)
- SUPPORTS TRANSFORMATION OF SIMULATION ARTIFACTS INTO FLOWS, PACKET TRACES, ETC.
- Enables integration of simulation and emulation (IDS in the loop)
- de HTTP://MUNI.CZ/GO/CYST
- HTTPS://GITLAB.ICS.MUNI.CZ/CRYTON/BEAST-DEMO

					iC	×		O			Ю		O		o		ic	O		
											da	ta				tic				
						0					da	ta		χñ		tic				
				d										xfi						
				d							da	ta		xfi		tic				
E	=1	\bigvee	1	\bigcup										xfi						

7.4 vpn srv skysea client view disclosure data extended to the skysea client view disclosure data extended t

api srv

Al-DOJO

- RESEARCH PROJECT TO CREATE A PLATFORM FOR DEVELOPMENT OF AUTONOMOUS CYBERSECURITY SYSTEMS
- INTEGRATION OF SIMULATION AND EMULATION
- LIBRARY OF AGENTS WITH DIFFERENT BEHAVIOR (ATTACKER, DEFENDERS, USERS)
- AUTOMATED GENERATION OF REALISTIC CYBERSECURITY SCENARIOS TO SUPPORT LEARNING
- HTTPS://MUNI.CZ/GO/AI-DOJO

AICA-IWG

- FOLLOW-UP TO NATO IST-152 TASKED WITH SPECIFICATION OF REFERENCE ARCHITECTURE FOR AUTONOMOUS CYBERDEFENSE SYSTEMS
- WORKING GROUP FOCUSED ON FURTHERING THE DEVELOPMENT OF AUTONOMOUS CYBERSECURITY SYSTEMS
- ACADEMIA, INDUSTRY, DEFENSE
- HTTPS://WWW.AICA-IWG.ORG/

ADDENDUM: NASIMEMU ASSESSMENT

- Abstraction level: High
- TOPOLOGY:
 - DYNAMIC CHANGES: ALLOWED
 - REPRESENTATION: CUSTOM DATA STRUCTURE
- Logic:
 - NETWORK:
 - Rule direction: Bidirectional
 - Rule granularity: Per protocol, for subnets
 - ADDITIONAL CAPABILITIES: NONE
 - Hosts:
 - OS: AVAILABLE, HIGH-LEVEL TAGS
 - SOFTWARE: PROCESS
 - SOFTWARE PROPERTIES: VERSIONS USING TAGS
 - USERS:
 - ACCOUNT GRANULARITY: NOT SUPPORTED
 - CREDENTIALS: NOT SUPPORTED
 - AUTHORIZATIONS: ONLY THE LEVEL OF CONTROL OVER A
 HOST
 - REMOTE ACCESS CONTROL: NOT SUPPORTED
 - LOCAL ACCESS CONTROL: USER PRIVILEGES
 - WEAKNESSES:
 - REALISM: HIGH
 - REPRESENTATION: EXPLOITABLE VULNERABILITIES
 - APPLICABILITY GUARD: SERVICE NAME
 - ADDITIONAL ACTION ATTRIBUTES: COST, PROBABILITY OF SUCCESS

- META COMMUNICATION:
 - EVENT INVOCATION: SUPERVISION INTERVENTION
 - EVENT PROPAGATION: SUPERVISION INTERVENTION
- Supervision/observation:
 - OBSERVATION SPACE: PROVIDED
 - TIMING: SEQUENTIAL
 - REWARD COMPUTATION: PROVIDED
 - MULTI-AGENT SUPPORT: UNKNOWN

ADVERSARIAL COPSI:

- Intent: Finding a pre-defined loot.
- Opportunities: 8 actions (Exploit, Privilege escalation, ServiceScan, ProcessScan, TerminalAction)
- CAPABILITIES: ACCESSIBLE HOSTS (VIA CONTROL LEVEL),
 VULNERABILITIES
- Preference: Customizable via reward computation
- SOPHISTICATION: AGENT DEPENDENT

DEFENDER COPSI:

Defenders not available

Concreteness:

- ADVERSARY CHARACTERISTICS: ABSTRACT
- ATTACK VECTORS: NOTIONAL
- ATTACK ACTIONS: ABSTRACT
- Defender actions: Unavailable
- TECHNICAL ARCHITECTURE: NOTIONAL
- Technical vulnerabilities: Representative

COMPREHENSIVENESS:

- ADVERSARY CHARACTERISTICS: FRAGMENTARY
- ATTACK VECTORS: PARTIALLY SPECIFIED
- ATTACK ACTIONS: PARTIALLY SPECIFIED
- Defender actions: Unavailable
- TECHNICAL ARCHITECTURE: FRAGMENTARY
- TECHNICAL VULNERABILITIES: PARTIALLY SPECIFIED