MUNI C4E

Cyber Key Terrain Identification Using Adjusted PageRank Centrality

Lukáš Sadlek, Pavel Čeleda sadlek@mail.muni.cz

Masaryk University, Czech Republic

June 16, 2023 @ IFIP SEC 2023 conference

Introduction

Motivation

- Cyber defense is meaningless without knowing which cyber assets to protect
- Protect cyber assets related to the organization's objectives (mission)
- Verify the content of populated asset inventory

Cyber Key Terrain

- Network devices, network services, cyber personas, and other network entities
- Provides an **advantage** for attackers and defenders
- **Example** key asset can be a local **domain name server**

Research Questions

RQ1 How to determine which IP addresses from cyber terrain are the key according to the *network communication*?

Research Questions

RQ1 How to determine which IP addresses from cyber terrain are the key according to the *network communication*?

RQ2 Does *adjusting* the PageRank centrality lead to *better correctness* of determining the cyber key terrain, and can it process IP flows from the *real-world network*?

Network Centrality

Network Centrality Measures

- Asset criticality based on position in a graph
- **Several types** degree, betweenness, closeness, and eigenvector centralities
- Data IP flows (unidirectional and bidirectional)

PageRank Centrality

- Initially proposed for ranking of web pages
- Considers vertices linked by outgoing edges
- **Damping factor** the probability of continuing with a **random web page**

PageRank Centrality – Example

Important Nodes

- Linked by **many** nodes
- Linked by an important node that references a small number of other nodes

Figure 1: PageRank centrality expressed in percentages for an example graph.

Learning Phase – I

Adjusted PageRank Formula

- Asset criticality by considering **network communication specifics**
- Damping factors adjusted to source and destination port pairs
- All adjusted PageRank values sum to one

Machine Learning Methods

- Hill climbing modification of the current solution to achieve a better solution
- **Random walk** assignment of a **random** value to a **conflict** variable
- Optimization problems

Learning Phase – II

Algorithm 1: Learning phase

Input : graph, max_iterations, probability, results, heuristic Output: best F1 score, best damping factors

- 1 preprocessing()
- 2 one_iteration_of_pagerank(graph, factors, results)
- $\textbf{3} \hspace{0.1in} iterations \leftarrow 0$
- **4** while $F1_score \neq 1$ and iterations $\leq max_iterations$ **do**

```
s assign_best_F1_score()
```

```
6 port_pair ← choose_random_conflict_port_pair()
```

```
7 if random_experiment > 1 - probability then
```

```
8 factors[port_pair] \leftarrow random(0, 1)
```

9 end

```
10 else hill_climbing(heuristic)
```

11 iterations \leftarrow iterations + 1

```
12 one_iteration_of_pagerank(graph, factors, results)
```

```
13 end
```

```
14 assign_best_F1_score()
```

Computation Phase

Dynamic Stream-Based PageRank

- Multiple damping factors
- One IP flow (forward direction of bidirectional flow) = one edge
- **Values** of PageRank centrality **fluctuate** throughout the time

Advantages

- Processes a large amount of data
- Reads sorted flows in one pass

Evaluation - Dataset from Cyber Defense Exercise - I

Methodology

Six participating teams, **six** partial **datasets**

		Team 1	Team 2	Team 3	Team 4	Team 5	Team 6
Data	Nodes	554	1,380	542	884	503	219
	Edges	1,468	3,064	1,631	2,418	1,361	584
	IP flows	66,499	116,897	63,400	88,734	78,254	30,781
Time	Preprocessing	0.5 s	1.4 s	0.4 s	0.9 s	0.4 s	0.1 s
	Learning time	175.0 s	17.5 min	168.3 s	7.4 min	142.9 s	30.2 s
	Computation time	1.3 s	2.1 s	1.2 s	1.8 s	1.6 s	0.6 s

Table 1: The size of the processed graph for learning and measured time.

Lukáš Sadlek • Cyber Key Terrain Identification Using Adjusted PageRank Centrality • June 16, 2023 @ IFIP SEC 2023 conference 9 / 15

Evaluation - Dataset from the Cyber Defense Exercise - II

Figure 2: Line graphs containing **F1 scores for heuristics** and the PageRank with **default damping factor** for two team networks.

Lukáš Sadlek • Cyber Key Terrain Identification Using Adjusted PageRank Centrality • June 16, 2023 @ IFIP SEC 2023 conference 10/15

Evaluation – Dataset from the Campus Network – I

Heuristic	S1	S 2	S3	S4	S5	N	Var
Default PageRank	24	24	23	23	23	30.8	_
Minimum	26.4	28.3	27.6	27.9	27.8	37.9	18.9
Maximum	25.2	25.8	24.5	24.2	24.2	34.1	13.6
Average	22.8	23.3	22.3	22.6	22.4	29.7	10.3
The smallest difference	24.0	24.5	23.5	23.4	23.4	32.8	7.72

Table 2: The number of true positives in the **top 100 results** according to samples (S1 – S5), the average number of hosts from the **university network** (N), and the average variance of true positives during the **ten-minute-long window**.

Evaluation – Dataset from the Campus Network – II

Heuristic	S1	S 2	S 3	S 4	S5	S 6	S 7	S 8	N	Var
Default PageRank	41	41	43	42	41	41	41	41	59.1	-
Minimum	40.3	41.5	41.1	40.7	40.1	40.1	40.3	39.9	59.2	2.7
Maximum	40.5	41.7	41.2	40.8	40.4	39.9	39.9	39.3	58.3	11.2
Average	38.6	39.8	39.7	39.1	38.7	38.0	38.6	38.3	56.9	7.8
The smallest difference	40.4	41.4	41.1	40.6	40.5	40.3	40.2	39.9	58.4	3.8

Table 3: The number of true positives in the **top 100 results** according to samples (S1 – S8), the average number of hosts from the **university network** (N), and the average variance of true positives in these samples during the **one-hour-long window**.

Limitations

Method

- Consider other attributes of IP flows
- IP flows may not be optimally sorted
- Results may **not fit** into the main memory

Evaluation

Progress could remain **hidden**

Summary

Contribution

- PageRank centrality IP addresses related to critical organization's services
- The top 100 results almost the same precision with the increased count of flows
- Approach easy update of values, a small number of manual steps

Supplementary Materials

- A proof-of-concept implementation of the learning and computation phases
- Ground-truth labels
- Available at https://doi.org/10.5281/zenodo.7884228

MUNI C4E

EUROPEAN UNION

European Structural and Investment Funds Operational Programme Research, Development and Education

C 4 E . C Z