J 2023

A sharp characterization of the Willmore invariant

BLITZ, Samuel Harris

Basic information

Original name

A sharp characterization of the Willmore invariant

Authors

BLITZ, Samuel Harris (840 United States of America, guarantor, belonging to the institution)

Edition

International Journal of Mathematics, World Scientific Publishing, 2023, 0129-167X

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

Singapore

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

URL

Impact factor

Impact factor: 0.600 in 2022

RIV identification code

RIV/00216224:14310/23:00131503

Organization unit

Faculty of Science

DOI

http://dx.doi.org/10.1142/S0129167X23500544

UT WoS

001026038800002

Keywords in English

Extrinsic conformal geometry; hypersurface embeddings; Willmore invariant

Tags

rivok

Tags

International impact, Reviewed
Změněno: 9/1/2024 13:41, Samuel Harris Blitz, M.Sc., Ph.D.

Abstract

V originále

First introduced to describe surfaces embedded in R3, the Willmore invariant is a conformally-invariant extrinsic scalar curvature of a surface that vanishes when the surface minimizes bending and stretching. Both this invariant and its higher-dimensional analogs appear frequently in the study of conformal geometric systems. To that end, we provide a characterization of the Willmore invariant in general dimensions. In particular, we provide a sharp sufficient condition for the vanishing of the Willmore invariant and show that in even dimensions it can be described fully using conformal fundamental forms and one additional tensor.

Links

MUNI/A/1099/2022, interní kód MU
Name: Specifický výzkum v odborné a učitelské matematice 2023
Investor: Masaryk University
Displayed: 10/11/2024 10:00