D 2023

Synthesizing Resilient Strategies for Infinite-Horizon Objectives in Multi-Agent Systems

KLAŠKA, David, Antonín KUČERA, Martin KUREČKA, Vít MUSIL, Petr NOVOTNÝ et. al.

Basic information

Original name

Synthesizing Resilient Strategies for Infinite-Horizon Objectives in Multi-Agent Systems

Authors

KLAŠKA, David (203 Czech Republic, belonging to the institution), Antonín KUČERA (203 Czech Republic, guarantor, belonging to the institution), Martin KUREČKA (203 Czech Republic, belonging to the institution), Vít MUSIL (203 Czech Republic, belonging to the institution), Petr NOVOTNÝ (203 Czech Republic, belonging to the institution) and Vojtěch ŘEHÁK (203 Czech Republic, belonging to the institution)

Edition

Neuveden, Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI 2023, p. 171-179, 9 pp. 2023

Publisher

International Joint Conferences on Artificial Intelligence

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10201 Computer sciences, information science, bioinformatics

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

electronic version available online

References:

RIV identification code

RIV/00216224:14330/23:00131516

Organization unit

Faculty of Informatics

ISBN

978-1-956792-03-4

ISSN

Keywords in English

Multi-agent systems; strategy synthesis

Tags

International impact, Reviewed
Změněno: 26/7/2024 11:28, RNDr. Pavel Šmerk, Ph.D.

Abstract

V originále

We consider the problem of synthesizing resilient and stochastically stable strategies for systems of cooperating agents striving to minimize the expected time between consecutive visits to selected locations in a known environment. A strategy profile is resilient if it retains its functionality even if some of the agents fail, and stochastically stable if the visiting time variance is small. We design a novel specification language for objectives involving resilience and stochastic stability, and we show how to efficiently compute strategy profiles (for both autonomous and coordinated agents) optimizing these objectives. Our experiments show that our strategy synthesis algorithm can construct highly non-trivial and efficient strategy profiles for environments with general topology.

Links

GA23-06963S, research and development project
Name: VESCAA: Verifikovatelná a efektivní syntéza kontrolerů pro autonomní agenty
Investor: Czech Science Foundation, VESCAA: Verifiable and Efficient Synthesis of Controllers for Autonomous Agents
MUNI/A/1081/2022, interní kód MU
Name: Modelování, analýza a verifikace (2023)
Investor: Masaryk University
MUNI/A/1433/2022, interní kód MU
Name: Zapojení studentů Fakulty informatiky do mezinárodní vědecké komunity 23
Investor: Masaryk University
0011629866, interní kód MU
Name: Models, Algorithms, and Tools for Solving Adversarial Security Problems
Investor: Ostatní - foreign
101087529, interní kód MU
Name: Cyber-security Excellence Hub in Estonia and South Moravia (CHESS)
Investor: European Union, Cyber-security Excellence Hub in Estonia and South Moravia (CHESS), Widening participation and strengthening the European Research Area

Files attached