V originále
a-Conglutin, a lupin seed protein, is an intriguing protein both in terms of the complexity of its molecular structure and a broad spectrum of unique health-promoting properties manifested in animal and human trials. Moreover, this protein is an evolutionary cornerstone whose physiological significance for the plant has not been determined yet. Herein, a comprehensive characterization of a-conglutin glycosylation is presented and includes the identification of the N-glycan-bearing site, the qualitative and quantitative composition of glycan-building saccharides, as well as the effect of oligosaccharide removal on structural and thermal stability. The obtained results indicate the presence of glycans belonging to different classes attached to the Asn98 residue. In addition, the detachment of the oligosaccharide significantly affects secondary structure composition, which disturbs the oligomerization process. The structural changes were also reflected in biophysical parameters, i.e., at a pH value of 4.5, an increase in a-conglutin thermal stability was observed for the deglycosylated monomeric form. Collectively, the presented results provide evidence of the high complexity of the post-translational maturation and suggest the possibility of a functional effect that glycosylation might have on a-conglutin structure integrity.