D 2023

Sparse Graphs of Twin-width 2 Have Bounded Tree-width

BERGOUGNOUX, Benjamin, Jakub GAJARSKÝ, Grzegorz Jan GUSPIEL, Petr HLINĚNÝ, Filip POKRÝVKA et. al.

Basic information

Original name

Sparse Graphs of Twin-width 2 Have Bounded Tree-width

Authors

BERGOUGNOUX, Benjamin (250 France), Jakub GAJARSKÝ (703 Slovakia), Grzegorz Jan GUSPIEL (616 Poland, belonging to the institution), Petr HLINĚNÝ (203 Czech Republic, guarantor, belonging to the institution), Filip POKRÝVKA (703 Slovakia, belonging to the institution) and Marek SOKOŁOWSKI (616 Poland)

Edition

283. vyd. Dagstuhl, Germany, ISAAC 2023, p. "11:1"-"11:13", 13 pp. 2023

Publisher

Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

Germany

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

electronic version available online

RIV identification code

RIV/00216224:14330/23:00131580

Organization unit

Faculty of Informatics

ISBN

978-3-95977-289-1

ISSN

Keywords in English

twin-width; tree-width; excluded grid; sparsity

Tags

International impact, Reviewed
Změněno: 7/4/2024 23:19, RNDr. Pavel Šmerk, Ph.D.

Abstract

V originále

Twin-width is a structural width parameter introduced by Bonnet, Kim, Thomassé and Watrigant [FOCS 2020]. Very briefly, its essence is a gradual reduction (a contraction sequence) of the given graph down to a single vertex while maintaining limited difference of neighbourhoods of the vertices, and it can be seen as widely generalizing several other traditional structural parameters. Having such a sequence at hand allows to solve many otherwise hard problems efficiently. Our paper focuses on a comparison of twin-width to the more traditional tree-width on sparse graphs. Namely, we prove that if a graph G of twin-width at most 2 contains no K_{t,t} subgraph for some integer t, then the tree-width of G is bounded by a polynomial function of t. As a consequence, for any sparse graph class C we obtain a polynomial time algorithm which for any input graph G ∈ C either outputs a contraction sequence of width at most c (where c depends only on C), or correctly outputs that G has twin-width more than 2. On the other hand, we present an easy example of a graph class of twin-width 3 with unbounded tree-width, showing that our result cannot be extended to higher values of twin-width.

Links

MUNI/A/1081/2022, interní kód MU
Name: Modelování, analýza a verifikace (2023)
Investor: Masaryk University
MUNI/A/1433/2022, interní kód MU
Name: Zapojení studentů Fakulty informatiky do mezinárodní vědecké komunity 23
Investor: Masaryk University