D 2023

Phenotype Control of Partially Specified Boolean Networks

BENEŠ, Nikola, Luboš BRIM, Samuel PASTVA, David ŠAFRÁNEK, Eva ŠMIJÁKOVÁ et. al.

Basic information

Original name

Phenotype Control of Partially Specified Boolean Networks

Authors

BENEŠ, Nikola (203 Czech Republic, belonging to the institution), Luboš BRIM (203 Czech Republic, belonging to the institution), Samuel PASTVA (703 Slovakia), David ŠAFRÁNEK (203 Czech Republic, belonging to the institution) and Eva ŠMIJÁKOVÁ (703 Slovakia, belonging to the institution)

Edition

Luxembourg City, Luxembourg, Computational Methods in Systems Biology, p. 18-35, 18 pp. 2023

Publisher

Springer Cham

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10200 1.2 Computer and information sciences

Country of publisher

Luxembourg

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

printed version "print"

References:

Impact factor

Impact factor: 0.402 in 2005

RIV identification code

RIV/00216224:14330/23:00131639

Organization unit

Faculty of Informatics

ISBN

978-3-031-42696-4

ISSN

UT WoS

001156280600002

Keywords in English

Boolean networks;Partial specification;Permanent control;Phenotype;Perturbation;Symbolic algorithm

Tags

Tags

International impact, Reviewed
Změněno: 7/4/2024 23:21, RNDr. Pavel Šmerk, Ph.D.

Abstract

V originále

Partially specified Boolean networks (PSBNs) represent a promising framework for the qualitative modelling of biological systems in which the logic of interactions is not completely known. Phenotype control aims to stabilise the network in states exhibiting specific traits. In this paper, we define the phenotype control problem in the context of asynchronous PSBNs and propose a novel semi-symbolic algorithm for solving this problem with permanent variable perturbations.

Links

GA22-10845S, research and development project
Name: Studium role polyhydroxyalkanoátů u bakterie Schlegelella thermodepolymerans – slibného bakteriálního kandidáta pro biotechnologie nové generace (Acronym: PHAST)
Investor: Czech Science Foundation, Unraveling the role of polyhydroxyalkanoates in Schlegelella thermodepolymerans – promising environmental bacterium for next generation biotechnology
MUNI/A/1081/2022, interní kód MU
Name: Modelování, analýza a verifikace (2023)
Investor: Masaryk University
MUNI/G/1771/2020, interní kód MU
Name: Computational reconstruction of mechanistic framework underlying receptor tyrosine kinase function in signal transduction (Acronym: FGFSIGMOD)
Investor: Masaryk University, INTERDISCIPLINARY - Interdisciplinary research projects