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Introduction: The proportion of older adults within society is sharply increasing

and a better understanding of how we age starts to be critical. However, given

the paucity of longitudinal studies with both neuroimaging and epigenetic data,

it remains largely unknown whether the speed of the epigenetic clock changes

over the life course and whether any such changes are proportional to changes

in brain aging and cognitive skills. To fill these knowledge gaps, we conducted

a longitudinal study of a prenatal birth cohort, studied epigenetic aging across

adolescence and young adulthood, and evaluated its relationship with brain aging

and cognitive outcomes.

Methods: DNA methylation was assessed using the Illumina EPIC Platform in

adolescence, early and late 20 s, DNA methylation age was estimated using

Horvath’s epigenetic clock, and epigenetic age gap (EpiAGE) was calculated

as DNA methylation age residualized for batch, chronological age and the

proportion of epithelial cells. Structural magnetic resonance imaging (MRI) was

acquired in both the early 20 s and late 20 s using the same 3T Prisma MRI

scanner and brain age was calculated using the Neuroanatomical Age Prediction

using R (NAPR) platform. Cognitive skills were assessed using the Wechsler Adult

Intelligence Scale (WAIS) in the late 20 s.

Results: The EpiAGE in adolescence, the early 20 s, and the late 20 s were

positively correlated (r = 0.34–0.47), suggesting that EpiAGE is a relatively stable

characteristic of an individual. Further, a faster pace of aging between the

measurements was positively correlated with EpiAGE at the end of the period

(r = 0.48–0.77) but negatively correlated with EpiAGE at the earlier time point

(r = −0.42 to −0.55), suggesting a compensatory mechanism where late matures

might be catching up with the early matures. Finally, higher positive EpiAGE

showed small (Adj R2 = 0.03) but significant relationships with a higher positive

brain age gap in all participants and lower full-scale IQ in young adult women

in the late 20 s.
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Discussion: We conclude that the EpiAGE is a relatively stable characteristic of an

individual across adolescence and early adulthood, but that it shows only a small

relationship with accelerated brain aging and a women-specific relationship with

worse performance IQ.

KEYWORDS

epigenetic age, brain age, IQ, longitudinal, magnetic resonance imaging (MRI)

1. Introduction

While there were only 5% of the world population over
65 years old in 1950, it is approximately 9% today and this
proportion is predicted to increase to 17% by 2050 (He et al.,
2016). Given this sharp increase in the proportion of older adults
within society, a better understanding of how we age starts to
be critical. It has been demonstrated that the pace of biological
aging varies between people, independently of chronological age
(Belsky et al., 2015; Beltrán-Sánchez et al., 2022; Jáni et al.,
2022; Mareckova et al., 2020a; Marečková et al., 2020b). However,
longitudinal studies are needed to elucidate why some people
experience accelerated and others decelerated biological aging and
how the speed of biological aging relates to brain health and
cognitive skills.

Since DNA methylation patterns change predictably over time
and are highly correlated with age, DNA methylation patterns
can be used to predict one’s chronological age. The two most
commonly used DNA methylation-based predictors of age are the
multi-tissue Horvath’s epigenetic clock (Horvath, 2013) and the
blood-based Hannum’s epigenetic clock (Hannum et al., 2013).
Further research demonstrated that accelerated epigenetic aging,
defined as the residual variation in epigenetic age independent
of chronological age, is linked with decreased physical capability
and cognitive functioning (Jain et al., 2022) as well as male sex
and clinical traits such as greater risk for cardiovascular disease
or diabetes (Oblak et al., 2021). In contrast, decelerated epigenetic
aging is characteristic of long-lived individuals.

According to twin studies, the heritability of epigenetic age
acceleration is relatively high (h2

∼ 40%; Horvath and Raj, 2018).
Further research (Horvath, 2013) suggested that the speed of the
epigenetic clock might be more heritable at a younger age but
less heritable later in life when the environmental contribution to
epigenetic aging increases. However, it is not clear how epigenetic
aging relates to brain aging and cognition. While Sanders et al.
(2022) did not find any associations between methylation age,
brain age, and cognitive abilities in late adolescence, Zhou et al.
(2022) did find relationships between epigenetic and brain aging in
midlife and pointed out that both faster epigenetic and brain aging
were associated with worse cognition. These studies suggest that
the relationships among epigenetic age assessments as well as the
relationships among epigenetic age, brain age, and cognition may
vary across the lifespan.

Cross-sectional studies cannot directly assess the dynamics of
aging and longitudinal studies following an individual over decades
are needed to provide actionable insight into the aging process.
Moreover, in order to identify early markers of accelerated aging

and cognitive decline, and direct early interventions accordingly,
these longitudinal studies should start following its participants
before the emergence of overt symptoms of cognitive deterioration.
However, given the paucity of longitudinal studies with both
neuroimaging and epigenetic data, it remains largely unknown
whether the speed of the epigenetic clock changes over the life
course and whether any such changes are proportional to, or
independent of, changes in brain aging and cognitive skills.

To address these knowledge gaps, the current study used
longitudinal data from a prenatal birth cohort to assess epigenetic
aging and its relationship with brain aging and cognitive outcomes.
We aimed to answer three main research questions: (1) Does the
epigenetic age gap change with time or is it a stable characteristic?,
(2) Does accelerated epigenetic aging predict accelerated brain
aging or are these independent?, (3) Does accelerated epigenetic
aging predict deficits in cognition as early as young adulthood?
Based on the literature reviewed above, we hypothesized that the
epigenetic age gaps will be more strongly correlated at the younger
age than at the older age, and that a greater positive epigenetic
age gap will predict a greater positive brain age gap and worse
cognitive skills.

2. Materials and methods

2.1. Participants

Participants were members of the European Longitudinal
Study of Pregnancy and Childhood (ELSPAC; Golding, 1989; Piler
et al., 2017), a prenatal birth cohort born between 1991 and
1992 in South Moravia, Czechia, who also participated in its
two neuroimaging and epigenetics follow-ups: (1) Biomarkers and
Underlying Mechanisms of Vulnerability to Depression (VULDE)
and (2) Health Brain Age (HBA) at the Central European Institute
of Technology, Masaryk University. All participants provided
written informed consents to participate in the HBA and VULDE
studies, including the agreement to merge data from HBA, VULDE,
and their historical data from ELSPAC. Ethical approval for both
the HBA and VULDE studies was obtained from the ELSPAC ethics
committee.

2.2. DNA methylation and calculation of
epigenetic age gap

Buccal swabs were collected from 261 participants in their
late 20 s (M = 29.49 years, SD = 0.64). A subset of these
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participants had also buccal swabs from their early 20 s (n = 76;
M = 23.85 years, SD = 0.39) and saliva samples from adolescence
(n = 39; M = 14.65 years, SD = 0.84). DNA methylation from
all these participants and time points was assessed using the
Illumina EPIC Platform and “Methylation age” was estimated
using the Horvath’s epigenetic clock (Horvath, 2013) as described
in Marečková et al. (2020b). Briefly, R package ChAMP (Tian
et al., 2017) was used to process the raw Illumina microarray
data. Raw data were trimmed of (1) probes with <3 beads in at
least 5% of samples per probe, (2) SNP-related probes, (3) multi-
hit probes, (4) probes located in chromosomes X and Y. Beta
mixture quantile normalization (BMIQ; Teschendorff et al., 2013)
method was used to adjust the beta-values of type II design probes
into a statistical distribution characteristic of type I probes. Next,
DNA methylation age was calculated using an epigenetic clock
developed by Horvath (2013), which uses 353 CpG sites to estimate
DNA methylation age. Next, we residualized the DNA methylation
age estimates at each timepoint for batch, chronological age,
and the proportion of epithelial cells (the average proportion
was 78% of epithelial and 22% of immune cells; SD = 22% in
each group) in each participant and saved the residuals from
the analysis as the epigenetic age gap (EpiAGE). Thus, positive
values of EpiAGE reflect accelerated aging/faster maturation and
negative values reflect decelerated aging/slower maturation. Pace
of aging between the different time points was calculated as
the difference between the respective EpiAGE variables. Sample
size at the different time points is illustrated in Supplementary
Figure 1 and the respective demographic information is provided
in Supplementary Table 1.

2.3. Magnetic resonance imaging and
calculation of brain age

Structural magnetic resonance imaging (MRI) was acquired
in both the early 20 s and late 20 s using the same 3T
Prisma MRI scanner. There were 261 participants at the second
neuroimaging follow-up in the late 20 s (HBA study). A subset
of these (n = 110) also participated in the first neuroimaging
follow-up in the early 20 s (VULDE study). The brain age
at both time points was calculated as described in Mareckova
et al. (2023). Briefly, T1-weighted data were processed using
FreeSurfer version 7.1.1 and the outputs were visually inspected
for common artifacts (e.g., skull strip failure, spikes, parcellation
issues, faulty gray and white matter boundaries). All participants
passed these quality control procedures. Next, the Neuroanatomical
Age Prediction using R (NAPR; Pardoe and Kuzniecky, 2018)
platform was used to calculate participants’ brain age. The
NAPR platform is a cloud-based tool (Amazon Web Services)
that estimates the age of an individual using cortical thickness
maps derived from their own locally processed T1-weighted
whole-brain MRI scans (Pardoe and Kuzniecky, 2018). This
age estimation model was trained on data from 2,367 healthy
control participants from ages 6 to 89 years using relevance
vector machine regression (Tipping, 2001) and Gaussian processes
machine learning methods (Rasmussen and Williams, 2005)
applied to cortical thickness surfaces obtained using FreeSurfer.
Finally, BrainAGE was calculated as the difference between this

cortical thickness-based estimate of brain age and each participant’s
chronological age.

2.4. Assessment of cognition (IQ)

Cognitive ability was assessed using the seven-subtest short
form of the Wechsler Adult Intelligence Scale (WAIS), fourth
edition (Tam, 2004) in the late 20 s. This measure allowed
a generation of performance IQ (subtests picture completion,
digit-symbol coding, and matrix reasoning), verbal IQ (subtests
information, arithmetic, similarity and digit span) and full-scale IQ.

2.5. Statistical analyses

All statistical analyses were performed in JMP version 10.0.0
(SAS Institute Inc., Cary, NC). First, we used Levene’s test to
evaluate the equality of variance of EpiAGE at the three different
time points (adolescence, early 20 s, late 20 s). Second, we assessed
the Pearson correlations between EpiAGE in adolescence, early 20 s
and late 20 s. Third, we assessed the Pearson correlations between
the pace of epigenetic aging between (1) adolescence and early 20 s,
(2) early 20 s and late 20 s, and (3) adolescence and late 20 s. And
fourth, we assessed the Pearson correlations between the EpiAGE
and pace of epigenetic aging measures. The possible effect of sex on
EpiAGE and pace of aging at the different timepoints was evaluated
using a t-test. Subsequently, we used a full-factorial general linear
model (GLM) to evaluate the relationship between (1) EpiAGE,
BrainAGE, and sex; and (2) EpiAGE, sex, and full-scale IQ in the
late 20 s. Follow-up analyses then determined the role of verbal and
performance IQ in these relationships.

3. Results

3.1. Do the epigenetic age gap and the
pace of epigenetic aging change with
time or are they a stable characteristic?

The variance of EpiAGE at the three timepoints was not equal
[F(2,372) = 3.94, p = 0.02]. It increased with age and ranged from
−5.40 to +4.34 years in adolescence, from −6.75 to +10.25 years
in the early 20 s, and from−9.75 to+9.73 years in the late 20 s. The
correlation between the closest measurements, namely between
EpiAGE in the late 20 s and EpiAGE in the early 20 s, was large
(r = 0.47, p < 0.0001). The correlation between the more distant
measurements were medium (EpiAGE in the late 20 s and EpiAGE
in adolescence: r = 0.34, p = 0.038). The correlation between the
EpiAGE in the early 20 s and EpiAGE in adolescence did not
reach significance (r = 0.32, p = 0.115), most likely due to the
smaller sample size of these measurements. The distributions of
EpiAGE at the three time points and the correlations between the
measurements are illustrated in Figure 1.

The pace of epigenetic aging between the early 20 s and late
20 s varied from −9.37 to +9.73 years, the pace of epigenetic
aging between adolescence and the early 20 s varied from −5.32 to
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FIGURE 1

Epigenetic age gap estimates (EpiAGE) in adolescence, the early 20 s and the late 20 s and their correlations. The correlation between EpiAGE in the
late 20 s and EpiAGE in the early 20 s was large (r = 0.47, p < 0.0001), the correlation between EpiAGE in the late 20 s and EpiAGE in adolescence
was medium (r = 0.34, p = 0.038), and the correlation between the EpiAGE in the early 20 s and EpiAGE in adolescence did not reach significance
(r = 0.32, p = 0.115).

+8.46 years, and the pace of epigenetic aging between adolescence
and the late 20 s varied from−6.41 to+7.59 years. The correlations
between the pace of epigenetic aging during these three different
periods were high. Interestingly, faster pace of epigenetic aging
between early and late 20 s showed a negative relationship with
the pace of epigenetic aging between adolescence and early 20 s
(r = −0.48, p = 0.014), suggesting a compensatory effect. In
contrast, faster epigenetic aging between adolescence and late 20 s
predicted faster epigenetic aging between adolescence and early
20 s (r = 0.55, p = 0.004) as well as between the early and late
20 s (r = 0.47, p = 0.015). These relationships are illustrated
in Figure 2.

There were also high correlations between the pace of
epigenetic aging over a period and EpiAGE at the end of
the respective period. The pace of epigenetic aging between
adolescence and the early 20 s was highly correlated with EpiAGE
in the early 20 s (r = 0.77, p < 0.0001), the pace of epigenetic aging
between the early 20 s and late 20 s was highly correlated with
the EpiAGE in the late 20 s (r = 0.48, p < 0.0001), and the pace
of epigenetic aging between adolescence and late 20 s was highly
correlated with EpiAGE in the late 20 s (r = 0.71, p < 0.0001).
In contrast, more negative EpiAGE at the earlier timepoint,
indicating younger epigenetic age, was associated with a faster
subsequent pace of epigenetic aging, suggesting a compensatory
effect. Faster pace of epigenetic aging between early and late
20 s was negatively correlated with EpiAGE in the early 20 s
(r = −0.55, p < 0.0001) and a faster pace of epigenetic aging
between adolescence and the late 20 s was negatively correlated
with EpiAGE in adolescence (r = −0.42, p = 0.008). There was
also a trend for a negative relationship between the faster pace
of epigenetic aging between adolescence and the early 20 s and

EpiAGE in adolescence (r = −0.36, p = 0.069). These relationships
are illustrated in Figure 3.

3.2. Sex differences in the EpiAGE and
the pace of epigenetic aging

The epigenetic aging was faster in young adult men than in
young adult women and this medium-to-large effect of sex on the
EpiAGE was present in both the late 20 s [t(259) = 3.24, p = 0.001,
Cohen’s d = 0.40] and the early 20 s [t(74) = 2.94, p = 0.004, Cohen’s
d = 0.70]. The effect of sex on EpiAGE in adolescence did not reach
significance [t(36) =−1.58, p = 0.123]. The effect of sex on EpiAGE
in the late 20 s remained significant (beta = −0.19, p < 0.01) also
when correcting the model for smoking, BMI and age. The effect of
sex on EpiAGE in the early 20 s reduced to a trend (beta = −0.25,
p = 0.07) when correcting the model for smoking, BMI and age, and
remained insignificant also in adolescence (beta = 0.37, p = 0.07).
There were no sex differences in the pace of epigenetic aging
between the three different measurements (p > 0.115) and no sex
differences in the pace of aging appeared (p > 0.06) also when
correcting the model for smoking, BMI and age.

3.3. Does accelerated epigenetic aging
predict accelerated brain aging or are
these independent?

There was a small but significant positive relationship between
EpiAGE and BrainAGE in the larger sample of young adults in their
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FIGURE 2

Correlations between the pace of epigenetic aging during these three different periods. Faster pace of epigenetic aging between the early and the
late 20 s showed a negative relationship with the pace of epigenetic aging between adolescence and early 20 s (r = –0.48, p = 0.014). In contrast,
faster epigenetic aging between adolescence and late 20 s predicted faster epigenetic aging between adolescence and early 20 s (r = 0.55,
p = 0.004) as well as between the early and late 20 s (r = 0.47, p = 0.015).

FIGURE 3

Correlations between the pace of epigenetic aging over a period and EpiAGE at the end (top row) as well as the beginning (bottom row) of the
respective period. The pace of epigenetic aging between adolescence and the early 20 s was highly correlated with EpiAGE in the early 20 s
(r = 0.77, p < 0.0001), the pace of epigenetic aging between the early 20 s and late 20 s was highly correlated with the EpiAGE in the late 20 s
(r = 0.48, p < 0.0001), and the pace of epigenetic aging between adolescence and late 20 s was highly correlated with EpiAGE in the late 20 s
(r = 0.71, p < 0.0001). In contrast, faster pace of epigenetic aging between early and late 20 s was negatively correlated with EpiAGE in the early 20 s
(r = –0.55, p < 0.0001) and a faster pace of epigenetic aging between adolescence and the late 20 s was negatively correlated with EpiAGE in
adolescence (r = –0.42, p = 0.008). The negative relationship between the faster pace of epigenetic aging between adolescence and the early 20 s
and EpiAGE in adolescence (r = –0.36, p = 0.069).

late 20 s (beta = 0.14, p = 0.032, Adj R2 = 0.03, n = 261; Figure 4),
which was not moderated by sex (beta = −0.006, p = 0.925). No
similar relationship was found between EpiAGE and BrainAGE in
the smaller sample of young adults in their early 20 s (beta = 0.05,
p = 0.707, n = 76). The relationship between EpiAGE and BrainAGE
in the larger sample of young adults in their late 20 s remained
significant (beta = 0.13, p = 0.04, Adj R2 = 0.02, n = 261) when
correcting the model for smoking, BMI and age and remained
insignificant in the smaller sample of young adults in their early
20 s (beta = 0.07, p = 0.61, n = 76) when correcting the model for
smoking, BMI and age.

3.4. Does accelerated epigenetic aging
already predict deficits in cognition in
young adulthood? And if so, do these
deficits manifest in the verbal or
performance IQ domain?

The GLM showed an interaction between EpiAGE in late 20 s
and sex on full scale IQ (beta = −0.14, p = 0.023; Figure 5)
and post hoc analyses revealed that higher EpiAGE was associated
with lower full-scale IQ in women (beta = −0.19, p = 0.04,
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FIGURE 4

Accelerated epigenetic aging predicted accelerated brain aging in
late 20 s (beta = 0.14, p = 0.032, Adj R2 = 0.03). Women are
depicted as red circles and men as blue triangles.

R2 = 0.04, n = 126) but not men (beta = 0.09, p = 0.282, n = 135).
Further exploratory analyses aiming to determine whether these
deficits manifest in the verbal or performance IQ domain showed
that the sex-specific effects are pronounced in performance IQ
(beta =−0.23, p = 0.009, R2 = 0.05) but not verbal IQ (beta =−0.04,
p = 0.657). These interactions between EpiAGE and sex remained
significant for the full scale IQ (beta = −0.13, p = 0.04) and
performance IQ (beta =−0.12, p = 0.04) and remained insignificant
for the verbal IQ (beta =−0.09, p = 0.15) when correcting the model
for smoking, BMI and age.

4. Discussion

We performed a longitudinal study of epigenetic aging, brain
aging, and cognitive skills in the ELSPAC prenatal birth cohort and
showed that while our participants were tested at approximately
the same chronological age in adolescence (M = 14.65 years,
SD = 0.84), early 20 s (M = 23.85 years, SD = 0.39) and late 20 s
(M = 29.49 years, SD = 0.64), their epigenetic age gap (EpiAGE)
varied substantially and the range of the epigenetic age gap

increased with age: from approximately ± 5 years in adolescence
to approximately ± 10 years in the late 20 s. Still, the EpiAGE
measures at different time points were positively correlated,
suggesting that EpiAGE is a relatively stable characteristic of an
individual across adolescence and early adulthood. The correlation
between the closest EpiAGE measurements (e.g., early and late
20 s) was high, and the correlation between the more distant
measurements (e.g., adolescence and late 20 s) was medium. These
findings are consistent with Marioni et al. (2019) who tracked
the Horvath epigenetic clock across the human life course and
reported correlations between the EpiAGE measured at different
time points between 0.22 to 0.82, with stronger associations in
samples collected closer in time and concluded that the further
measures have been more influenced by environmental factors. Our
findings are also consistent with our previous work on brain age gap
(BrainAGE) in the ELSPAC prenatal birth cohort (Mareckova et al.,
2023), which also showed high correlation (r = 0.7) and thus very
good stability of brain age gap in young adulthood.

Since our longitudinal dataset also allowed us to calculate the
pace of epigenetic aging between the three different measurements,
we additionally demonstrated that a faster pace of aging was
positively correlated with EpiAGE at the end of the period (e.g.,
pace of aging between early 20 s and late 20 s and EpiAGE in
late 20 s) but negatively correlated with EpiAGE at the earlier
timepoint (e.g., pace of aging between early 20 s and late 20 s
and EpiAGE in early 20 s). These findings suggest a possible
existence of a compensatory mechanism where late maturers (e.g.,
those appearing epigenetically younger than their chronological
age during the early measurements) are catching up (and thus
experience faster pace of epigenetic aging) with the early maturers
(e.g., those appearing epigenetically older than their chronological
age during the early measurements). These results are also
consistent with our other findings of the negative relationship
between (1) the pace of aging between adolescence and the early
20 s and (2) the pace of aging between the early and late 20 s.

Consistently with Horvath et al. (2016), we also found greater
positive EpiAGE in men vs. women, suggesting faster epigenetic
aging in men. In our study, this effect was large in the early 20 s
and medium in the late 20 s. Kankaanpää et al. (2022) conducted
a twin study testing the mechanisms underlying sex differences
in epigenetic aging and found that several lifestyle-related factors,
including smoking and BMI, partly mediated the association of sex

FIGURE 5

Accelerated epigenetic aging predicted lower full-scale IQ and performance IQ in women but not men. In women, higher EpiAGE was associated
with lower full-scale IQ (beta = –0.19, p = 0.035, R2 = 0.04) and performance IQ (beta = –0.23, p = 0.009, R2 = 0.05) but not verbal IQ
(beta = –0.04, p = 0.657). Women are depicted as red circles and men as blue triangles.
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with biological aging. However, since sex differences in epigenetic
age acceleration were also reported in adolescents, children, and
newborns (Simpkin et al., 2016), other mechanisms are also likely
contributing to the sex differences in epigenetic aging and the sex
morbidity-mortality paradox, according to which women possess
a lower age-adjusted mortality rate compared to men (Case and
Paxson, 2005; Oksuzyan et al., 2008).

Our study also pointed out that while a higher positive
epigenetic age gap predicted a higher positive brain age gap assessed
on the same day in the late 20 s, this effect was small (Adj R2 = 0.03)
and did not reach significance in a smaller sample of participants
in their early 20 s. This small effect size is consistent with research
from others who also found only weak associations between brain
age and methylation age (Cole et al., 2019; Teeuw et al., 2021; Zheng
et al., 2022). Still, it supports the research by Lu et al. (2017) and
Hillary et al. (2021) who reported associations between neuron
density and methylation age in older adults. On the other hand,
the discrepancies between these two measures of aging might be
potentially explained by the fact that DNA methylation is a measure
of cellular aging (Lowe et al., 2016; Kabacik et al., 2018), the gradual
decline in cell function, but aging of the brain, described by lower
cortical thickness, is rather due to cellular senescence (Fernandez-
Egea and Kirkpatrick, 2017), the cessation of cell division.

The relationship between the higher positive epigenetic age gap
and lower full-scale IQ in young adulthood had a very similar
effect size (Adj R2 = 0.03) but was significant in women only.
This sex-specific effect was driven by the performance IQ (Adj
R2 = 0.05) and not verbal IQ. These findings suggest that despite
the overall lower speed of epigenetic aging in women vs. men
(Horvath et al., 2016; Simpkin et al., 2016; Kankaanpää et al.,
2022) discussed above, women might be more vulnerable to the
negative impact of aging on cognition and that the performance IQ
domain might serve as an early marker of cognitive decline. These
findings are broadly consistent with Levine et al. (2021) who studied
more than 26 000 individuals from 5 prospective cohort studies
and concluded that women have higher baseline performance in
global cognition, executive function and memory than men, but
significantly faster decline in global cognition, executive function
but not memory. Our findings are also broadly consistent with
those of Zheng et al. (2022) who studied cognitive skills and
their relationship with epigenetic and brain aging in midlife.
They showed that both faster epigenetic and brain aging were
associated with worse cognitive skills and particularly the score
on the Stroop task, which evaluates the ability to respond to one
stimulus and suppress the response to another, an executive skill
attributed to the frontal lobe; the Rey Auditory Verbal Learning
Test (RAVLT), which evaluates one’s verbal memory; and the Digit
Symbol Substitution Test (DSST), which evaluates visual-motor
speed, sustained attention and working memory (Zheng et al.,
2022). While the DSST test, also known as digit-symbol coding, is
part of the WAIS performance IQ test used in the current study,
the Stroop and RAVLT tasks are not part of the WAIS IQ test
used in the current study, suggesting that accelerated epigenetic
aging might also contribute to individual differences in executive
function and verbal memory.

Our study has several limitations, including the relatively
small sample size of epigenetic data from adolescence and early
adulthood and the fact that the IQ was assessed in the late 20 s but
not in the early 20 s. Further, our DNA samples were isolated from

saliva, allowing us to calculate the epigenetic age based on Horvath’s
multi-tissue epigenetic clock, but future research might consider
collecting blood samples and replicating our findings using blood-
based epigenetic clocks such as the Hannum et al. (2013) or
GrimAGE (Lu et al., 2019). Finally, while all the samples were
analyzed using the same type of chip, the samples from adolescence
and early 20 s were collected and analyzed earlier than the samples
from the late 20 s and therefore the three samples per individual
could not be placed on the same chip. Therefore, we have presented
the results for each period separately. Still, the longitudinal design
of our prenatal birth cohort study with three epigenetic and
two neuroimaging assessments allowed us to calculate not only
EpiAGE and BrainAGE at different time points but also the pace
of aging between the time points, providing a unique contribution
to the literature. Moreover, our analyses used sex not only as a
covariate as in the research by others (Zheng et al., 2022) but
evaluated the potential moderating effects of sex. We conclude
that the epigenetic age gap is a relatively stable characteristic of
an individual across adolescence and early adulthood, that faster
pace of epigenetic aging between two measurements predicts higher
EpiAGE, suggesting accelerated epigenetic aging at the end of the
period, and that accelerated epigenetic aging shows a small but
significant relationship with accelerated brain aging and women-
specific relationship with worse performance IQ.
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