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Pavel Čupr a,* 

a RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic 
b ISGlobal, Barcelona, Spain 
c Universitat Pompeu Fabra (UPF), Barcelona, Spain 
d CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain 
e Faculty of Sports Studies, Masaryk University, Kamenice 753/5, 625 00, Czech Republic 
f Training Centre of Fire Rescue Service, Fire Rescue Service of the Czech Republic, Ministry of the Interior, Trnkova 85, 628 00, Brno, Czech Republic   

A R T I C L E  I N F O   

Keywords: 
Firefighters 
Occupational exposure 
per- and polyfluoroalkyl substances/PFAS 
Polycyclic aromatic hydrocarbons/PAHs 
Mixture analysis 
Liver function 

A B S T R A C T   

Introduction: Firefighting is one of the most hazardous occupations due to exposure to per- and polyfluoroalkyl 
substances (PFAS) and polycyclic aromatic hydrocarbons (PAHs). Such exposure is suspected to affect the car-
diometabolic profile, e.g., liver function and serum lipids. However, only a few studies have investigated the 
impact of this specific exposure among firefighters. 
Methods: Men included in the CELSPAC-FIREexpo study were professional firefighters (n = 52), newly recruited 
firefighters in training (n = 58), and controls (n = 54). They completed exposure questionnaires and provided 
1–3 samples of urine and blood during the 11-week study period to allow assessment of their exposure to PFAS (6 
compounds) and PAHs (6 compounds), and to determine biomarkers of liver function (alanine aminotransferase 
(ALT), gamma-glutamyl transferase (GGT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and 
total bilirubin (BIL)) and levels of serum lipids (total cholesterol (CHOL), low-density lipoprotein cholesterol 
(LDL) and triglycerides (TG)). The associations between biomarkers were investigated both cross-sectionally 
using multiple linear regression (MLR) and Bayesian weighted quantile sum (BWQS) regression and prospec-
tively using MLR. The models were adjusted for potential confounders and false discovery rate correction was 
applied to account for multiplicity. 
Results: A positive association between exposure to PFAS and PAH mixture and BIL (β = 28.6%, 95% CrI =
14.6–45.7%) was observed by the BWQS model. When the study population was stratified, in professional 
firefighters and controls the mixture showed a positive association with CHOL (β = 29.5%, CrI = 10.3–53.6%) 
and LDL (β = 26.7%, CrI = 8.3–48.5%). No statistically significant associations with individual compounds were 
detected using MLR. 
Conclusions: This study investigated the associations between exposure to PFAS and PAHs and biomarkers of 
cardiometabolic health in the Czech men, including firefighters. The results suggest that higher exposure to a 
mixture of these compounds is associated with an increase in BIL and the alteration of serum lipids, which can 
result in an unfavourable cardiometabolic profile.   

1. Introduction 

Firefighting, as one of the most hazardous occupations, combines 
extreme physical and psychological demands, themselves potential risk 
factors, with the former including risk of acute trauma and exposure to 

both high temperatures and a complex mixture of hazardous pollutants 
released during fire suppression activities as well as from contaminated 
equipment and protective gear (Barros et al., 2021; Trowbridge et al., 
2020). Previous studies have reviewed the increased incidence of car-
diovascular disease (CVD) among firefighters (Soteriades et al., 2011, 
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2019). The exposure of firefighters to per- and polyfluoroalkyl sub-
stances (PFAS) and polycyclic aromatic hydrocarbons (PAHs) may be of 
particular relevance due to recently reported associations between 
exposure to these compounds and adverse health outcomes in humans, 
many of which are related to CVD (Alshaarawy et al., 2016; Attanasio, 
2019; Gallo et al., 2012a; Gleason et al., 2015a; Li et al., 2020a; Moorthy 
et al., 2015; Sakr et al., 2007a; Sakr et al., 2007b; Stanifer et al., 2018; 
Wagner et al., 2015; Xu et al., 2021; Yamaguchi et al., 2013). 

PFAS are omnipresent and highly persistent synthetic chemicals 
extensively used for a variety of commercial and industrial applications 
due to their grease-, stain-, and water-repellent properties (Ho et al., 
2022). Drinking water and diet have been identified as major sources of 
exposure in humans (Fenton et al., 2021). Firefighters are additionally 
exposed due to the application of PFAS in class B firefighting aqueous 
film-forming foams (AFFFs, used for extinguishing hydrocarbon-fuel 
and chemical solvent fires) and the use of PFAS-coated firefighting 
equipment (Khalil et al., 2022; Laitinen et al., 2014a; Pitter et al., 2020). 
Elevated levels of PFAS in firefighters’ blood serum, especially per-
fluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and 
perfluorohexane sulfonic acid (PFHxS), have been reported in several 
studies (Dobraca et al., 2015; Jin et al., 2011; Laitinen et al., 2014a; 
Rotander et al., 2015a; Trowbridge et al., 2020). 

PAHs consist of two or more fused benzene rings and are generated 
by the incomplete combustion of organic matter (Kim et al., 2013). The 
main exposure routes are the inhalation of polluted air or cigarette 
smoke, the ingestion of contaminated food, or dermal absorption (Li 
et al., 2020b). Several biomonitoring studies reported increased internal 
exposure among firefighters after firefighting activity compared to 
controls, even when using self-contained breathing apparatuses (SCBAs) 
for protection against the inhalation of airborne contaminants (Banks 
et al., 2021; Ekpe et al., 2021; Fent et al., 2020; Rossbach et al., 2020), 
suggesting dermal absorption as the most relevant route for PAH uptake 
(Andersen et al., 2018; Fent et al., 2019; Rossbach et al., 2020; Wingfors 
et al., 2018) as well as inhalation uptake due to SCBAs removal during 
the overhaul stage at the fire incident site (Banks et al., 2021; Baxter 
et al., 2014). 

The liver, with its central role in the metabolism of xenobiotics, is 
considered to be the main target organ of both PFAS and PAHs. Epide-
miological studies suggest associations between PFAS exposure and 
altered levels of biomarkers of liver function (e.g., liver enzymes, bili-
rubin, and serum lipids). However, reported associations are often 
inconsistent and cause-and-effect relationships have not yet been 
established (Costello et al., 2022; Darrow et al., 2016; Gallo et al., 
2012a; Gleason et al., 2015a; Lin et al., 2010; Omoike et al., 2021; 
Salihovic et al., 2018; Stratakis et al., 2020). A high abundance of cy-
tochrome P450 in the liver is responsible for the oxidation of PAHs, 
resulting in a complex mixture of hydroxylated metabolites (OH-PAHs), 
which are excreted predominantly through urine (Oliveira et al., 2020; 
Weyand and Bevan, 1986) and used as biomarkers of PAH exposure. 
Exposure to PAHs was also associated with altered liver biomarkers 
(Alshaarawy et al., 2016; Brucker et al., 2014; Wang et al., 2019). 
Abnormal liver function (altered levels of liver enzymes and bilirubin) 
and dyslipidaemia (altered levels of serum cholesterol, low-density li-
poprotein, or triglycerides) are considered risk factors for developing 
CVD (Choi et al., 2018; Ekstedt et al., 2015; Ismaiel and Dumitraşcu, 
2019; Soderberg et al., 2010). 

Monitoring exposure among firefighters is challenging due to the 
unpredictability and specificity of particular firefighting activities, 
resulting in exposure to many chemicals in multiple exposure pathways. 
Many studies monitoring exposure both on- and off-duty are available 
(Banks et al., 2021; Ekpe et al., 2021; Rossbach et al., 2020; Rotander 
et al., 2015b; Trowbridge et al., 2020; Wingfors et al., 2018), though 
only a minority of these consider multiple exposures (Bessonneau et al., 
2021; Fent et al., 2020; Laitinen et al., 2012; Park et al., 2015). A more 
consistent assessment of the simultaneous exposure to a wide range of 
chemicals is essential for the evaluation of potential health effects. Only 

a few studies have considered the simultaneous assessment of both 
exposure and effect biomarkers in firefighters (Andersen et al., 2018; 
Bessonneau et al., 2021; Oliveira et al., 2020) and, to the best of our 
knowledge, none of them have focused on the liver and lipidic health or 
simultaneous exposure to PAHs and PFAS. Therefore, this study aimed to 
assess the effects of exposure to PAHs and PFAS on liver function and 
serum lipid profile with a special focus on firefighters at different pro-
fessional stages. 

2. Materials and methods 

2.1. Study population 

The study population is described in detail in Řiháčková et al. 
(2023). Briefly, between 2019 and 2020, a total of 166 participants were 
recruited for the CELSPAC-FIREexpo study, a collaborative research 
project with the aim of assessing firefighters’ exposure to PAHs and 
PFAS while firefighting and training, and determining chemical and 
biochemical biomarkers of exposure and its effects. Participants were 
divided into 3 sub-cohorts: newly recruited firefighters before profes-
sional training for active participation in responses to incidents (“NEW 
FF”; n = 58), professional firefighters actively participating in responses 
to incidents (“PROF”; n = 52), and a control group of non-firefighters 
(“CTRL”; n = 54). PROF and NEW FF were recruited by the chief 
accredited project deputy in the Training Center of the Fire Rescue 
Service in Brno (Czech Republic). Controls were recruited at the Faculty 
of Sport, Masaryk University, Brno (Czech Republic). The participants 
were men (until August 2022 no female professional firefighters were 
actively participating in responses to incidents), either firefighters 
(active or enrolled in training) or physically active men (for the control 
group), who were 18–35 years old and non-smokers with no chronic 
diseases. Two participants withdrew from the study before completion. 
Therefore, a total of 164 participants, who had answered questionnaires 
and for whom information with respect to exposure and biochemical 
analyses was complete, were included in the present study. The study 
was approved by the ELSPAC Ethics Committee in 2019, and all par-
ticipants gave their written informed consent. 

2.2. Study design 

The complete design of the CELSPAC-FIREexpo study based on 3 sub- 
cohorts (NEW FF, PROF, and CTRL) is described in detail in Řiháčková 
et al. (2023). In this study, a reduced dataset was used for statistical 
analyses due to the specificity of the biomarkers included (Fig. 1). Upon 
inclusion in the study, all participants filled out exposure questionnaires 
about lifestyle and dietary factors possibly contributing to PFAS expo-
sure (wearing GoreTex or eVent clothing, work in the ski service sector, 
skiing activities, source of drinking water, use of dental floss, and blood 
donation), PAH exposure (former smoking habit, years since quitting 
smoking, exposure to fire, type of heating at home), or exposure to both 
PFAS and PAH (length of firefighting career if relevant, diet and fre-
quency of consumption of relevant foods and supplements). The ques-
tionnaires also included information on the presence of acute or chronic 
infectious disease, the participant’s subjective health assessment, and 
employment (Table S1). 

Participants from NEW FF were completing a 15-week initial pro-
fessional training programme prior to becoming active firefighters; 
hence, they followed a specific experimental design. In phase 1 (weeks 
1–5), NEW FF provided a morning void urine sample and fasting blood 
sample for the further analysis of exposure biomarkers (PFAS, OH- 
PAHs). Phase 2 (week 6) corresponded with the time 4 h after the fire-
fight training in an indoor environment. In this phase, NEW FF again 
provided urine and non-fasting blood samples for the analysis of expo-
sure biomarkers (PFAS, OH-PAHs). In phase 3 (week 10), which corre-
sponded with the period 1 week after training with AFFFs (considered as 
PFAS exposure) and 4 weeks after phase 2, NEW FF once more provided 
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fasting blood samples and morning void urine for the analysis of bio-
markers of exposure (OH-PAHs, PFAS) and also biomarkers of liver 
function and serum lipids (biochemical analyses). A detailed description 
of the training activities and the equipment of trainees is provided in the 
supplementary material. Participants from the PROF- and CTRL-sub- 
cohorts provided a single sample of morning void urine and fasting 
blood, which was used for the analyses of both exposure biomarkers and 
biomarkers of liver function and serum lipids. 

2.3. Blood and urine collection 

Blood samples were collected by medical personnel in an operational 
ambulance. Urine samples were collected at the workplace by own urine 
collection following the instruction of medical personnel. In phases 1 
and 3, morning void midstream urine was sampled, along with venous 
blood on an empty stomach. In phase 2, the sampling of morning void 
urine and venous blood on an empty stomach was not possible due to 
training schedule. 

Venous blood for serum isolation was sampled in 7.5 mL S-Monov-
ette® tube containing the Z-gel clotting activator. Each participant 
provided approximately 40 mL of midstream urine, which was collected 
in a 50 mL centrifuge tube. Both the venous blood and urine samples 
were immediately transported to laboratories in a cooling box set at 
8 ◦C. 

Once the clot had formed in the venous blood tube, it was centrifuged 
at 2500×g and 20 ◦C for 10 min. Subsequently, 0.5 mL aliquots were 
separated and placed into 1.2 mL cryotubes, which were then gradually 
frozen and stored in a biobank facility at − 80 ◦C for further analyses of 
the biomarkers and biochemical analysis. Similarly, the urine samples in 
50 mL centrifuge tubes were divided into 1 mL aliquots in 1.2 mL cry-
otubes, frozen gradually, and stored in a biobank facility at − 80 ◦C until 
further analyses. 

2.4. Determination of OH-PAHs and PFAS 

A total of 6 PFAS in blood serum (perfluorohexane sulfonate 
[PFHxS], perfluorooctanoate [PFOA], perfluorooctane sulfonate 
[PFOS], perfluorononanoate [PFNA], perfluorodecanoate [PFDA] and 
perfluoroundecanoate [PFUnDA]) and 6 hydroxylated PAH metabolites 
(OH-PAHs) (1-hydroxynaphtalene [1-OH-NAP], 2-hydroxynaphtalene 
[2-OH-NAP], 2-hydroxyfluorene [2-OH-FLU], 3-hydroxyfluorene [3- 
OH-FLU], 1-hydroxypyrene [1-OH-PYR] and 2/3-hydroxyphenanthrene 
[2/3-OH-PHEN]) in urine were measured. Samples were analysed at 
RECETOX (Brno, Czech Republic) following the methods described in 
detail elsewhere (Řiháčková et al., 2023). 

OH-PAHs were analysed using the modified CDC method 6705.02 
(CDC’s National Center for Environmental Health (NCEH), n.d.). Briefly, 
500 μL of each urine sample were transferred to a 96-well plate and 
β-glucuronidase solution and internal standards in hydrolysing buffer 
were added into each well. All components were then mixed and incu-
bated at 55 ◦C for 2 h. Samples were extracted using SPE plate Oasis HLB 
(60 mg) and analysed using an Agilent 1200 series liquid chromatog-
raphy (HPLC) system with analyte detection performed on AB Sciex 
Qtrap 5500 tandem mass spectrometer (MS) operating in negative 
electrospray ionization (ESI) mode. Regrading PFAS analysis, modified 
CDC method 6304.04 was used (CDC’s National Center for Environ-
mental Health (NCEH), 2013). Each serum sample was transferred to a 
96-well plate (Phenomenex, USA) and internal standards and acetoni-
trile with an addition of 1% formic acid were added to each sample. 
Samples were then mixed, filtered, transferred to glass vials, and evap-
orated to the last drop, after which methanol and ammonium acetate 
(1:1) were added. Then, the samples were analysed using Qtrap 5500 
LC-MS/MS system (ABSciex, CA, USA) with ESI. The mobile phases were 
methanol with 5 mM ammonium acetate in water (55:45, component A) 
and methanol (component B). Gradient elution was used. Laboratory 
and method performances were successfully verified by participation in 
third-party proficiency testing (ICI-EQUAS, OSEQA). List of chemicals 
and information regarding QA/QC is available in supplementary 

Fig. 1. Design of CELSPAC-FIREexpo study consisting of 3 sub-cohorts: new firefighters in training (“NEW FF”), professional firefighters (“PROF”), and controls 
(“CTRL”). In this study, NEW FF were monitored 3 times (correspondingly with phases 1, 2, and 3) throughout their firefighting training, while PFOF and CTRL 
provided just one set of samples. 
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material. 

2.5. Biochemical measurements and specific gravity 

The levels of alanine aminotransferase (ALT, in μkat/L), gamma- 
glutamyl transferase (GGT, in μkat/L), aspartate aminotransferase 
(AST, in μkat/L), alkaline phosphatase (ALP, in μkat/L), and total bili-
rubin (BIL, in μmol/L) in blood serum were considered as markers of 
liver function. Indicators of blood lipids included total cholesterol 
(CHOL, mmol/L), low-density lipoprotein (LDL, mmol/L), and tri-
glycerides (TG, mmol/L). All markers were measured spectrophoto-
metrically with an Alinity c instrument (©Abbott, Illinois, U.S.A). The 
specific gravity of urine samples (SG) was measured by a handheld 
refractometer (Atago PAL-10S). 

2.6. Statistical analysis 

The concentrations of PFAS and OH-PAHs below LOQ were imputed 
using maximum likelihood multiple estimation based on the observed 
values and an expected log-normal distribution (Lubin et al., 2004). 
SG-standardized concentrations of OH-PAHs in urine (based on Eq. S1 in 
SI), serum concentrations of PFAS, and all biochemical measurements 
were log2 transformed and IQR standardized to approach normality and 
reduce the influence of outliers. Spearman correlation coefficients were 
calculated to estimate correlations between the concentrations of PFAS 
and OH-PAHs as well as between the biochemical measurements. Dif-
ferences in internal exposure and biochemical parameters between the 
study sub-cohorts were investigated using ANOVA/Kruskal-Wallis 
ANOVA with Tukey/Wilcox post hoc tests and χ2 test with post hoc tests. 

Firstly, using individual multiple linear regression models (MLR), 
associations between each biomarker of exposure (considered individ-
ually) and each biomarker of liver function or serum lipids were 
examined cross-sectionally including all participants (PROF, CTRL, and 
NEW FF from phase 3). For each chemical compound, results are 
expressed as the relative change in the median of liver or serum lipids 
biomarker for a doubled concentration of OH-PAHs or PFAS in urine or 
serum, respectively. Secondly, associations between the OH-PAHs and 
PFAS mixture and biomarkers of liver function and serum lipids were 
assessed on the same dataset using Bayesian weighted quantile sum 
(BWQS) regression. BWQS is a novel approach that extends original 
weighted quantile sum (WQS) regression, which is designed to estimate 
the effect of a mixture of correlated chemicals by creating a single score 
summarizing overall exposure while accounting for the individual 
contributions of mixture components using weights. BWQS overcomes 
certain limitations of WQS, especially the requirement of the a priori 
selection of the directionality of the coefficients associated with the 
mixture, which improves the statistical power and stability of the esti-
mates (Colicino et al., 2020; Maitre et al., 2022; Pedretti and Colicino, 
2021). In addition, prospective associations were examined in the NEW 
FF sub-cohort by studying the effect of exposure measured in the 1st and 
2nd phases of firefighting training on liver and serum lipids biomarkers 
measured in the third phase using MLR. All models were adjusted for the 
same set of confounders, identified on the basis of a priori knowledge and 
a directed acyclic graph (DAG) approach (Fig. S1) (Shrier and Platt, 
2008): age (in years), body mass index (BMI, in [kg/m2]), previous 
smoking (yes/no), length of firefighting career (in years) and study 
sub-cohorts (NEW FF/PROF/CTRL; except the prospective model for 
NEW FF). 

The CELSPAC-FIREexpo study population was already quite specific 
and homogenous – it comprised men of similar ages from the same 
geographical region; hence, in this study, just a few sensitivity analyses 
were performed. To explore associations in the subpopulations with 
potentially different vulnerabilities, the dataset was stratified into 3 
study sub-cohorts (NEW FF, PROF, and CTRL) and MLRs were per-
formed. To evaluate the robustness of the associations with the mixture, 
the BWQS regression model was run for 3 population subsets – each time 

excluding one sub-cohort (subset A – professional FF and new FF; subset 
B – new FF and controls; subset C – professional FF and controls). 
Moreover, BWQS regression models for separate mixtures of PFAS and 
OH-PAHs were additionally run. To account for multiple testing in the 
case of linear regression models, correction for multiple comparisons 
with the false discovery rate controlled at <5% was performed (Benja-
mini and Yekutieli, 2005). All statistical analyses were performed using 
Rstudio version 4.0.2 (Rstudio Team, 2020). 

3. Results 

3.1. Study population characteristics 

The main characteristics of the participants are given in Table 1. The 
participants included in the study were 26.4 years old on average, with 
professional firefighters being the oldest and new firefighters the 
youngest, which in the case of professionals corresponds with the length 
of the firefighting career. Professional firefighters and new firefighters 
had higher BMI compared to the control group. The highest rate of 
former smoking was reported among professional firefighters (Table 1). 

Regarding liver function and serum lipids biomarkers, the correla-
tion matrix is presented in supplementary material (Fig. S2). The 
strongest positive correlation observed was between CHOL and LDL. 
Serum lipids (CHOL, LDL, TG) were correlated with each other and with 
BMI. Moreover, CHOL and LDL were correlated with age and length of 
FF career. Length of FF career was also significantly positively correlated 
with age and BMI. There was no clear correlation pattern among the 
liver enzymes. Statistically significant differences between the sub- 
cohorts were observed in ALT, GGT, CHOL, LDL (PROF had higher 
levels compared to CTRL and NEW FF) and ALP (PROF had lower levels 
compared to NEW FF) (Table 1) (Fig. S3). PROF had also significantly 
higher proportion of participants with levels above the physiological 
limits in case of CHOL (compared to NEW FF) and LDL (compared to 
NEW FF and CTRL) (Table 1). 

1-OH-NAP, 2-OH-NAP, 2-OH-FLU, and 2/3-OH-PHEN were detected 
in all samples, with 2-OH-NAP having the highest median concentration. 
For PFAS, the highest detection frequency was observed for PFNA and 
PFOA, and PFOS had the highest median concentration (Table 2, 
Table S2). There were no or only weak inter-compound correlations 
between PFAS and OH-PAHs; however, intra-class correlations were 
stronger suggesting similar sources of exposure (Fig. S4). Firefighters 
(PROF and NEW FF) had higher total PFAS concentrations compared to 
controls. ƩOH-PAHs levels were not different among PROF, NEW FF 
(phases 1 and 3), and CTRL. ƩOH-PAHs in NEW FF from phase 2 was 
significantly higher compared to the median concentrations in other 
sub-cohorts (Table 2). 

3.2. Cross-sectional associations 

The results from MLR applied cross-sectionally to the overall study 
population (n = 164) suggest a negative association between the levels 
of PFOS and TAG (β = − 11.6%, p = 0.0225), and positive associations 
between all OH-PAHs and BIL (p < 0.05). However, after FDR correction 
for multiple testing, no associations remained statistically significant 
(Fig. 2, Table S3). 

The BWQS regression model for the mixture indicates similar results 
– the only statistically significant association of the full mixture was with 
bilirubin (β = 28.6%, CrI = 14.6–45.7%), with PFHxS, 1-OH-PYR, and 
2/3-OH-PHEN as the most active compounds in the mixture (Fig. 3). 
Nearly significant positive tendencies were observed between the 
mixture and CHOL and LDL. When the PFAS mixture was considered 
separately (without OH-PAHs), a negative association between the 
mixture and TG became significant (Table 3). 
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3.3. Prospective associations 

To assess the prospective effects of internal exposure on liver and 
serum lipids in NEW FF, associations between the exposure from phases 
1 and 2 and liver and serum lipids biomarkers from phase 3 were 
determined. Phase 1 levels of serum PFUnDA and PFDA showed a 
negative association with ALT. Phase 1 2-OH-FLU and 3-OH-FLU were 
positively associated with BIL from phase 3. After FDR correction, no 
associations remained statistically significant (Table S4). Internal 
exposure from phase 2 was measured 4 h after indoor training with fire; 
hence, increased concentrations of OH-PAHs in urine were observed in 
this phase (Table 2). Phase 2 2-OH-NAP and PFHxS showed significant 
positive and negative associations with ALP from phase 3, respectively. 
Negative associations were observed between phase 2 2-OH-FLU and 3- 
OH-FLU and phase 3 CHOL; and between 2/3-OH-PHEN, 2-OH-FLU and 
3-OH-FLU and phase 3 LDL. Phase 2 PFNA showed a positive association 
with BIL. After FDR correction for multiple testing, all associations 
became insignificant (Table S4). 

3.4. Sensitivity analyses 

When we stratified our study population into sub-cohorts (NEW, 
PROF, and CTRL), the cross-sectional associations from MLR indicated 
similar trends (Table S5). In the NEW FF sub-cohort, we detected posi-
tive associations between PFNA, 2/3-OH-PHEN, 2-OH-FLU and 3-OH- 
FLU and bilirubin, negative associations between 2/3-OH-PHEN and 
CHOL and LDL, and negative associations between 1-OH-NAP, 2-OH- 

NAP, 2-OH-FLU, and 3-OH-FLU, and TG. In the case of PROF, positive 
associations between 1-OH-NAP and ALP, PFDA and LDL, and between 
1-OH-NAP, 2/3-OH-PHEN, and 2-OH-FLU and TG were detected. A 
negative association between PFUnDA and TG was also observed. In the 
case of CTRL, positive associations between 4 OH-PAHs (1-OH-NAP, 2- 
OH-NAP, 1-OH-PYR, 2/3-OH-PHEN, 2-OH-FLU) and BIL and between 1- 
OH-PYR and CHOL were detected. However, after correction for mul-
tiplicity, all associations became insignificant (Table S5). 

BWQS regressions were run for 3 population subsets, each time 
excluding one sub-cohort and including the other two (A – PROF and 
NEW FF; B –NEW FF and CTRL; C – PROF and CTRL). The results from 
the stratified BWQS models are summarized in Table 4. Regarding 
subsets A and B, the results are very similar to the main analysis – sig-
nificant positive association with BIL (βA_BIL = 23.4%, βB_BIL = 38.8%). 
However, when excluding NEW FF (subset C – PROF and CTRL), besides 
the association with BIL (βC_BIL = 25.8%), the mixture also showed 
significant positive associations with CHOL and LDL (βC_CHOL = 29.5%, 
βC_LDL = 26.7%). 

4. Discussion 

In this original cohort study including occupationally exposed fire-
fighters at different professional stages, we found that exposure to the 
mixture of PFAS and PAHs is associated with an increase in bilirubin and 
changes in the lipid serum profile. 

In general, lower bilirubin levels and dyslipidaemia are considered 
indicators of the risk of developing CVDs (Choi et al., 2018; Ekstedt 

Table 1 
Characteristics of the study population. ×- statistically different from new firefighters in training; *- statistically different from new firefighters in training and controls.  

Characteristics Overall study population New firefighters in training Professional firefighters Controls 

n = 164 n = 58 n = 52 n = 54 

Mean ± SD 

Age (years)  26.4 ± 4.3 25.0 ± 3.6 28.4 ± 3.6 26.0 ± 4.9 
BMI  25.82 ± 2.70 26.31 ± 2.83 26.14 ± 2.35 24.99 ± 2.72 
Former smoking 

yes  21 (13%) 7 (12%) 10 (19%) 4 (7.4%) 
no  143 (87%) 51 (88%) 42 (81%) 50 (92.6%) 

Length of FF career (years) 1.76 ± 2.77 0.88 ± 0.67 4.58 ± 3.43 0.00 ± 0.00 
Biomarkers Normal range Median ± IQR 

ALP (μkat/L) ≤2.15 1.17 1.21 1.10 × 1.19 
(1.0–1.3) (1.1–1.4) (0.98–1.2) (1.0–1.4) 

out of the range: 0.6% 0.0% 0.0% 1.9% 

ALT (μkat/L) ≤0.68 0.42 0.40 0.48 * 0.41 
(0.33–0.55) (0.31–0.54) (0.38–0.64) (0.32–0.49) 

out of the range: 13.4% 13.8% 21.2% 5.6% 

AST (μkat/L) ≤0.62 0.47 0.46 0.45 0.50 
(0.39–0.59) (0.40–0.57) (0.38–0.60) (0.4–0.62) 

out of the range: 22.6% 20.7% 23.1% 24.1% 

GGT (μkat/L) ≤1.00 0.34 0.33 0.39 * 0.31 
(0.26–0.43) (0.25–0.40) (0.29–0.53) (0.25–0.36) 

out of the range: 1.2% 0.0% 3.8% 0.0% 

BIL (μmol/L) ≤18.70 13 14 13 12 
(9.0–17) (9.0–17) (9.0–17) (10–16) 

out of the range: 17.7% 19.0% 15.4% 18.5% 

CHOL (mmol/L) ≤5.00 4.50 4.20 4.90 * 4.45 
(4.1–5.2) (4.0–4.7) (4.4–5.4) (3.7–5.2) 

out of the range: 29.3% 12.1% 48.1% × 29.6% 

LDL (mmol/L) ≤3.00 2.8 2.65 3.15 * 2.75 
(2.4–3.3) (2.4–3.1) (2.7–3.7) (2.3–3.3) 

out of the range: 38.4% 29.3% 55.8% * 31.5% 

TAG (mmol/L) ≤1.70 1.06 1.02 1.15 1.02 
(0.83–1.4) (0.83–1.3) (0.87–1.6) (0.79–1.4) 

out of the range: 18.3% 15.5% 23.1% 16.7% 

Abbreviations: IQR – interquartile range; BMI – body-mass index; FF – firefighting; ALT – alanine aminotransferase; GGT – gamma-glutamyl transferase; AST – 
aspartate aminotransferase; ALP – alkaline phosphatase, BIL – total bilirubin, CHOL – total cholesterol, LDL – low-density lipoprotein cholesterol, TG – triglycerides. 
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Table 2 
Levels of PFAS in serum and SG-adjusted levels of OH-PAHs in the urine of participants. “*” – significantly different from other sub-cohorts; “(1)” – significantly different 
from new firefighters in training in phase 1; “(2)“– significantly different from new firefighters in training in phase 3.   

Overall study population New firefighters in training Professional firefighters Controls 

n = 164 n = 58 n = 52 n = 54 

Phase III Phase I Phase II Phase III Phase III Phase III 

PFAS Median (25th – 75th percentile) [ng.mL¡1] 
PFOA 1.03 1.18 1.22 1.12 1.21 0.82 * 

(0.76–1.3) (1.0–1.5) (0.88–1.5) (0.83–1.3) (0.92–1.5) (0.54–1.1) 
PFNA 0.36 0.41 0.41 0.39 0.4 0.29 * 

(0.26–0.45) (0.3–0.55) (0.32–0.51) (0.28–0.46) (0.29–0.54) (0.24–0.36) 
PFDA 0.16 0.19 0.21 0.18 0.19 0.13 * 

(0.12–0.22) (0.12–0.27) (0.15–0.29) (0.12–0.26) (0.14–0.25) (0.1–0.16) 
PFUnDA 0.06 0.05 0.07 0.07 0.05 0.06 

(0.04–0.08) (0.02–0.08) (0.03–0.09) (0.04–0.09) (0.04–0.07) (0.03–0.08) 
PFHxS 0.45 0.46 0.45 0.44 0.49 0.43 

(0.34–0.58) (0.35–0.59) (0.35–0.55) (0.39–0.56) (0.38–0.66) (0.33–0.54) 
PFOS 2.72 2.82 3.13 2.90 3.22 2.19 * 

(1.9–3.8) (2.1–4.0) (2.0–4.2) (2.0–3.9) (2.3–4.8) (1.5–2.7) 
∑

PFAS 4.78 5.38 5.67 5.00 5.56 3.93 * 
(3.9–6.4) (4.2–6.4) (4.1–6.7) (4.1–6.5) (4.6–7.6) (2.9–4.9) 

OH-PAHs Median (25th – 75th percentile) [ng.mL¡1] 
1-OH-NAP 2.09 2.94 13.3 * 1.95 2.43 1.7 (1) 

(1.2–3.7) (1.6–4.9) (8.6–20) (1.2–3.7) (1.6–3.9) (1.2–3.3) 
2–OH–NAP 5.11 5.48 18.1 * 5.37 6.37 4.81 

(3.3–8.3) (3.6–10) (11–27) (3.6–8.6) (3.8–8.8) (3.0–6.6) 
2–OH–FLU 0.37 0.36 0.99 * 0.38 0.39 0.36 

(0.26–0.52) (0.30–0.52) (0.69–1.6) (0.27–0.54) (0.28–0.49) (0.22–0.51) 
3–OH–FLU 0.08 0.11 0.2 * 0.07 0.11 0.08 

(0.05–0.15) (0.07–0.16) (0.13–0.3) (0.05–0.15) (0.06–0.16) (0.05–0.12) 
1–OH–PYR 0.13 0.15* 0.46 * 0.22 * 0.11 0.10 

(0.08–0.22) (0.1–0.24) (0.31–0.63) (0.13–0.33) (0.07–0.15) (0.06–0.14) 
2,3–OH–PHEN 0.24 0.25 0.62 * 0.26 0.20 (2) 0.26 

(0.16–0.36) (0.16–0.37) (0.49–0.86) (0.18–0.29) (0.15–0.3) (0.18–0.4) 
∑

OH–PAHs 8.69 10.16 37.81 * 9.07 9.70 6.57 
(5.4–13) (6.2–18) (21–53) (5.5–15) (5.6–13) (4.8–12) 

Abbreviations: IQR – interquartile range; PFAS – perfluoroalkyl substances; PFOA – perfluorooctanoate; PFNA – perfluorononanoate; PFDA – perfluorodecanoate; 
PFUnDA – perfluoroundecanoate; PFHxS – perfluorohexane sulfonate; PFOS – perfluorooctane sulfonate; OH-PAHs – hydroxylated polycyclic aromatic hydrocarbons; 
1-OH-NAP – 1-hydroxynaphtalene; 2-OH-NAP – 2-hydroxynaphtalene; 2-OH-FLU – 2-hydroxyfluorene; 3-OH-FLU – 3-hydroxyfluorene; 1-OH-PYR – 1-hydroxyprene; 
2/3-OH-PHEN – 2/3-hydroxyphenanthrene. 

Fig. 2. Adjusted β-coefficients and 95% confidence intervals (CI) between the internal exposure (SG-adjusted urinary levels of OH-PAHs metabolites and serum PFAS 
levels) and biomarkers of liver function and serum lipids from cross-sectional multiple linear regression models (n = 164). Estimates are expressed as percent change 
in the median of biomarker upon doubling exposure levels. All models adjusted for age, BMI, former smoking, length of FF career, and study sub-cohort. 
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et al., 2015; Ismaiel and Dumitraşcu, 2019; Méndez-Sánchez et al., 
2017; Soderberg et al., 2010). Exposure to PFAS and PAHs, both com-
mon environmental pollutants, has been previously associated with the 
alteration of these biomarkers; however, the associations are not 
consistent. Firefighters are of particular interest due to their relevant 
occupational exposure and observed increased incidence of CVD 
(Soteriades et al., 2011, 2019). In spite of this, relatively few studies 
have focused on the associations between the exposure of firefighters 

and CVD biomarkers and risk factors; however, most of them suggest 
significant associations (Andersen et al., 2018; Oliveira et al., 2020; 
Semmens et al., 2016). The most robust association observed within this 
study was the positive association between exposure to the mixture of 
PFAS and PAHs and total serum bilirubin, tested by BWQS regression 
and supported by the results from MLR. Biliverdin, a precursor of bili-
rubin, is a product of the degradation of haemoproteins (e.g., haemo-
globin, cytochrome P450) by haem oxygenase (HO), which is 
subsequently transformed into highly lipophilic bilirubin by biliverdin 
reductase. In blood, it is bound to the plasma protein albumin and then 
transported to the liver, where conjugates are formed, mostly bilirubin 
glucuronide by the action of UDP-glucuronosyltransferase 1, and then 
excreted via bile (Tomaro et al., 2002). The most active components of 
the mixture were PFHxS, 1-PYR, and 2/3-OH-PHEN (Fig. 3), which is 
partially in line with the results from MLR (Table S3). The association 
was significant also when PFAS and PAH mixtures were assessed indi-
vidually (Table 3). 

Studies focusing on the associations between liver functions and 
levels of urinary OH-PAHs are available (Alhamdow et al., 2017; Min 
et al., 2015; Xu et al., 2021); however, none of them focuses on bilirubin 
as a biomarker. Fortunately, similar trends have been observed in 
studies with rodents and hence support causality – after the adminis-
tration of phenanthrene, pyrene, or their ozonized products, levels of 
bilirubin were increased compared to control treatments (Yoshikawa 
et al., 1985). Zhu et al. observed increased bilirubin levels after pyrene 
exposure in adult male rats compared to the control treatment (Zhu 
et al., 2018). Both studies used pyrene because, in general, pyrene is 
present in all PAH mixtures at relatively high concentrations, and, since 
its metabolite 1-OH-pyrene is stable and easy to measure, it is frequently 
used as a biomarker of exposure to PAHs (Kim et al., 2013). 

Regarding PFAS, previous epidemiological studies focusing on PFAS 
exposure provide evidence suggestive of liver damage due to the alter-
ation of serum enzymes and bilirubin levels associated with PFAS 

Fig. 3. Bayesian weighted quantile sum regression mixture composition esti-
mates for total bilirubin (weights between 0 and 1). 

Table 3 
β-coefficients from BWQS mixture models with 95% credibility interval (CrI) for the full mixture (PFAS and OH-PAHs), PFAS-mixture, and OH-PAHs-mixture. All 
models were adjusted for age, BMI, former smoking, length of FF career, and study sub-cohort (n = 164). β represents a relative change in the median of the biomarker 
upon a doubling concentration of the mixture. Bold and “*” refer to statistically significant results.   

Full mixture PFAS mixture OH-PAH mixture 

β 95% CrI β 95% CrI β 95% CrI 

ALP − 10.2 − 24.4 7.5  − 10.1 − 21.0 3.2  − 0.9 − 12.1 12.0  
ALT − 7.5 − 20.2 7.2  − 6.5 − 16.3 3.6  − 1.3 − 10.8 8.5  
AST − 3.2 − 17.7 14.3  − 1.4 − 13.1 11.3  − 1.8 − 11.6 9.4  
GGT 6.4 − 7.2 22.4  4.0 − 6.9 16.5  3.2 − 6.6 13.0  
BIL 28.6 14.6 45.7 * 11.7 1.3 23.1 * 16.0 6.9 26.5 * 
CHOL 10.8 − 3.0 27.8  2.6 − 8.0 14.0  7.5 − 1.7 17.0  
LDL 9.9 − 4.0 24.2  1.2 − 8.2 11.3  7.7 − 0.6 16.7  
TG − 11.2 − 24.9 5.8  ¡14.3 ¡24.4 ¡3.3 * 3.5 − 7.1 15.7  

Abbreviations: PFAS – perfluoroalkyl substances, OH-PAH – hydroxylated polycyclic aromatic hydrocarbons, ALT – alanine aminotransferase, GGT – gamma- 
glutamyl transferase, AST – aspartate aminotransferase, ALP – alkaline phosphatase, BIL – total bilirubin, CHOL – total cholesterol, LDL – low-density lipoprotein, 
TG – triglycerides. 

Table 4 
β-values from BWQSR mixture models with 95% credibility interval (CrI) for the full mixture (PFAS and OH-PAHs) for specific subsets. A – new firefighting trainees 
(NEW FF) and firefighters professionals (PROF), n = 110; B – NEW FF and control sub-cohort (CTRL), n = 112; and C – PROF and CTRL, n = 106. All models were 
adjusted for age, BMI, former smoking, length of FF career, and study sub-cohort.   

A B C 

β 95% CrI β 95% CrI β 95% CrI 

ALP − 0.5 − 18.3 21.1  − 18.9 − 35.0 1.3  − 10.8 − 32.4 17.1  
ALT − 11.0 − 25.9 6.9  − 10.1 − 24.4 7.7  − 0.5 − 18.0 19.7  
AST − 13.4 − 29.8 6.9  − 5.1 − 20.8 13.9  4.7 − 15.2 27.3  
GGT 4.1 − 13.5 25.8  4.6 − 10.0 22.3  15.5 − 5.0 40.5  
BIL 23.4 7.5 42.2 * 38.8 21.9 57.9 * 25.8 7.8 48.2 * 
CHOL − 1.1 − 15.0 14.5  4.1 − 11.1 22.0  29.5 10.3 53.6 * 
LDL 0.2 − 13.3 14.6  3.1 − 11.5 20.1  26.7 8.3 48.5 * 
TG − 12.4 − 27.0 5.5  − 13.3 − 26.5 3.0  − 1.8 − 27.9 30.8   
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exposure (Costello et al., 2022; Darrow et al., 2016; Gallo et al., 2012a; 
Gleason et al., 2015a; Lin et al., 2010; Omoike et al., 2021; Salihovic 
et al., 2018). Our results are in line with observations from the NHANES 
study, which suggested positive associations of total serum bilirubin 
with PFOS and PFOA, and an inconsistent positive association with 
PFHxS (Gleason et al., 2015a). In another study, BIL was positively 
associated with internal exposure to PFNA and PFHxS (Lin et al., 2010). 
Gallo et al. observed a clear positive association between bilirubin and 
serum PFOS levels (Gallo et al., 2012a). Positive associations between 
BIL and PFHxS, PFNA, PFOA, and PFOS were also observed in the recent 
NHANES study (Omoike et al., 2021). In contrast, many available 
studies report inverse associations of bilirubin with serum PFAS levels 
(Costa et al., 2009; Darrow et al., 2016; Olsen and Zobel, 2007; Sakr 
et al., 2007b) which is in line with the fact that decreased levels of BIL 
are associated with an increased risk of CVDs (Méndez-Sánchez et al., 
2017). 

Such inconsistency among available studies might be explained by 
the U-shaped relationship between bilirubin and serum PFAS levels, 
which was already proposed for PFOA (Gallo et al., 2012a). The authors 
suggest increasing levels of BIL per increasing levels of PFOA at low 
PFOA levels and decreasing BIL levels for concentrations of PFOA above 
about 40 ng/mL (Gallo et al., 2012a). This trend can be observed 
throughout the available studies – results from strongly/occupationally 
exposed populations with medians in the range of μg/mL show inverse 
associations (Costa et al., 2009; Darrow et al., 2016; Olsen and Zobel, 
2007; Sakr et al., 2007b), while studies focusing on cohorts with milder 
exposure (in the range of ng/mL) report positive associations (Gallo 
et al., 2012a; Gleason et al., 2015a; Lin et al., 2010; Omoike et al., 2021). 

Besides bilirubin being the end product of haem metabolism, it is also 
an endogenous antioxidant protectant. It is capable of scavenging hy-
droxyl (⋅OH), hydroperoxyl (HO2⋅), and superoxide anion (O−

2 ⋅) radicals 
while oxidising itself to biliverdin, which is thanks to a large excess of 
bilirubin reductase subsequently regenerated back into bilirubin. This 
cycle allows nanomolar concentrations of bilirubin (20–50 nM) (Sedlak 
et al., 2009) to effectively neutralize millimolar concentrations of toxic 
oxidant agents (Méndez-Sánchez et al., 2017). Bilirubin metabolism 
depends on several enzymes, such as haem-oxygenase (catalysing the 
cleavage of the tetrapyrrole ring of haem (Sedlak et al., 2009)), 
glutathione-S-transferase (binding lipophilic bilirubin in its 
non-substrate sites and providing the storage of bilirubin within cells 
(Fukai et al., 1989)) and UDP-glucuronosyltransferase 1 (catalysing the 
conjugation of bilirubin with glucuronic acid upon excretion via bile 
(Kapitulnik, 2004)). All three above-mentioned enzymes are of toxico-
logical significance due to their irreplaceable functions in mitigating 
oxidative stress (defined as the increased production of reactive oxygen 
species (ROS)), and/or detoxifying xenobiotics in the human body 
(Dasari et al., 2018; Doré et al., 1999; Guillemette, 2003; Llesuy and 
Tomaro, 1994). Hence, increased oxidative stress can potentially affect 
the metabolism of bilirubin on several levels. Both PAHs and PFAS are 
known for their potential to increase levels of pro-oxidant moieties in 
the human body (Lin et al., 2020; Oliveira et al., 2020; Omoike et al., 
2021; Wielsøe et al., 2015; Yang et al., 2015). Such exposure can trigger 
an increase in blood bilirubin, a potent antioxidant responding to 
exposure-related oxidative stress, probably via the induction of 
haem-oxygenase (Kapitulnik, 2004; Llesuy and Tomaro, 1994; Ryter and 
Tyrrell, 2000; Tomaro et al., 2002). When considering a complex 
mixture, our data suggest that already low levels of PFAS and OH-PAHs 
(in the range of ng/mL, Table 2, Řiháčková et al., 2023) can probably 
initiate detoxifying activities in the human body. When the exposure is 
more severe (in the range of hundreds to thousands of ng/mL), it can be 
assumed that the capacity of antioxidant systems becomes exhausted 
(Bélanger et al., 1997; Niki, 2010; Sedlak and Snyder, 2004) which may 
lead to hepatotoxic effects, as observed in other studies. The lower 
exposure levels in participants from this study might also be the reason 
for there being no robust associations with liver enzymes detected by 
MLR or BWQS. 

When the PFAS mixture was considered separately, a significant 
negative association with TG was observed (Table 2). Similar results 
were reported for the Swedish cohort (Donat-Vargas et al., 2019) as well 
as for prenatally exposed children (Papadopoulou et al., 2021). How-
ever, these hypolipidemic effects were not observed in the majority of 
previous studies, which reported either positive or non-significant as-
sociations with serum lipids (Canova et al., 2020; Ho et al., 2022; Sakr 
et al., 2007a, 2007b; Steenland et al., 2009). PFAS can affect the 
metabolism of lipids via several non-exclusive mechanisms, mainly in 
hepatocytes, including the activation of nuclear receptors such as 
peroxisome proliferator-activated receptor alpha (PPARα), PPARγ, 
constitutive androstane receptor (CAR), and pregnane X receptor 
(Andersen et al., 2021; Beggs et al., 2016; Behr et al., 2020; Canova 
et al., 2020; Fragki et al., 2021; Ho et al., 2022). The results from animal 
models (including primates) are in line with the findings from our study 
– inverse associations between the levels of PFAS and serum lipids, 
including TG (Guruge et al., 2006; Haughom and Spydevold, 1992; 
Martin et al., 2007; Seacat et al., 2002), suggesting PPARα is a key player 
in PFAS toxicity (Donat-Vargas et al., 2019). However, the relative 
importance of these mechanisms in humans is still debatable (Knutsen 
et al., 2018), mostly due to the differences between human and animal 
models as well as the potential non-causality of observations (Donat--
Vargas et al., 2019; Ho et al., 2022). When PFAS and PAHs were 
considered together in one complex mixture, the association was not 
significant, suggesting different modes of action of PFAS and PAHs, a 
notion supported also by the opposite (positive) directionality of β-co-
efficients associated with OH-PAHs from BWQS as well as from 
cross-sectional MLR models (Fig. 2, Table 3). Although non-significant, 
these observations are in line with available epidemiological studies 
which suggest that exposure to PAHs in humans is positively associated 
with early markers of CVD and atherosclerosis, including levels of serum 
lipids (Alhamdow et al., 2017; Holme et al., 2019; Shahsavani et al., 
2021). 

In the case of CHOL and LDL, no significant associations resulted 
from MLR models. The results from the assessment of mixture effects 
(Table 3) are in line with observations from other studies (Alhamdow 
et al., 2017; Costa et al., 2009; Dong et al., 2019; Emmett et al., 2006; 
Holme et al., 2019; Olsen and Zobel, 2007; Sakr et al., 2007a, 2007b; 
Shahsavani et al., 2021) revealing the positive directionality of β-co-
efficients between exposure to the PFAS/PAHs mixture and serum CHOL 
(β = 10.8%) and LDL (β = 9.9%), although the associations were not 
statistically significant (95% CrICHOL = − 3.0 – 27.8% and 95% CrILDL =

− 4.0 – 24.2%). When the NEW FF sub-cohort was excluded as part of the 
sensitivity analysis, the associations with CHOL and LDL became sig-
nificant (Table 4). Interestingly, in the case of NEW FF, the prospective 
associations between phase 2 OH-PAHs and phase 3 CHOL and LDL were 
negative (Table S4), while mostly positive tendencies were observed in 
cross-sectional sensitivity analyses in the PROF and CTRL sub-cohorts 
(Table S5). In rodents, oral exposure to PAHs caused the dysregulation 
of lipid metabolism by altering the expression of genes responsible for de 
novo fatty acid synthesis and the accumulation of lipids in hepatocytes, 
suggesting the increased uptake of lipids from the blood by the liver (Jin 
et al., 2014; Li et al., 2019, 2020a). The alteration of serum lipids via this 
pathway due to the single-point exposure of NEW FF during indoor 
firefight training in the 6th week of the study (phase 2) might be an 
explanation for the observed trends that were inconsistent with other 
sub-cohorts. Hence, it can be hypothesised that results from the pro-
spective analysis of NEW FF reflect a biological response to a short-term 
single exposure of higher magnitude (phase 2), and that this single 
exposure also influenced the results from the cross-sectional analysis of 
NEW FF in phase 3. In contrast, it can be assumed that the results from 
PROF and CTRL reflect a biological response to rather long-term stable 
exposure. However, in NEW FF, it cannot be ruled out that the observed 
results may have been affected by reduced sample size (n = 58) and by 
differences in the metabolization and excretion rate of PAHs due to the 
intensive physical training undertaken by participants before and during 
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the study period, which might have affected basal metabolic rates, since 
the confounding variable of physical activity was not included in the 
models (Durand et al., 2011; Speakman and Selman, 2003). 

Levels of BIL, CHOL, and LDL are considered risk factors for CVDs; 
hence, the results from this study suggest that individuals exposed to 
higher levels of PFAS and PAHs are more prone to develop an unfav-
ourable cardiometabolic profile in terms of the exhaustion of bilirubin 
antioxidant capacity and the alteration of serum lipid levels, both 
leading to an increased risk of developing CVDs in the future. Fire-
fighters are among these individuals because firefighting as well as 
firefighting training increase internal exposure to PFAS and/or PAHs 
(Barros et al., 2021; Clarity et al., 2021; Durand et al., 2011; Fent et al., 
2020; Jin et al., 2011; Laitinen et al., 2012; Laitinen et al., 2014a; Oli-
veira et al., 2020). There is a need to continuously monitor such expo-
sure, identify the exposure sources (during both on- and off-duty 
periods), and minimise it. It is essential to communicate this information 
about potential health risks and how to reduce them through safety 
training with both firefighters and policymakers. Since PAHs and PFAS 
are omnipresent environmental pollutants (Giesy and Kannan, 2002; 
Kim et al., 2013), not only firefighters, but also other occupationally and 
non-occupationally exposed individuals (e.g., people living in contam-
ination hot-spots (McMahon et al., 2022), production workers (Sakr 
et al., 2007a), coke-oven workers, and chimney sweeps (Wagner et al., 
2015)) might face increased health risks. 

The major strengths of this study can be summarized in 3 points:  

a) the use of the cohort from central Europe with a special focus on the 
occupational exposure of firefighters including in total 110 fire-
fighters at various professional stages, which is rare due to chal-
lenges arising from collaboration with fire rescue teams;  

b) the collection of a rich dataset of both exposure biomarkers (6 PFAS 
in blood and 6 OH-PAHs in urine) and biomarkers of liver function 
and serum lipids accompanied with data from questionnaires;  

c) the use of a complex statistical approach, including the assessment of 
associations of liver function and serum lipids biomarkers with both 
individual compounds by means of linear regression with adjust-
ments for multiple comparisons, and their mixtures by means of 
Bayesian weighted quantile sum regression. 

In terms of limitations of the study, despite the high participation of 
firefighters, the sample size was from the statistical point of view rela-
tively small, which limited drawing firm conclusions, particularly for 
the stratified analyses. Small sample size along with homogeneity of the 
study population also limited generalization to the whole Czech male 
population. Although the models presented in this paper were controlled 
for factors such as age, BMI, former smoking, and others, residual con-
founding by unmeasured factors, such as physical activity and fitness, 
cannot be excluded. Despite the proposed molecular mechanisms, the 
causality of the observed associations cannot be clearly confirmed due to 
cross-sectional character of analyses or limited sample size in case of 
prospective analyses. Lastly, until recently women did not participate in 
firefighting in the Czech Republic, hence, only men were included in this 
study. However, in August 2022, the first woman qualified as a profes-
sional firefighter and began to participate in incident responses, hence, 
more women are expected to follow. Due to sex-related effects of PFAS 
(Sen et al., 2022), specific monitoring of female firefighters in Czech 
Republic will soon be required. 

5. Conclusion 

There are emerging gaps in the occupational epidemiology of fire-
fighting, one of the most hazardous occupations. This study investigated 
the effects of PAH and PFAS exposure on liver function and serum lipids, 
with a special focus on firefighters at different professional stages. The 
findings from studying both the effects of individual compounds (by 
means of linear regression) as well as the effects of complex mixtures (by 

means of Bayesian weighted quantile sum regression) suggest that 
increased exposure to these compounds, typical in firefighters, is asso-
ciated with increased levels of bilirubin (a potent antioxidant with a 
proposed U-shaped dose-response curve) and increased levels of total 
cholesterol and low-density lipoprotein (risk factors for developing 
cardiovascular diseases). Due to the low sample size and the cross- 
sectional design of the study, further research is required to confirm 
the associations observed. 
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RECETOX Trace laboratories for sample preparation; Ondřej Mikeš for 
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Gražulevičiene, R., Haug, L.S., Heude, B., Maitre, L., McEachan, R.R.C., 
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2015a. Novel fluorinated surfactants tentatively identified in firefighters using liquid 
chromatography quadrupole time-of-flight tandem mass spectrometry and a case- 
control approach. Environ. Sci. Technol. 49 (4), 2434–2442. https://doi.org/ 
10.1021/es503653n. 

Rotander, A., Toms, L.M.L., Aylward, L., Kay, M., Mueller, J.F., 2015b. Elevated levels of 
PFOS and PFHxS in firefighters exposed to aqueous film forming foam (AFFF). 
Environ. Int. 82, 28–34. https://doi.org/10.1016/j.envint.2015.05.005. 

Rstudio Team, 2020. Rstudio. Integrated Development for R. Rstudio, PBC, Boston MA. 
http://www.rstudio.com/.  

Ryter, S.W., Tyrrell, R.M., 2000. The heme synthesis and degradation pathways: role in 
oxidant sensitivity: heme oxygenase has both pro-and antioxidant properties. Free 
Radical Biol. Med. 28 (2), 289–309. https://doi.org/10.1016/S0891-5849(99) 
00223-3. 
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Uppal, K., McEachan, R.R.C., Papadopoulou, E., Robinson, O., Haug, L.S., Wright, J., 
Vos, M.B., Keun, H.C., Vrijheid, M., Berhane, K.T., McConnell, R., Chatzi, L., 2020. 
Prenatal exposure to perfluoroalkyl substances associated with increased 
susceptibility to liver injury in children. Hepatology 72 (5). https://doi.org/ 
10.1002/hep.31483. 

Tomaro, M.L., Del, A.M., Batlle, C., 2002. Bilirubin: its role in cytoprotection against 
oxidative stress. Int. J. Biochem. Cell Biol. 34 https://doi.org/10.1016/S1357-2725 
(01)00130-3. 

Trowbridge, J., Gerona, R.R., Lin, T., Rudel, R.A., Buren, H., Morello-frosch, R., 2020. 
Exposure to perfluoroalkyl substances in a cohort of women firefighters and office 
workers in San Francisco. Environ. Sci. Technol. 54 (6), 3363–3374. https://doi.org/ 
10.1021/acs.est.9b05490.Exposure. 

Wagner, M., Bolm-Audorff, U., Hegewald, J., Fishta, A., Schlattmann, P., Schmitt, J., 
Seidler, A., 2015. Occupational polycyclic aromatic hydrocarbon exposure and risk 
of larynx cancer: a systematic review and meta-analysis. Occup. Environ. Med. 72 
(3), 226–233. https://doi.org/10.1136/oemed-2014-102317. 

Wang, Y., Zhao, H., Wang, T., Liu, X., Ji, Q., Zhu, X., Sun, J., Wang, Q., Yao, H., Niu, Y., 
Jia, Q., Su, W., Chen, W., 2019. Polycyclic aromatic hydrocarbons exposure and 
hematotoxicity in occupational population : a two-year follow-up study. Toxicol. 
Appl. Pharmacol. 378 (June), 114622 https://doi.org/10.1016/j.taap.2019.114622. 

Weyand, E.H., Bevan, D.R., 1986. Benzo(a)pyrene disposition and metabolism in rats 
following intratracheal instillation. Cancer Res. 46 (11), 5655–5661. 

Wielsøe, M., Long, M., Ghisari, M., Bonefeld-Jørgensen, E.C., 2015. Perfluoroalkylated 
substances (PFAS) affect oxidative stress biomarkers in vitro. Chemosphere 129, 
239–245. https://doi.org/10.1016/j.chemosphere.2014.10.014. 

Wingfors, H., Nyholm, J.R., Magnusson, R., Wijkmark, C.H., 2018. Impact of fire suit 
ensembles on firefighter pah exposures as assessed by skin deposition and urinary 
biomarkers. Annals of Work Exposures and Health 62 (2), 221–231. https://doi.org/ 
10.1093/annweh/wxx097. 

Xu, C., Liu, Q., Liang, J., Weng, Z., Xu, J., Jiang, Z., Gu, A., 2021. Urinary biomarkers of 
polycyclic aromatic hydrocarbons and their associations with liver function in 
adolescents. Environ. Pollut. 278, 116842 https://doi.org/10.1016/j. 
envpol.2021.116842. 

Yamaguchi, M., Arisawa, K., Uemura, H., Katsuura-Kamano, S., Takami, H., 
Sawachika, F., Nakamoto, M., Juta, T., Toda, E., Mori, K., Hasegawa, M., Tanto, M., 
Shima, M., Sumiyoshi, Y., Morinaga, K., Kodama, K., Suzuki, T., Nagai, M., Satoh, H., 
2013. Consumption of seafood, serum liver enzymes, and blood levels of PFOS and 
PFOA in the Japanese population. J. Occup. Health 55 (3), 184–194. https://doi. 
org/10.1539/joh.12-0264-OA. 

Yang, Q., Qiu, X., Li, R., Ma, J., Li, K., Li, G., 2015. Polycyclic aromatic hydrocarbon 
(PAH) exposure and oxidative stress for a rural population from the North China 
Plain. Environ. Sci. Pollut. Control Ser. 22 (3), 1760–1769. https://doi.org/10.1007/ 
s11356-014-3284-y. 

Yoshikawa, T., Ruhr, L.P., FloRY, W., Giamalva, D., Church, D.F., Fryor, W.A., 1985. 
Toxicity of polycyclic aromatic hydrocarbons I. Effect of phenanthrene, pyrene, and 
their ozonized products on blood chemistry in rats toxicity of polycyclic aromatic 
hydrocarbons. I. Effect of phenanthrene, pyrene, and their ozonized products on 
blood chemistry in rats. Toxicol. Appl. Pharmacol. 79. 

Zhu, J., Zhao, L.Y., Wang, X.X., Shi, Z., Zhang, Y., Wu, G., Zhang, S.Y., 2018. 
Identification of hepatotoxicity and renal dysfunction of pyrene in adult male rats. 
Environ. Toxicol. 33 (12), 1304–1311. https://doi.org/10.1002/tox.22638. 
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