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ABSTRACT Novel species of coagulase-negative staphylococci, which could serve as 
reservoirs of virulence and antimicrobial resistance factors for opportunistic pathogens 
from the genus Staphylococcus, are recognized in human and animal specimens due to 
advances in diagnostic techniques. Here, we used whole-genome sequencing, extensive 
biotyping, MALDI-TOF mass spectrometry, and chemotaxonomy to characterize five 
coagulase-negative strains from the Staphylococcus haemolyticus phylogenetic clade 
obtained from human ear swabs, wounds, and bile. Based on the results of polyphasic 
taxonomy, we propose the species Staphylococcus brunensis sp. nov. (type strain NRL/St 
16/872T = CCM 9024T = LMG 31872T = DSM 111349T). The genomic analysis revealed 
numerous variable genomic elements, including staphylococcal cassette chromosome 
(SCC), prophages, plasmids, and a unique 18.8 kb-long genomic island SbCIccrDE 
integrated into the ribosomal protein L7 serine acetyltransferase gene rimL. SbCIccrDE has 
a cassette chromosome recombinase (ccr) gene complex with a typical structure found 
in SCCs. Based on nucleotide and amino acid identity to other known ccr genes and 
the distinct integration site that differs from the canonical methyltransferase gene rlmH 
exploited by SCCs, we classified the ccr genes as novel variants, ccrDE. The comparative 
genomic analysis of SbCIccrDE with related islands shows that they can accumulate 
virulence and antimicrobial resistance factors creating novel resistance elements, which 
reflects the evolution of SCC. The spread of these resistance islands into established 
pathogens such as Staphylococcus aureus would pose a great threat to the healthcare 
system.

IMPORTANCE The coagulase-negative staphylococci are important opportunistic 
human pathogens, which cause bloodstream and foreign body infections, mainly 
in immunocompromised patients. The mobile elements, primarily the staphylococcal 
cassette chromosome mec, which confers resistance to methicillin, are the key to the 
successful dissemination of staphylococci into healthcare and community settings. Here, 
we present a novel species of the Staphylococcus genus isolated from human clinical 
material. The detailed analysis of its genome revealed a previously undescribed genomic 
island, which is closely related to the staphylococcal cassette chromosome and has the 
potential to accumulate and spread virulence and resistance determinants. The island 
harbors a set of conserved genes required for its mobilization, which we recognized 
as novel cassette chromosome recombinase genes ccrDE. Similar islands were revealed 
not only in the genomes of coagulase-negative staphylococci but also in S. aureus. 
The comparative genomic study contributes substantially to the understanding of the 
evolution and pathogenesis of staphylococci.
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S taphylococci, mainly coagulase-positive Staphylococcus aureus, are the leading cause 
of a broad spectrum of diseases in humans and animals. Over the last three decades, 

coagulase-negative staphylococcal species (CoNS), with the most significant being 
Staphylococcus epidermidis, Staphylococcus haemolyticus, and Staphylococcus hominis, 
have been recognized as opportunistic pathogens, especially in immunocompromised 
patients. CoNS are a frequent cause of nosocomial infections related to catheters or 
medical devices aided by their ability to form a biofilm (1). Additionally, the gene pool 
of substrate utilization pathways and resistance determinants enables CoNS to occupy 
various niches, providing favorable conditions for the emergence of multidrug-resistant 
CoNS and their subsequent spread in healthcare environments (2).

The adaptation of S. haemolyticus strains to diverse environments is facilitated by 
frequent recombination among numerous insertion sequences (ISSha1) (3). Therefore, 
the standard microbial and molecular diagnostic tools have limited discriminatory 
power to reliably distinguish species closely related to S. haemolyticus (4). Only recently, 
molecular diagnostics approaches, mainly in-depth whole-genome characterization, 
have assigned atypical S. haemolyticus strains isolated from clinical specimens into the 
new species Staphylococcus borealis (5) and Staphylococcus taiwanensis (6). The core 
genome phylogeny also led to the reclassification of the S. petrasii phylogenetic complex 
(7, 8), which now consists of three species—S. petrasii, S. croceilyticus, and S. pragensis 
(9). All these species were isolated from various human biological samples, mainly from 
wounds, eye and ear infections, urinary infections, and blood samples (10).

The versatility of CoNS is associated with a significant reservoir of mobile genetic 
elements (MGEs). Notably, the methicillin resistance encoded by the staphylococcal 
chromosomal cassette (SCC) mec (SCCmec) significantly complicates healthcare and 
increases the need to use second-line antimicrobial drugs to treat staphylococcal 
infections (11). Apart from mec genes responsible for methicillin resistance, SCCmec 
carries numerous genes for virulence, such as phenol-soluble modulins (PSM-mec), 
plasmin, or heavy-metal and other resistance genes contributing to the survival of these 
strains in an environment (12–14). It is suspected that the SCCmec originates from CoNS 
species (15), but the natural mechanism of SCC transmission is still unknown. It can be 
transferred intra- and even interspecies by transduction (16), conjugation (17), or natural 
competence (18). The transfer of SCCmec is mediated by ccr chromosome cassette genes 
of the serine recombinase family. Three phylogenetically distinct ccr genes, namely 
ccrA, ccrB, and ccrC, have been delineated with nucleotide identities below 50%. These 
recombinases recognize a specific att site in the bacterial rlmH gene for ribosomal 
RNA large-subunit methyltransferase H (19). The recombinases CcrA and CcrB function 
together as a heterotetramer in the specific excision of the SCC (20), whereas the CcrC 
recombinase enables mobilization of the element without another recombinase (21).

The recent increase in the association of CoNS with nosocomial infections and 
improvements in diagnostic approaches make it possible to recognize other often 
overlooked species of this group related to human diseases. Investigation of these CoNS 
as a pool of genes for antimicrobial resistance and virulence can reveal the molecular 
mechanisms that lead to these opportunistic pathogens’ evolution, adaptation, and 
success. This article reports the polyphasic characterization of five Staphylococcus sp. 
isolates from human clinical material to delineate a novel species. Whole-genome 
sequence analyses of the strains revealed a remarkable non-SCC genomic island 
harboring ccrDE cassette chromosome recombinase types.
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RESULTS

Phylogenetic relationship of the strains

Five unidentified Staphylococcus sp. strains were collected from various human clinical 
specimens from both mixed culture and monoculture between 2016 and 2022 (Table 
1) and transferred to the National Reference Laboratory for Staphylococci (National 
Institute of Public Health, Prague) for long-term storage and further study. The phyloge­
netic analysis of complete 16S rRNA gene sequences consistently placed the five isolates 
in S. haemolyticus cluster group defined previously (22). The closest relatives were 
Staphylococcus petrasii, Staphylococcus croceilyticus, and Staphylococcus pragensis, with 
16S rRNA gene sequence similarities ranging from 99.80 to 99.59%, while other species 
were below 99.4% similarity. The topology of the neighbor-joining (NJ) phylogenetic 
tree constructed with 16S rRNA gene sequences was similar to that of the maximum 
likelihood (ML) tree (Fig. 1A). Because the 16S rRNA analysis has limited discriminatory 
power in the genus Staphylococcus (5, 6, 23), the phylogenetic position of the new 
isolates was also assessed using the concatenated multilocus sequence data of six 
routinely used conserved housekeeping genes: rpoB, hsp60, dnaJ, tufA, gap, and sodA 
for discrimination of staphylococcal species (Fig. 1B). The ML phylogenetic tree for the 
housekeeping genes had a very similar topology to that of the 16S rRNA gene tree and to 
the additional phylogenetic trees constructed using the up-to-date bacterial core gene 
(UBCG) at the nucleotide and protein level (Fig. 1C and D).

The whole-genome phylogenetic distance from the related staphylococcal taxa with 
an ANI value of <92.3% (Table S3) and digital DNA-DNA hybridization (dDDH) of <45.6% 
determined the closest species S. petrasii; however, the values were below the species 
delineation thresholds, which are 95–96% and 70%, respectively (24). The whole-genome 
phylogeny thus confirmed that the five isolates represent a distinct Staphylococcus 
species designated Staphylococcus brunensis sp. nov.

Growth, morphological, biochemical, and chemotaxonomical characteriza­
tion of analyzed isolates

All five isolates exhibited Gram-positive stain, irregular cells ranging in diameter from 433 
nm to 1,210 nm (Fig. S1) arranged in pairs, tetrads, and clusters. They grew very well on 

TABLE 1 Origin of the strains of Staphylococcus brunensis sp. nov. characterized in this study

Strain Date of isolation Locality Specimen Sex Age Diagnosis Other microflora

NRL/Sta 16/872T

= CCMb 9024T

= LMGc 31,872T

= DSMd 111349T

Oct 2016 Karlovy Vary Swab of ear M 3 y Acute otitis externa Monoculture

NRL/Sta 19/737 = 
CCMb 9023

Jul 2019 Prague Wound pus M 32 y Surgical wound 
infection

S. aureus

NRL/Sta 18/288 = 
P12563

Mar 2018 Lyon Wound pus M 51 y Leg wound infection NAe

NRL/Sta 21/187 = 
P13332

Jul 2021 Karlovy Vary Bile M 83 y Cholelithiasis and 
cholecystitis

E. coli, Klebsiella 
pneumoniae, 
Citrobacter 
freundii, and 
Enterococcus 
faecalis

NRL/Sta 22/194 = 
P13326

Apr 2022 Prague Swab of ear M 6 m Acute otitis media Monoculture

aNRL/St, National Reference Laboratory for Staphylococci, National Institute for Public Health, Prague.
bCCM, Czech Collection of Microorganisms.
cLMG, Bacteria Collection at the Laboratorium voor Microbiologie Universiteit Gent.
dDSM, German Collection of Microorganisms and Cell Cultures.
eNA, not analyzed.
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tryptone soy agar (TSA), Columbia agar with blood, plate count agar, P agar, and nutrient 
agar, and did not grow in a thioglycollate medium. The Congo red agar method showed 
negativity in the production of polysaccharide intercellular adhesin (PIA) associated 
with biofilm formation. Phenotypic identification based on bacitracin resistance and 
sensitivity to furazolidone, positive catalase test, growth in the presence of NaCl above 
10%, and microscopic morphology assigned five isolates as Staphylococcus sp. In contrast 
to the main characteristics of staphylococci, isolate NRL/St 19/737 exhibited atypical 
negative catalase activity. Test-dependent results were also observed for the Voges-Pros­
kauer (VP) test (acetoin) and for β-glucuronidase. With detection of acetoin production, 
we only obtained positive results in all five strains when pyruvic acid served as substrate 
using the commercial VP test (Erba Lachema) instead of glucose as substrate for the 

FIG 1 Evolutionary analyses of Staphylococcus brunensis sp. nov. and its closest relatives. GenBank accession numbers of used sequences are listed in Table S1. 

(A) Evolutionary history inferred using neighbor-joining (NJ) method based on complete 16S rRNA gene sequences extracted from whole-genome assemblies. 

Filled circles indicate that the corresponding nodes were also identified from analysis by the maximum likelihood (ML) method. The percentage of replicate trees 

above 50% in which the associated taxa clustered together in the bootstrap test (500 replicates) are shown next to the branches for the NJ and ML methods. S. 

aureus DSM 20231T was used as an outgroup. The evolutionary distances are in the units of the number of base substitutions per site. All ambiguous positions 

were removed for each sequence pair. There were a total of 1,552 positions in the final data set. (B) Unrooted ML tree based on multilocus sequence analysis 

of concatenated nucleotide sequences from six loci—rpoB, hsp60, dnaJ, tufA, gap, and sodA—were extracted from whole-genome assemblies. Filled circles 

indicate that the corresponding nodes were also identified from analysis by the NJ method. There were a total of 3,952 positions in the final data set. Bootstrap 

probability values (percentages of 500 tree replications) greater than 50% are shown at branch points. The evolutionary distances are given as the number 

of substitutions per site. (C) Nucleotide sequence-based and (D) protein sequence-based phylogenetic tree of the concatenated alignment of 92 core genes 

constructed using up-to-date bacterial core gene (UBCG) set. The ML tree was inferred using RAxML software and 100 replicates. The threshold for the gene 

support index was set to 94% for the nucleotide and 80% for the protein-based tree. Gene support indices are given at branching points (the maximal possible 

value is 92). The bar indicates the number of substitutions per position.
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conventional VP test. Similar results were obtained with the β-glucuronidase test, where 
all isolates were positive in the STAPHYtest 24 kit, but negative in the API ZYM kit due 
to a different substrate for enzyme detection. The differentiation of novel staphylococcal 
isolates from similar and/or closely related staphylococci occurring in human clinical 
material is shown in Table 2. The species S. petrasii, S. pragensis, and S. haemolyticus were 
phenotypically the most similar taxa to the aforementioned isolates. Strain-dependent 
utilization results are specified in Table S4. Complete characteristics of S. brunensis sp. 
nov. are stated in the protologue given subsequently.

Antibiotic susceptibility testing showed that all five strains are susceptible to cefoxitin, 
clindamycin, gentamicin, chloramphenicol, linezolid, oxacillin, rifampicin, tobramycin, 
trimethoprim, sulphamethox/trimethoprim (cotrimoxazole), tetracycline, and fusidic 
acid. Susceptibility to ciprofloxacin and levofloxacin was intermediate. Susceptibility to 
ampicillin, penicillin G, tigecycline, and erythromycin was strain-dependent (Table S4).

By using cluster analysis of matrix-assisted laser-desorption/ionization-time-of-flight 
mass spectrometry (MALDI-TOF MS) protein profiles, all five S. brunensis sp. nov. strains 
were separated into a coherent cluster distinguished from phylogenetically related 

FIG 2 Dendrogram based on MALDI-TOF MS profiles of Staphylococcus brunensis sp. nov. and other 

phylogenetically related species. The dendrogram was generated using the correlation distance measure 

with the average linkage algorithm (UPGMA) settings of the software BioTyper version 3.1 (Bruker 

Daltonics).

TABLE 2 Differentiation of Staphylococcus brunensis sp. nov. from closely related staphylococci occurring in human clinical material

Testd Result obtained for indicated type straina/result from species description

S. brunensis sp. 
nov.b

S. petrasii 
CCM 8418T

S. croceilyticus 
CCM 8421T

S. pragensis 
CCM 8529T

S. haemolyticus 
CCM 2737T

S. borealis 
CCM 9145T

S. taiwanensis 
CCM 9267T

Arginine dihydrolase + +/+ +/+ −/− +/+ +/+ +/+
Voges-Proskauer test + +/+ +/+ +/+ w/+ −/− +/+
Urease − +/d +/+ −/− −/− +/+ +/+
β-Glucuronidasec + −/− +/+ −/− +/d +/d −/−
DNA hydrolysis − w/d −/− +/+ +/d w/− −/−
Acid from: lactose + −/d −/− −/− −/d −/− −/−
  Galactose + −/d −/− −/− +/d −/nt −/−
  Mannose − +/+ −/− −/− −/− −/d −/−
  Ribose − −/w w/w −/− −/d +/+ +/+
  D-arabinose − −/− +/+ −/− −/− −/− −/−
  N-Acetylglucosamine − −/− −/− −/− +/+ +/d −/−
Pale yellow pigment − −/− +/+ −/− -/- +/+ −/−
aAll data were taken from this study (in two replications).
bPresented data are uniform for all isolates of S. brunensis sp. nov.
cSTAPHYtest 24 kit.
d+, positive; -, negative; w, weak reaction; d, 11–89% strains positive; nt, not tested.
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Staphylococcus spp., as shown in Fig. 2. All five strains share 35 signals within the m/z 
range 2–11 kDa, while five of these signals (m/z = 4130, 6660, 7614, 8258, and 10625) 
were found to be specific for S. brunensis sp. nov., being absent in the MALDI-TOF MS 
protein profiles of a comprehensive set of 65 S. petrasii, S. croceilyticus, and S. pragensis 
strains analyzed previously (10).

The chemotaxonomic analyses of type strain S. brunensis NRL/St 16/872T showed 
predominantly menaquinone-7 (MK-7, 95%) and a small amount of MK-6 (4%) and MK-8 
(1%). The major fatty acids were C 15:0 anteiso (38.6%) and C 17:0 anteiso (19.6%), followed 
by C 19:0 anteiso (8.3%), C 15:0 iso (6.3%), C 17:0 iso (6.9%), C 18:0 (6.8%), C 19:0 iso (4.4%), and 
C 20:0 (3.0%). A small amount of C 16:0 iso (1.8%), C 16:0 (1.2%), and C 18:0 iso (1.6%) fatty 
acids were also present. The detected peptidoglycan type is A3α (L-Lys-Gly3-4, A11.2). All 
chemotaxonomic data are in-line with previous reported patterns (7).

DNA fingerprinting of S. brunensis sp. nov.

Screening of the investigated bacterial group by rep-PCR fingerprinting with primer 
(GTG)5 showed their genotypic coherence. All five isolates had visually similar finger-
prints, which were grouped into a single cluster and separated from the other entries 
in the in-house fingerprint database, which includes members of all recognized species 
of the genus Staphylococcus, including type strains of phylogenetically closely related 

FIG 3 Cluster analysis of rep-PCR fingerprints and ribotype patterns obtained from Staphylococcus brunensis sp. nov. strains and the type strains of phylogenet­

ically closely related Staphylococcus species. (A) Dendrogram based on (GTG)5-PCR fingerprints. (B) Dendrogram based on cluster analysis of EcoRI ribotype 

patterns obtained using a RiboPrinter system. The dendrograms were calculated with Pearson’s correlation coefficients with the UPGMA clustering method (r, 

expressed as percentage similarity values).
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species (Fig. 3A). The obtained results also suggest that this rapid and easy-to-perform 
method can be used for the identification of S. brunensis sp. nov., similarly to how we 
demonstrated for the identification of Staphylococcus spp. in our previous studies (8, 23, 
25).

In contrast to the rep-PCR method, automated ribotyping with the restriction enzyme 
EcoRI revealed heterogeneity among the five examined strains (Fig. 3B). Three isolates, 
NRL/St 16/872T, NRL/St 22/194, and NRL/St 18/288, exhibited unique fingerprint patterns 
that allowed differentiation at the strain level and indicated that they were not clonally 
related. The remaining two strains, NRL/St 19/737 and NRL/St 21/187, had visually 
identical ribotypes, despite being isolated in 2019 and 2021, respectively, at different 
locations and were therefore not considered clonally related. These results suggest that 
automated ribotyping with EcoRI can separate isolates of S. brunensis sp. nov. at the strain 
level, although some strains may have similar ribotype patterns. However, a reliable 
assessment of the discriminatory power of this technique for typing S. brunensis sp. nov. 
requires the analysis of a more significant number of strains from different localities and 
sources.

Genome characterization of S. brunensis sp. nov.

The comparison of sequenced genomes (Table S5) revealed a high degree of similarity 
between the isolates (Fig. 4). The S. brunensis sp. nov. genomes were 2.5–2.6 Mb long 
with GC content 33.3–33.4% encoding 2,500–2,700 CDS, 61‒62 tRNAs, and 19 rRNAs. The 
pangenome consists of 2,230 core and 416 accessory, and 569 unique genes in total. 
The sequenced genomes differ in variable genomic elements, which constitute 5–8% 
of the genome and are associated with virulence and antimicrobial resistance genes, 
predominantly located at plasmids. All S. brunensis sp. nov. genomes possess a type 
IIU CRISPR-Cas complex with 15–20 variable spacers, some of which target siphoviral 
prophages as determined by blastn search. The core gene kat encoding catalase in the 
strain NRL/St 19/737 (locus tag MT339_07575) has a 1 bp deletion in homopolymer 
polyA, which introduces a premature stop codon at the 3' end of the gene. It is possible 
that the catalase-negative phenotype of the strain is associated with the loss of function 

FIG 4 Genome comparison of Staphylococcus brunensis sp. nov. isolates. Mobile genetic elements are shown and color coded as in the legend. The ISSha1 loci 

that are divergent for the respective strains are marked with black circles. Only nucleotide blast hits above 64% identity and longer than 2 kb are shown.
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of this gene, although a truncated protein without the first 22 amino acids could be 
produced.

The S. brunensis sp. nov. genomes harbor several large plasmids, which can be 
grouped by the presence of either rep39 or rep20 gene. Due to high sequence varia­
bility and mosaicism caused by interspersed IS431, it was not possible to determine 
a complete consensus sequence for all plasmids. The plasmid contigs comprise beta-
lactam, heavy metal, and disinfectant resistance as well as virulence and saccharide 
utilization genes as shown in Table 3. All analyzed strains harbor a small rep21 plasmid 
conferring cadmium resistance. The strain NRL/St 22/194 contains an additional rep10 
plasmid harboring the ermC gene similar to the pUSA05-1 plasmid from S. aureus (26). 
These two small plasmids are integrated into the rep39-type plasmid contig of strain 
NRL/St 19/737. Furthermore, two cryptic plasmids, one containing the rep13 gene and 
the other containing rep5b gene were identified (Table 3).

The resistance to penicillin in S. brunensis sp. nov. NRL/St 18/288 is encoded by the 
blaZ gene located at a 9 kb Tn554-like transposon (Fig. 4) integrated into the chromoso­
mal isaB gene. The chromosomes of S. brunensis sp. nov. harbor several copies of various 
full and partial IS elements from the IS3, IS6, IS30, IS1182, IS200/IS605, and ISha1 families 
(Fig. 4). The IS431 flanked composite transposon localized downstream of the cspC gene 
contains the gene for a short-chain dehydrogenase associated with survival in stress 
conditions (27). Each strain carries six to eight ISSha1 copies integrated in six conserved 
and six variable loci, usually adjacent to rRNA genes. One copy of ISSha1 is inserted in the 
SCC element of S. brunensis sp. nov. NRL/St 21/287 strain (Fig. 4).

The S. brunensis sp. nov. strains have one or two complete prophages in their 
genomes integrated into two different 18 bp att sites. The ΦSBR-1 prophage of NRL/St 
16/872T is integrated in the att site AATCCCTTACTTCCCGTT, located in the tRNA-Ser(gga) 
gene. The other strains encompass one or two CRISPR spacers homologous to the 
ΦSBR-1, and thus are immune to infection by this phage. The same att site is used by 
ΦSBR-4 in the genome of NRL/St 19/737. Both prophages are 45.4 kb long and share 
79.3% nt identity. The next att site, AATCCCTCCGTTTCCGTT in tRNA-Ser(gct), is occupied 
by either ΦSBR-2 or ΦSBR-3. Prophage ΦSBR-2, which is 47 kb long, is integrated into 
the genomes of strains NRL/St 16/872T, NRL/St 19/288, and NRL/St 21/287. The strain 
NRL/St 19/737 harbors a 43.5 kb ΦSBR-3 prophage, which shares 79% nt identity with 
ΦSBR-2 genome along 57% of its length; the difference is mainly in the morphogenesis 

TABLE 3 Plasmid contigs of Staphylococcus brunensis sp. nov. grouped by replication gene and gene content

Replication genes Strain Size (kb) Antimicrobial resistance Virulence 
factors

Saccharide 
utilization genes

Mobilization/toxin-anti­
toxin systems

rep39 NRL/St 16/872T 31.2 copZ, csoR, czrB, qacR, qacA clp - mobA
NRL/St 18/288 21.9 copZ, csoR, arsM, qacR, qacA, - - fstP
NRL/St 21/187 22.9 copZ, copA, csoR, arsR, arsM clp - mobA

rep20 NRL/St 16/872T 27.2 arsR, arsM isaB, essG - mobC, relaxaseP, mobP
NRL/St 19/737 and NRL/St 

18/288
33.9 arsR, arsM isaB, essG mqo, hxlR, hxlA, hxlI mobC, relaxaseP, mobP

NRL/St 21/187 22.9 qacR, qacA isaB, essG -
rep39, rep5b, rep21, 

rep10, rep20
NRL/St 19/737 32.0 blaZ, blaR, blaI, ermC, cadX, 

cadA, cadD
- - mobC, relaxaseP, mobP

rep21 NRL/St 16/872T, NRL/St 
18/288, NRL/St 21/187, and 
NRL/St 22/194

2.8 cadD, cadX - - -

rep13 NRL/St 16/872T and NRL/St 
21/187

2.6 - - - -

rep5b NRL/St 18/288 7.9 - - - mobC, relaxase P
rep10 NRL/St 22/194 44.7 ermC
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module. Both ΦSBR-2 and ΦSBR-3 carry a putative accessory virulence factor sialic acid 
transporter (28) in the lysis gene module.

Two S. brunensis sp. nov. strains NRL/St 16/872T and NRL/St 21/287 comprise an 
approximately 18.2 kb-long genomic island in the rRNA methyltransferase H gene rlmH 
(orfX). The genomic island was almost identical in both strains; the only difference is 
the presence of an insertion sequence ISSha1 in strain NRL/St 21/287. The island is 
bordered by imperfect 18 bp-long direct repeats GAAGC(A/G)TATCATAA(G/A)TGA and 
harbor ccrA1B2 genes; thus, according to the rules of the IWG-SCC (29) the element was 
designated SCCNRL/St 16/872. The most similar element to SCC NRL/St 16/872 is a composite 
island in genome of S. hominis C34847 (30), sharing 95.2% nt identity along 75% of their 
length. The SCCCCM9024 carries genes for the type I restriction-modification (RM) system, 
sharing high homology with genes encoding a restriction (hsdR) and methylation (hsdM) 
subunit with the RM system of S. hominis C34847 and S. aureus NTUH-4729 (31). 
Interestingly, the putP gene, which encodes a sodium proline symporter, was wedged 
between the ccrB2 gene and a set of three short hypothetical genes conserved in the 
ccr gene complex, thus disrupting the canonical organization of the complete ccr gene 
complex. Similarly, the putP gene and the flanking sequence from the ccr gene complex 
were found in SCC elements of various CoNS, S. epidermidis I1PPP121 (GenBank accession 
no. MH188479), S. haemolyticus BC05211 (KX181861), S. hominis J6 (LT963442), and S. 
hominis J11 (LT963438), and in plasmids of S. warneri 16A (CP031267) and S. pasteuri 3C 
(CP031281), pointing to a high degree of recombination occurring in staphylococci.

The strain NRL/St 22/194 also harbors an SCC element inserted into the rlmH gene 
bordered by the 21 bp imperfect repeat GG(C/A)GAAGC(A/G)TATCATAA(G/A)GTGA. The 
26.6 kb pseudo-SCC element named ψSCCNRL/St 22/194-pls has no recombinase genes, 
but carries several virulence genes, including the gene encoding plasmin sensitive 
protein (pls), poly(glycerol-phosphate) α-glycosyltransferase (tagE), and UDP-N-acetyl­
muramate-L-alanine ligase (murF), which are also found in S. aureus composite island 
SCCmecWAMRSA40 (32).

Novel genomic island harboring cassette chromosome recombinase genes 
ccrDE

The strains NRL/St 16/872T, NRL/St 21/187 and NRL/St 22/194 harbor a mobile element of 
size 18.8 kb with cassette chromosome recombinase genes, integrated in the rimJ/rimL 
gene orthologous to the the ribosomal-protein-serine acetyltransferase gene rimL in 
Escherichia coli and ydaF in Bacillus subtilis (UniProt accession no. P13857 and P96579, 
respectively). The island designated S. brunensis chromosomal island ccrDE (SbCIccrDE) 
harbors another homologue of rimL with 70% nt identity to the original rimL; thus, it 
may complement the function of the truncated rimL gene. SbCIccrDE is bordered by the 
tetranucleotide motif GAAA. Additionally, the 19 bp direct repeat ATTCCACAATGAAAT­
CCAT was found on the integration site in rimL and inside the rimL homologue on the 
island, which suggests a complex recombination event.

SbCIccrDE possesses a cluster of genes homologous to the ccr gene complex from 
SCC elements. The core of the ccr complex consists of two ccr genes, similar to SCC 
elements type IV or II. Additional genes in the ccr complex, that is the putative primase 
polA, cassette chromosome helicase cch2, three short proteins with the domains SAUGI, 
DUF960, and DUF1643, and a hypothetical protein (Fig. 5), were homologous to those 

FIG 5 Annotated map of genes and possible functions in genomic island SbCIccrDE harbored by Staphylococcus brunensis sp. nov. Genes are labeled according 

to known or putative function. Sequence of direct repeats DR1, DR2: 5′-ATTCCACAATGAAATCCAT-3′; sequence of inverted repeats IR1‒IR4: 5′-TGGTTCTGTTGC­

AAAGT-3′.
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in SCCmec type V, which has only one ccrC gene in the ccr complex. SbCIccrDE ccr 
genes share more than 98% DNA sequence identity to ccrA8B9 recombinases (Table S6) 
discovered recently in the S. haemolyticus genome (33). The values of nucleotide identity 
to currently known ccrA1-7, ccrB1-8, and ccrC1-2 genes from SCCs range from 38.0 to 
53.3% (Table S6). Although it is slightly above the threshold of 50.0% for the definition 
of a gene variant according to the rules of IWG-SCC (29), the amino acid (aa) identity 
level of SbCIccrDE recombinases to known CcrA, CcrB, and CcrC reaches a maximum of 
39.9%, which is substantially lower than aa identity among Ccr allotypes, which range 
from 50.9 to 92.3%. Therefore, based on the borderline nucleotide identities and low 
protein identities to CcrA, CcrB, and CcrC allotypes, we propose designating the SbCIccr 
recombinases as new allelic types ccrD and ccrE and reclassifying the described ccrA8B9 
recombinases accordingly (33). The CcrDE recombinases are able to excise the SbCIccrDE 
element from its insertion sequence site, which has been detected by sequence read 
alignment and PCR analysis (Fig. S2).

Apart from the ccr gene complex, the island SbCIccrDE carries the 5-methylcytosine-
specific restriction enzyme mcrB and specificity subunit mcrC genes for the putative RM 
system (Fig. 5), commonly found on SCC elements, chromosomal islands, and prophages 
that help to maintain the mobile element in the genome (34). Approximately 5.8 kbp of 
the SbCIccrDE is occupied by a putative transposon bordered by a perfect 17 bp inverted 
repeat of TGGTTCTGTTGCAAAGT. The transposon has one copy of the insertion sequence 
from the IS6 family (sharing 95% nt identity to IS431mec) and accessory genes encoding 
putative membrane protein (yeiH), putative transcriptional regulator (cysL), and malate 
chinonine oxidoreductase (mqo) (Fig. 5), which are frequently found on plasmids.

We surveyed the GenBank database for sequences resembling SbCIccrDE. In addi­
tion to S. haemolyticus BC5211 (33), we found related genomic islands with ccrDE in 
the genomes of S. haemolyticus (GenBank accession nos. CP033814 and CP102568), S. 
hominis subsp. hominis K1 (CP020618), and S. borealis GDY8P80P (35), and in S. aureus 
ER04332 and ER11327 (36), and related clones. The island is consistently inserted in 
the rimL gene, in a locus downstream of the conserved metE gene (Fig. 6A), which 
is 17–56 kb counterclockwise from the replication origin in CoNS species. However, 
in S. aureus strains, the rimL gene is located at the end of the oriC environ due to 
large-scale chromosomal inversion. The variable region of the islands comprises genes 
for an RM system (Fig. 6A). In S. borealis GDY8P80P, the island harbors many transpo­
sons with resistance genes to beta-lactam antibiotics, tetracycline, aminoglycosides, and 
other antimicrobials. The phylogenetic analysis of ccrD and ccrE genes from the related 
genomic islands (Fig. 6B) and the pairwise nucleotide identity comparison (Table S6) 
clearly distinguished two allotypes designated ccrD1E1, present in the genomes of S. 
brunensis sp. nov., S. haemolyticus, and S. aureus, and ccrD2E2, found in the genomes of S. 
borealis and S. hominis (Fig. 6B; Table S6).

Taxonomic description of S. brunensis sp. nov.

Staphylococcus brunensis (bru.nen′sis L. adj. brunensis from Bruna, the Roman name of 
the city of Brno, Czech Republic, where this and other staphylococcal species were first 
described).

Cells are Gram stain positive cocci, occurring predominantly in pairs and clusters, 
non-spore-forming, and nonmotile. Colonies on TSA agar are circular, whole margin, 
flat, smooth, shiny, 2 mm in diameter, aerobic, and white. Hemolytic activity on sheep 
blood agar, production of delta-hemolysin revealed in synergistic test with a beta-hemo­
lytic producing strain (S. pseudintermedius CCM 4710). Growth in the presence of 12% 
NaCl, at 20°C and 45°C, but not at 15°C and 48°C. They are positive for pyrrolidonyl 
arylamidase, arginine dihydrolase, and nitrate reduction and negative for coagulase, 
clumping factor, oxidase, urease, VP test (acetoin, conventional tube test), hyaluroni­
dase, thermostable nuclease, and ornithine decarboxylase; susceptible to furazolidon 
(100 µg) and novobiocin (5 µg), and resistant to bacitracin (10 IU); partially resistant to 
lysostaphin (200 mg L−1) and resistant to lysozyme; negative for hydrolysis of esculin, 
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gelatine, DNA, and Tween 80; positive on API ZYM for acid phosphatase, alkaline 
phosphatase (weak), esterase (C 4), and esterase lipase (C 8); negative on API ZYM for 
lipase (C14), valine arylamidase, cystine arylamidase, trypsin, α-chymotrypsin, naphthol-
AS-BI-phosphohydrolase, α-galactosidase, β-galactosidase, β-glucuronidase, β-glucosi­
dase, N-acetyl-β-glucosaminidase, α-mannosidase, and α-fucosidase. S. brunensis sp. nov. 

FIG 6 Comparative analysis of chromosomal islands harboring ccrDE cassette chromosome recombinases (CIccrDE). (A) Comparison of CIccrDE and flanking 

regions from different staphylococcal species. The genomic island CIccrDE is highlighted with a gray background. Genes are labeled according to known or 

putative functions, as shown in the legend. Only nucleotide blast hits above 65% identity and longer than 2 kb are shown. The position of the island is provided 

in parentheses next to the GenBank accession number. (B) Maximum likelihood trees of nucleotide sequences of ccrD and ccrA8 recombinases with ccrA1 as an 

outgroup, and ccrE and ccrB9 recombinases with ccrB1 as an outgroup, respectively. The trees were constructed using Tamura-Nei model with 500 bootstrap 

replicates. The evolutionary distances are in the number of base substitutions per site. The protein GenBank accession numbers or locus tags are shown in 

parentheses.
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produce acid from glycerol (weak), galactose, D-glucose, D-fructose, maltose, lactose, 
sucrose, and trehalose. They do not produce acid from erythritol, D-arabinose, L-ara­
binose, ribose, D-xylose, L-xylose, adonitol, β-methyl-D-xyloside, mannose, sorbose, 
rhamnose, dulcitol, inositol, mannitol, sorbitol, α-methyl-D-mannoside, α-methyl-D-glu­
coside, N-acetyl glucosamine, amygdaline, arbutine, salicin, cellobiose, melibiose, inulin, 
melezitose, D-raffinose, starch, glycogen, xylitol, β-gentiobiose, D-turanose, D-lyxose, 
D-tagatose, D-fucose, L-fucose, D-arabitol, L-arabitol, gluconate, 2-keto-gluconate, and 
5-keto-gluconate.

Variable biochemical reactions were obtained for catalase (4 of 5 positive), leucine 
arylamidase (2 of 5 positive), α-glucosidase (1 of 5 positive), and growth in 15% NaCl (4 of 
5 positive) (Table S4).

Utilization (Biolog MicroPlate GEN III, protocol A) is positive for D-maltose, D-treha­
lose, D-turanose, α-D-glucose, D-fructose, D-galactose, glycerol, L-alanine, L-arginine, 
L-glutamic acid, L-serine, D-gluconic acid, acetic acid, and formic acid. Negative 
utilization for D-cellobiose, gentiobiose, stachyose, D-raffinose, D-melibiose, β-methyl-
D-glucoside, D-salicin, N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, N-acetyl 
neuraminic acid, 3-methyl glucose, D-fucose, L-fucose, L-rhamnose, inosine, D-sorbitol, 
D-mannitol, myo-inositol, D-glucose-6-PO4, D-aspartic acid, D-serine, gelatin, glycyl-L-
proline, L-histidine, D-galacturonic acid, D-galactonic acid lactone, D-glucuronic acid, 
glucuronamide, mucic acid, quinic acid, D-saccharic acid, p-hydroxy phenylacetic acid, 
D-lactic acid methyl ester, citric acid, α-keto glutaric acid, D-malic acid, bromo-suc­
cinic acid, γ-amino-butyric acid, α-hydroxy-butyric acid, β-hydroxy-D,L-butyric acid, and 
propionic acid.

The type strain is NRL/St 16/872T (= CCM 9024T = DSM 111349T = LMG 31872T). The 
major respiratory quinone is menaquinone-7. The major fatty acids are C15:0 anteiso and 
C17:0 anteiso. The peptidoglycan type is A3α (A11.2). The DNA G+C content of strain 
NRL/St 16/872T is 33.40 mol%, calculated from the whole-genomic sequence. The species 
description is based on the characterization of five strains isolated from various human 
clinical materials. Most of the characteristics of the type strain NRL/St 16/872T agree with 
the species description. The GenBank/ENA/DDBJ accession number for the 16S rRNA 
gene is OQ401401. The complete chromosome sequence of the type strain is available 
under GenBank accession number CP119327.

DISCUSSION

The recent molecular diagnostic methods and polyphasic taxonomic approach, including 
whole-genome sequencing, allow for more effective species differentiation of CoNS 
from various sources. Here, we described S. brunensis sp. nov., which occupies similar 
niches to the closely related species from the S. petrasii phylogenetic complex (10). 
The available isolates of S. brunensis sp. nov. were associated with the human ear and 
wound infections, whereas S. petrasii and S. pragensis predominated in wounds, blood, or 
urinary tract infections (Table S7). However, it is challenging for clinicians to determine 
whether these CoNS are causative agents of human diseases or suspected contaminants 
associated with the occurrence of these commensal bacteria on human skin.

The pathogenic potential of CoNS is related to immune evasion, invasion of host 
tissues, and biofilm formation, allowing them to persist on the surfaces of indwelling 
medical devices and thus cause chronic infections (1). The intercellular adhesion operon 
(ica), biofilm-associated protein (bap/bhp), and fibronectin-binding protein genes (fnbA/
fbe) directly associated with biofilm production in S. epidermidis (37) have not been 
identified in either S. brunensis sp. nov. genomes or the other species from S. petrasii 
complex. Likewise, the ica operon homologue has not been detected in S. haemolyticus 
(3) and may be missing in this phylogenetic clade. Biofilm formation in the initial phase 
is influenced by molecules involved in surface adhesion. In staphylococci, these are 
microbial surface components recognizing adhesion matrix molecules (MSCRAMMs) (38). 
Homologs of cell wall-anchored serine-aspartate repeat-containing protein genes sdrC, 
sdrG, and sdrH have been identified in S. petrasii genomes (10) but not in S. brunensis sp. 
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nov. However, gene homologues for elastin-binding protein (ebp), thermonuclease (nuc), 
autolysin E (atlE), and gene clusters (cap5 or cap8) involved in the synthesis of capsular 
polysaccharides have been found in genomes of both S. petrasii (10) and S. brunensis sp. 
nov.

A comparison of representative genome sequences revealed that the species S. 
brunensis sp. nov., S. croceilyticus, S. petrasii, and S. pragensis differ only marginally in 
genomic G+C content, genome size, and the median protein count encoded by the core 
genome. The major cause of interspecies differences in the S. petrasii complex is the 
accessory genome and variable genetic elements (Fig. S3). The role of these elements 
is best described in S. aureus, where HGT contributes to adaptation and evolution into 
successful lineages (39–41).

More than 90% of clinical staphylococcal isolates harbor plasmids of various size 
that can be classified to small multicopy plasmids or larger plasmids carrying several 
resistance determinants. However, only 5% (42) of staphylococcal plasmids are large 
multiresistance elements with the ability to mobilize or undergo conjugative transfer. 
Strains of S. brunensis sp. nov. harbor several large plasmids that encode genes for 
mobilization (mobA, mobC, mobP) and their spread by HGT is possible. The resistance 
genes are usually cointegrated between two copies of ISs that promote their spread (43). 
An example is IS431 previously described in plasmids pSK41 and pGO1 (44), harboring 
linezolid and high-level resistance to vancomycin (45). It is probable that IS431, identified 
in S. brunensis plasmid sequences, is responsible for the mosaic structure of the elements 
and also promotes the spread of resistance genes across the genus Staphylococcus.

The plasmid-borne resistance to antibiotics and disinfectants suggests enhanced 
survival in healthcare environments. The resistance to beta-lactam (blaZ) and macrolide 
(ermC) antibiotics in S. brunensis sp. nov. strains correlates with resistance genes on 
plasmids and the Tn554-like transposon. Resistance to quaternary ammonium com­
pounds (qacA), copper and heavy metals, and the hexulose utilization operon (hxl) in 
plasmids of S. brunensis sp. nov. suggests adaptation to various ecological niches similar 
to nosocomial and community-associated isolates of S. haemolyticus (46, 47).

The genomes of S. brunensis sp. nov. contain more insertion sequence elements than 
the closest relatives from S. petrasii complex (7, 8). The copy number variability of IS 
implies their recent capture and propagation and increases the genome plasticity among 
the strains. The most abundant ISSha1 elements with 98% similarity to ISSha1 from 
S. haemolyticus (3) are often located near rRNA genes and may contribute to variable 
ribotype patterns.

A significant MGE in the genome of S. brunensis sp. nov. is the genomic island 
SbCIccrDE with unique recombinase genes ccrD1E1. Xiao et al. (33) reported the existence 
of these recombinases as ccrA8B9 allotypes. Nevertheless, their amino acid sequences 
that were highly different from other known ccrAB variants place them among novel 
ccrDE alleles. This reclassification also made it possible to distinguish another apparent 
variant ccrD2E2, present in S. hominis and S. borealis. The ccrDE genes in all inspec­
ted staphylococcal genomes were present on a genomic island related to SbCIccrDE. 
Chromosomal islands with ccrDE (CIccrDEs) share gene structure similar to SCCs, such 
as conserved ccr complex, presence of variable regions, and flanking by direct repeats. 
However, unlike SCCs, which are canonicaly inserted in the rlmH (orfX) gene in the oriC 
environ (48), CIccrDEs are inserted in the rimL gene. The SCC-like islands with Ccr or 
closely related large serine recombinase were inserted in the rlmH in other genera of 
Gram-positive bacteria, that is the genera Mammaliicoccus and Macrococcus, Enterococ­
cus faecium, Bacillus cereus, Geobacillus vulcani, and Clostridioides difficile (49–52). Hence, 
CIccrDEs might represent a new class of SCC elements integrated into the rimL gene due 
to the altered specificity of the ccrDE recombinases.

The molecular mechanism of the action of ccrAB recombinases requires specific 
sequences of around 60–70 bp and the presence of the central dinucleotide GA in the 
integration site, which are essential for the integration of the cassettes into the highly 
conserved rlmH gene (20). However, the ccrAB recombinases also act on non-canonical 
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less conserved recombination sites (20). Xiao et al. (33) showed that the ccrDE recombi­
nases are functional in excision and transfer of an SCC from rlmH, but they do not move 
together with the cassette. Here, we proved that the CIccrDE bearing the ccrDE genes is 
excised from the chromosome. Since CIccrDE has a similar size as pathogenicity islands 
and possesses a set of genes required for its replication (53), the element would perfectly 
fit into the phage capsid to be spread via transduction, which is a common transmission 
route of MGE in staphylococci (54, 55). The high sequence conservation of the ccrDE 
gene complex in various species corresponds with their spread through horizontal gene 
transfer.

The proportion and diversity of CIccrDE was low in the sequenced genomes deposited 
in the public databases, making it extremely difficult to identify the donor of ccrDE 
complex responsible for the formation of this element. Since we found ccrD1E1 and 
ccrD2E2 predominantly in CoNS genomes, it is possible that CoNS species are predis­
posed to forming this element and it can subsequently be transferred to S. aureus. 
The variable regions of CIccrDE are highly diverse in gene content, suggesting that the 
CIccrDE element evolved only recently in independent acquisition events, which are also 
common in the evolution of SCCmec (56) or staphylococcal pathogenicity islands (57). 
The benefit of CIccrDE for the bacterial host might be only marginal, so there is no 
selective pressure to maintain established element and disseminate it to more strains. 
The only widespread genes identified in all CIccrDEs that help to preserve the element are 
the RM system genes that differ in the CIccrDEs, suggesting that they come from various 
sources similar to canonical SCC elements (30, 31).

With the high selective pressure exerted on staphylococci by the use of antimicro­
bials, this element is a perfect candidate for the acquisition and spread of resistance 
and virulence genes. The SCCmec element underlying the successful spread of MRSA 
clones originated through joining of ccr gene complex with mec gene complex coming 
from multiple sources. The first signs of the accumulation of resistance genes in CIccrDE 
were observed in S. borealis, previously misidentified as S. haemolyticus (35), where the 
island comprised several transposons. A similar cluster of drug-resistance genes to that 
in CIccrDE of S. borealis was also reported in S. aureus on an SCC element (58) and a 
plasmid (59). We conclude that the gene structure of CIccrDE indicates its ability to act as 
a primordial element to accumulate virulence and antimicrobial resistance factors. The 
spread of the island to established pathogens such as S. aureus would thus represent a 
new threat to the healthcare system.

Conclusion

The identification of the new species S. brunensis within the Staphylococcus genus 
expands our understanding of the diversity of coagulase-negative staphylococci. The 
number of the strains available is still limited, but similar to its closest relative S. petrasii, 
it can be expected that more strains will be captured as better diagnostic methods 
are developed. Genome analysis of the new isolates has important implications for 
studying the role of coagulase-negative staphylococci as a reservoir of transmissible 
genes that can facilitate improved survival in the environment, resistance to antibiotic 
treatment, or increased virulence following horizontal transfer. Characterization of a 
previously unexplored genomic island closely related to the SCC indicates the poten­
tial for its interspecies transfer enabled by unique ccrDE recombinase genes in both 
coagulase-negative staphylococci and the more clinically significant S. aureus. Identify­
ing the new type of MGE thus opens up new possibilities for future research of gene 
transfer mechanisms in the emergence of multidrug-resistant staphylococcal strains 
with implications for clinical practice. These findings deepen our understanding of the 
evolution and pathogenesis of staphylococci, shedding light on how these bacteria 
acquire and disseminate virulence traits and antibiotic resistance.
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MATERIALS AND METHODS

Bacterial strains, cultivation and phenotypic identification, and antimicrobial 
susceptibility testing

Simultaneously analyzed reference strains of Staphylococcus spp. were obtained from the 
Czech Collection of Microorganisms (CCM, Masaryk University, Brno). The strains grew 
well in a basic set of staphylococcal media at a temperature of 30–37°C. The morpho­
logical, biochemical, and physiological characterization was performed as previously 
mentioned (7, 60–62). Antimicrobial susceptibility testing by disc diffusion method 
on Mueller-Hinton agar with adherence to EUCAST guidelines (63) was performed as 
described previously (60).

Genome sequencing and bioinformatics analyses

The short-read sequencing was conducted for the type strain NRL/St 16/872T (LGC 
Genomics, Berlin, Germany). The genomic DNA was isolated with a GenElute Bacte­
rial Genomic DNA kit (Sigma-Aldrich, St. Louis, MO, USA) from pure culture colonies 
cultivated on Colombia sheep blood agar (Oxoid). The library was prepared using a 
Nextera XT DNA Library Preparation Kit (Illumina, San Diego, CA, USA) and sequenced 
externally by LGC Genomics (Berlin, Germany) on the NextSeq platform with 2 × 
150 bp reads (Illumina). Genomes of all novel isolates were sequenced by Oxford 
Nanopore Technology (ONT). The genomic DNA was extracted as described previously 
(64). Sequencing libraries were prepared using an SQK-RAD004 rapid barcoding kit and 
sequenced with a FLO-FLG001 cell in a MinION device and MinKnow v21.10.4 software 
(Oxford Nanopore Technologies, Oxford, UK).

The software Guppy version 6.0.0 (Oxford Nanopore Technologies) with config 
dna_r9.4.1_450bps_sup.cfg and default settings was used for basecalling, demultiplex­
ing, and barcode trimming. The ONT reads were filtered by quality mapping to Illumina 
reads using Filtlong version 0.2.1 (https://github.com/rrwick/Filtlong) with a minimum 
length of 1,500 bp and quality threshold set to 95% and mapping on Illumina reads 
where applicable. The quality of both long and short reads was assessed with FastQC 
version 0.11.9 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and NanoStat 
(65). Complete chromosome and partial plasmid sequences were obtained using either 
a hybrid assembly with Unicycler version 0.4.9 (66) or a long-read-only assembly with 
Trycycler version 0.5.3 (67). The resulting contigs were further polished with Medaka 
version 1.6.1 (https://github.com/nanoporetech/medaka) and Polypolish version 0.5.0 
(68). Sequences were manipulated and inspected in the cross-platform bioinformat­
ics software Ugene version 38.1 (69). The genomes were annotated using the NCBI 
Prokaryotic Genome Annotation Pipeline (70). Nucleotide and protein multiple sequence 
aligment was performed with Clustal Omega (71). The multiple sequence alignment 
was visualized using EasyFig version 2.2.5 (72) and IslandCompare version 1.0 (73). 
Variable genetic content was identified with PhiSpy version 3.4 (74), MobilomeFinder 
(75), PlasmidFinder (76), IslandViewer 4 (77), ISFinder (78), and SCCmecFinder (79). The 
CRISPR/Cas system was characterized by CRISPRCasTyper (80). Virulence and resistance 
genes were predicted using Abricate (https://github.com/tseemann/abricate) with the 
CARD (81), Resfinder (82), and VFDB (83) databases.

Phylogenetic and pangenomic analyses

The partial 16S rRNA gene was sequenced by Sanger sequencing in the Eurofins MWG 
Operon sequencing facility (Ebersberg, Germany) with previously described primers (84). 
Whole-genome sequences of related staphylococcal species were obtained from the 
NCBI database (Table S1). The multilocus sequence data of six housekeeping genes (rpoB, 
groEL, dnaJ, tufA, sodA, and gap) that are commonly used in phylogenetic studies of the 
Staphylococcaceae were extracted from whole-genome sequence assemblies as follows 
(gene coordinates of S. aureus): 1420..1974 for rpoB, 270..826 for hsp60, 23..911 for dnaJ, 
49..929 for gap, 383..1032 for tufA, and 50..480 for the sodA gene. The phylogenetic 
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analyses were performed with the software MEGA version 11 (85). The UBCG collection 
of 92 conservative genes (86), the average nucleotide identity (ANI) (87), and digital 
DNA-DNA hybridization (dDDH) values by the d4 formula using the web-based genome-
to-genome distance calculator (GGDC) version 3.0 (88) were used for calculations of 
overall genome relatedness indices. The pangenome was calculated with the Ortho­
Venn2 pipeline with proteins clustered at the default threshold (89).

DNA fingerprinting

For genotypic characterization of the investigated bacterial group, fingerprinting by 
repetitive sequence-based PCR (rep-PCR) with the primer (GTG)5 (90) and automated 
ribotyping with the restriction enzyme EcoRI were performed. The isolation of DNA 
for rep-PCR fingerprinting, PCR conditions, and fingerprint analysis were performed as 
previously described (91). Automated ribotyping was performed using the RiboPrinter 
microbial characterization system (DuPont Qualicon) according to the manufacturer’s 
instructions. Numerical analysis of rep-PCR fingerprints and EcoRI ribotype patterns 
was performed using BioNumerics version 7.6 (Applied Maths, Belgium). The ribotype 
patterns were imported into the BioNumerics software using the load samples import 
script provided by the manufacturer.

PCR analysis of mobilizable genomic island encoding Ccr recombinases

To determine whether a genomic island is mobilizable, we designed primers spanning 
the excision site and primers targeting the key genes present in the genomic island 
(Table S2). The PCR reaction was conducted using Quick-Load 2× master mix with 
standard buffer (New England Biolabs, Ipswich, MA, USA) and a 200 nM concentration 
of each primer. The genomic island product was further analyzed by Sanger sequencing 
(Eurofins Genomics, Germany).

Transmission electron microscopy

A 200-mesh carbon/formvar-coated grid was placed on a drop of suspension of bacteria 
in water for 20 min. Bacterial cells on the grid were negatively stained with 2% ammo­
nium molybdate and treated with UV light. A Morgagni 268D Philips (ThermoFisher 
Scientific, The Netherlands) transmission electron microscope was used to visualize 
bacterial cells.

MALDI-TOF MS

Protein fingerprinting by means of MALDI-TOF MS using an Ultraflextreme instrument 
(Bruker Daltonics, Germany) was conducted after a standard extraction protocol (92). 
MALDI-TOF mass spectra were obtained using an UltrafleXtreme instrument (Bruker 
Daltonics) operated in linear positive mode using the software FlexControl version 3.4. 
Signals present in at least seven out of nine independent mass spectra acquired per 
sample were taken into account. Mass spectra were processed using FlexAnalysis version 
3.4 (Bruker Daltonics) and BioTyper version 3.1 software (Bruker Daltonics) supplemented 
with database version 10.0.0.0 (9,607 entries).

Chemotaxonomic characterization

Respiratory quinones were extracted and analyzed as previously described (93). Identity 
was confirmed by mass spectrometry, as described by Schumann et al. (94). Analysis 
of the cellular fatty acid profile was performed using a Microbial Identification Sys­
tem (MIDI, Newark, DE) according to the Standard Protocol of the Sherlock Microbial 
Identification System software, version 6.1 (95). The fatty acids were identified using gas 
chromatography–mass spectrometry (GC-MS) according to the study of Vieira et al. (93).

Isolation and structural analysis of the peptidoglycan was performed according to 
published protocols with some modifications. Briefly, the amino acid composition of the 
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total hydrolysate (4 N HCl, 100°C for 16 h) of the peptidoglycan was analyzed by GC/MS 
(protocol 10 by Schumann [96]). The partial hydrolysate (4 N HCl, 100°C, 0.75 h) of the 
peptidoglycan was analyzed by high-resolution liquid chromatography–mass spectrom­
etry (LC-MS) as described previously (94, 96). Enantiomeric analysis was performed by 
liquid chromatography as described by reference 97.
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amino acid sequences of cassette recombinases.
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