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Abstract—Resilient IT infrastructures must maintain the re-
quired service level even when faced with adversarial activity.
Not only should we aim at minimizing the attack surface by
hardening our cyber assets, but we should also elaborate on how
to respond to running cyber attacks and immediate threats in
situations where there is not enough time to patch vulnerabilities
or other harden the infrastructures. In this work, we propose
a lightweight approach to increasing resilience by projecting the
attacker’s lateral movement or the spread of malware. While
related work builds on elaborate vulnerability assessment and
analysis of complex attack paths, we were inspired by recent
advances in rapid incident response, namely the recommendation
of similar devices close to those already exploited. Using this
approach, we can provide prompt recommendations using only
the easily obtainable data on the cyber assets, such as device
fingerprints. We prioritize promptness and applicability over
precision, which complements the existing approaches.

Index Terms—cybersecurity, resilience, lateral movement

I. INTRODUCTION

Resilient information systems and computer networks have
become vital due to the reliance of today’s society on such
systems. Cyber attacks may debilitate organizations, com-
munities, or even societies. Ensuring the continuation of IT
services, namely in critical infrastructures, is often of utmost
importance, even when facing a cyber attack or malware
infection. Various approaches to increasing the resilience of
IT infrastructures were proposed in related works [1], [2].
Researchers conducted elaborated vulnerability scans and de-
pendency detection and modeling to conduct attack impact
assessment [3]–[5]. Moreover, they proposed attack projection
and prediction methods to estimate the upcoming attacks or the
continuation of a running one [3], [6]. Recently, recommender
systems were employed for the cybersecurity needs to help
address the cyber attacks at the right place at the right
time [3], [7], [8]. However, the cybersecurity teams are often
understaffed or overloaded with work to successfully deploy
all the tools proposed in recent research, namely in situations
when the tools require non-trivial amounts of high-quality data
or other inputs that are hard to collect [6], [9].

We are aiming to resolve two problems not or only partially
addressed in related work. First, the existing approaches to
model and project the attacks, assess risks, and estimate the
next targets, are usually heavily dependent on high-quality
data on the protected network [2], [3], [10], [11]. A detailed
vulnerability assessment and scoring or dependency detection

between the assets in the network are time and resource-
consuming and might not be feasible on a large scale or with a
sufficient level of precision or at all in many environments [12].
Moreover, the threat landscape and cybersecurity situation are
dynamic and constantly changing. The related works often rely
on static analysis of a snapshot of the current situation, while
the situation may change dramatically in a short time.

In this paper, we propose an approach to increasing network
resilience by estimating the next possible targets of the at-
tacker’s lateral movement or spread of malware. Our approach
builds upon the risk score calculated from the similarity and
proximity of devices in the network [6], [13]. Contrary to
previous works, our work utilizes much simpler measurements
and data collection; instead of running deep vulnerability
scans and dependency assessments, we only require device
fingerprints and network topology. Moreover, our approach
is reactive and considers a currently running attack, lateral
movement, and malware infection spread. Our contribution is a
proposal of a system that is much easier to implement, deploy,
and use in practice while providing novel features.

This paper is structured into five sections. Section II sum-
marizes related work. Section III defines the similarity and
distance metrics used for the risk score calculation. Projection
of the attacker’s lateral movement or malware infection spread
is discussed in Section IV. Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

This work builds on top of several research directions
and continuous research and development efforts that often
intertwine and complement each other. Namely, we extend the
research into decision support and recommender systems in
cybersecurity [6], [8] and the use of Bayesian networks for
such purposes [2], [14].

A. Decision support in cybersecurity

Decision support and recommender systems are interesting
area of cybersecurity research with promising application, even
though they are not widely used in practice yet [7], [8],
[15]. Nevertheless, there is a plethora of ongoing research on
decision support in cybersecurity. The existing works aim at a
rather static recommendations like optimal investment in cyber
defences, placement of sensors and defense mechanisms [7],
[15]. However, not many works are dedicated to incident



response and taking prompt actions [8], where a poor decision-
making is a an issue of paramount importance [9].

A prime example of decision support in cybersecurity is the
work of Polatidis et al. [3], who proposed their application
for attack prediction and selection of the most probable path
the attacker will take in an attack graph. A common task
for decision support tools in cybersecurity research is finding
an optimal countermeasure to a cyber attack. Such works
were surveyed by Nespoli et al. [16]. Other noteworthy works
include the combined intrusion detection and recommender
system proposed by Katherine B. Lyons [17]. Such a system
recommends an action at the time of the incident detection.
Sayan et al. [18] went even further and proposed making
recommendation of countermeasure combined with attack
prediction. Nisioti et al. [19] proposed a decision support
system that aims at reducing the duration of digital forensics
investigation. Recently, Husák and Bouček [6], [13] proposed a
tool that recommends similar devices in close proximity of an
already infected devices, which is aiming directly at incident
response and attack mitigation.

B. Application of Bayesian networks in cybersecurity

This work employs the concept of Bayesian networks, which
is well-known to cybersecurity research community; they are
namely known as a popular extension of the attack graphs,
enabling stochastic reasoning over the representations of cyber
assets and their vulnerabilities [14].

In recent years, Khosravi-Farhad et al. [4] proposed the use
of the Bayesian decision networks to measure the impact of
vulnerabilities and to find minimum-cost security measures.
Khouzani et al. [5] approached the multipath attack problem,
considering a large number of attack paths, each involving the
exploitation of different vulnerabilities, as a multi-objective
optimization problem for cybersecurity defense. A similar
approach was taken by Javorník and Husák [2] to select
the most resilient configuration of an IT infrastructure under
adversarial activity. Zimba et al. [20] proposed a technique
of Bayesian network-based weighted attack path modeling,
including the quantitative characterization of possible attack
paths, to capture interlinked attack paths generated by ad-
vanced persistent threats upon the exploitation of vulnerabil-
ities of cloud components. Ibne Hossain et al. [1] illustrated
the efficacy of Bayesian networks in addressing a range of
possible cyber risks, offering possible mitigation options, and
assessing and enhancing the overall cyber resilience of a smart
grid. Wang et al. [10] proposed a dynamic risk assessment
model that uses the Bayesian attack graph to infer the system
risk status. Li et al. [21] approached the complexity of attack
graphs and proposed a system that makes a prediction of which
attack path in the graph is more likely to be taken by an
attacker. Wang et al. [22] extended FAIR (Factor Analysis
of Information Risk) model for quantitative cybersecurity risk
assessment based on quantifiable risk factors.

In a very recent and closely related work, Sharmin et al. [11]
proposed the use of Bayesian belief networks to infer the

targets of the attacks based on the passive reconnaissance data,
including OS fingerprints.

Apart from approaching generic cybersecurity problems,
researchers also delved into specific use cases and deployment
environment using the techniques discussed in other related
works. The examples include impact assessment in cyber-
physical systems [23], prediction and assessment of disasters
in the oil and gas supply chain [24], health service [25], smart
cities [26], or Industry 4.0 [27].

It is also worth noting that Howland [28] argued the
CVSS scores, which are widely used in the afore-mentioned
works [2], [10], [11], are not suitable metrics for assessing
severity and risk of the vulnerabilities.

III. MODELING IT INFRASTRUCTURES

Modeling the IT infrastructures is a hard task due to their
complexity and the large number of actors and factors to
consider [29]. Often, there is a need to balance the complexity,
richness, and precision of information with practical abilities
to collect and update them in reasonable time and use them
effectively [29]. In this work, we are inspired by the CRUSOE
data model [30], which aims at balancing data precision with
their feasibility. We provide a simplified model to illustrate
our approach that does fully conform to the data model.
Nevertheless, we then highlight how to enhance our model
towards accepting more features into consideration for further
calculations.

The remainder of this work considers two concepts, simi-
larity and proximity, which are subsequently used to calculate
the risk score. We set up a simple model to capture the data
required to calculate them. Both can be derived from multiple
features and their combination and thus, we highlight a few
features as examples.

A. Similarity Metrics

First, the similarity metrics designate how similar are the
two hosts to each other regardless of their location. Potential
features include the hardware and software equipment or the
number and variety of provided network services.

The similarity can be derived from the fingerprint of an
operating system of the machine. The fingerprints are easy to
collect via active network scanning (e.g., using Nmap [31]).
Exporting fingerprints into the CPE format allows for process-
ing by the machine since it is structured. The OS fingerprint
suggest not only the OS of the machine but also its type and
role in the network – Windows and MacOS hosts suggest
workstations, Unix/Linux suggests servers, while Android or
iOS suggests a mobile device. This is not exact, but gives a
rough idea, which is sufficient for the probabilistic assessment
discussed in this paper. It is worth noting that even such a sim-
plistic approach can be sufficient for large-scale vulnerability
assessment [12].

B. Proximity Metrics

Second, the proximity of the two hosts in the network may
be determined by a plethora of features. A natural one is a



physical distance, which may play a role in the case of mobile
devices. In the remainder of this work, however, we focus on
metrics of logical distance or, more precisely, node distance in
various graph-based representations, such as network topology.
We derive multiple tree-like representations of the network
hosts and their belonging to the same subnet or IP address
range or organization’s department. We emphasize models that
can be constructed using simple network measurements and
asset management.

Our main source of inspiration is the CRUSOE toolset [30],
which successfully employed graph representation of all the
entities and relationships in the infrastructure. Let the nodes in
the graph represent the hosts in the network, subnets, depart-
ments, fingerprints, and other relevant entities. The relations
indicate whether the fingerprint was taken from the host or the
host belongs to the subnet or department. Even if not all the
data sources are used or available, the CRUSOE toolset shows
it is possible to collect and aggregate such data using mostly
non-specialized tools.

An example of proximity metrics represented in the graph
is displayed in Figure 1. Let’s comment on three examples of
proximity metrics motivated by three distinct attack vectors.
First, let’s consider a self-spreading malware, such as a worm.
Worms typically scan their surrounding networks to find hosts
to exploit further. Thus, the hosts in the same IP address range
or subnet are threatened. Second, the malware can spread via
infected USB sticks, malicious files, or email attachments.
In such cases, it will most likely spread to devices used by
the same user as the already infected one. If a centralized
authentication system is used, we may assess which users
logged in to which devices and, thus, are users of such
systems. Alternatively, in the working environment, the users
in the same office may share the USB sticks or malicious
emails can be forwarded among colleagues. In such cases, we
may employ asset management and model how each device
belongs to a certain employee or department and fall under
the organization’s divisions.

C. Risk Score: Estimating the Probability of Attack Spread

Related works approach the cybersecurity situation assess-
ment via a rather static vulnerability assessment that would
include the construction of highly detailed attack graphs [2],
[3]. In our work, we chose a more speculative approach since,
during the incident response, cybersecurity teams need to act
promptly but do not have enough information on the present
vulnerabilities and details on the malware or attacker. The main
question in this section, inspired by related work [6], is: if one
device in the infrastructure is exploited, what is the probability
of the spread of infection on another device?

The fundamental concepts of our approach are based on
the proximity and similarity of the devices in the network,
as proposed by Husák [6]. For each pair of devices, a risk
score (R) can be calculated. R a quotient of similarity (S) and

distance (D) of the two devices. It is calculated as follows [6]:

R =
S

D
=

s1 ∗ s2 ∗ ...sn
min{d1, d2, ..., dn}

(1)

In practice, weights are assigned to partial similarities (s1...sn)
and distances (d1...dn).

The similarity is calculated as a product of all considered
partial similarities, each having a value in the range < 0, 1 >.
For simplicity, let’s consider only the similarity of the OS
fingerprints. CPE strings are widely used to represent a piece of
software, including the operating systems, and can be provided
by network scanning software, such as Nmap [31]. Thus, the
assumed similarity is the similarity of the two CPE strings.
Since CPE are character strings, a Levenshtein distance can be
used. However, related work [6] leverages the fact that each
part of a CPE string has a different value and adds more points
for the same vendor or major version, fewer points for the same
minor version or patch, and so on.

The distance leverages the graph-based representation of
data originally proposed for the CRUSOE data model [30].
Formally, the distance stands for the shortest path between the
two nodes representing devices in the network over the nodes
of certain types. The node types depend on the chosen metric.
Reminding Figure 1, we may see two features: organizational
hierarchy (top, yellow) and network topology (orange, bottom).
Let’s say we calculate the distance between the two Linux
servers. They are in the same subnet, so the metric of network
topology gives a distance of 2, but they are in different
departments, which gives the distance in the organizational
hierarchy of 6. The final distance for the risk score calculation
is the minimal distance of all, in this case, 2 from the network
topology.

Recently, a tool was created to recommend similar de-
vices in close proximity to an infected one using the risk
score [13]. Before the recommendations can be made, there
is a need to collect data on the infrastructure. The discussed
tool uses the CRUSOE toolset [30] for this purpose. The
toolset provides rich, heterogeneous data on network assets and
their relationships. The richer the data are, the more features
can be included in the risk score calculation, and the more
precise the recommendations can be. However, simple data
can be used as well; the minimal dataset could consist of
network topology, device enumeration, and fingerprints of the
devices. Such data can be obtained with common tools, such
as Nmap, and can be frequently updated. The physical location
of devices (e.g., building, room), belonging of device or
subnet to the organization’s department, or authentication logs
indicating who uses which device are other sources of valuable
data for the recommendations. Readers are kindly referred to
the related works [6], [13], [30] and GitHub repository1 for
implementation details.

1https://github.com/CSIRT-MU/recommender-system-for-network-securit
y-management



DESKTOP,
WINDOWS 10

DESKTOP,
WINDOWS 11

LAPTOP,
WINDOWS 10

SERVER,
DEBIAN LINUX

SERVER,
OPENSUSE

LINUX

LAPTOP,
MACOS

OFFICE 112 LAB 125

SERVER
ROOM 201 OFFICE 213

DEPARTMENT A

DEPARTMENT B

COMPANY

DESKTOP SEGMENT,
10.10.11.0/24

SERVER SEGMENT,
10.10.22.0/24

WI-FI SEGMENT,
10.10.33.0/24

COMPANY NETWORK,
10.10.0.0/16

Fig. 1. A simple IT infrastructure model with network hosts (middle, green) organized in organization’s hierarchy (top, yellow) and network topology (bottom,
orange).

IV. ATTACK AND MALWARE SPREAD PROJECTION USING
BAYESIAN NETWORK

In the previous, we illustrated how to model the assets in
the IT infrastructure and formalized the risk score calculation
that estimates the probability of malware spread or attacker’s
lateral movement from one host to another. Herein, we extend
the risk score towards the whole network to model the attack or
infection spread on a larger scale. We propose an approach to
model lateral movement or attack spread in the network using
Bayesian network and inference, which we describe in the first
subsection. Subsequently, we propose several additions to the
base model, which reflect practical needs and use cases.

Let’s have a set of hosts in the network. Each host has a
set of features, belongs to certain groups, or has relationships
with other entities, which all allow for calculating the risk
score between all pairs of hosts in the network. To begin
with, we construct a graph with nodes only, no edges. The
nodes represent the hosts in the network. Adding the edges
requires caution because before we can convert the graph into
a Bayesian network (BN), we need to ensure the graph is
acyclic. Moreover, we need to define how to fill the Conditional
Probability Tables (CPTs) in nodes with multiple incoming
nodes.

We propose an algorithm to construct the BN to help in our
calculations. The BN is constructed just in time when an attack
is detected or suspected. For each host, we assign a number
(0, 1 >, where 0 means no adversarial control of the host, 1
means confirmed attacker’s control over the host, and values
in between represent the probability of the attacker’s control
over that host.

The construction of the BN is formalized in Algorithm 1 and
works as follows. The initial graph contains a node for each

Algorithm 1 The construction of the Bayesian network.
1: ▷ Inputs
2: H ← list of hosts in the network
3: h ← already exploited host
4: t ← risk score threshold value
5: ▷ Variables
6: G ← new empty directed graph
7: P ← empty list ▷ nodes added in previous iteration
8: C ← empty list ▷ nodes added in current iteration
9: G ← h

10: P ← h
11: ▷ Further iterations
12: while no edge can be added do
13: for i in P do
14: for j in H do
15: if (i,j) would not create cycle in G then
16: if (riskScore(i, j) > t) then
17: G ← j
18: G ← (i,j)
19: C ← j
20: end if
21: end if
22: end for
23: end for
24: ▷ Updating and clearing the lists of newly added hosts

for the next iteration
25: P ← C
26: C ← empty list
27: end while
28: return G



Windows 10 Dekstop

Windows 11 Desktop

Windows 10 Laptop

Debian Linux Server

OpenSUSE Linux Server

MacOS Laptop

Fig. 2. An example of the construction of a Bayesian network starting with the Windows 10 Desktop. Black arrows are added in the first iteration, green arrows
in the second iteration, and blue arrow in the final iteration.
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Fig. 3. A sample Bayesian network for the attack spread estimation - final stage with CPTs.

host and no edges. The edges are added one by one so that
the graph remains directed and acyclic. Only those edges for
which the Risk Score is bigger than a pre-defined threshold can
be added to the graph. The construction starts from the already
infected node (as reported by other tools or observations). In
random order, we process the nodes added to the graph in
the previous step. The processing of a node means adding the
directed edges from that node to the node of the initial graph
that were not yet processed. The edges are weighted with the
risk score between the two nodes and added to the BN. The
step processing of nodes is repeated until it it not possible to
add another edge or there are no isolated nodes in the original
graph. Figure 2 illustrates the process of constructing the BN
in three iterations, where in each iteration, the nodes added in
the previous iteration are processed. No edge is added if the
associated risk score is below threshold or the graph would
become cyclic.

When the graph is constructed, we need to add CPTs. Our
assumption is that the attacker may advance simultaneously
in all possible ways. The risk scores, which are used as
the weights of the directed edges, are used to represent
independent events. Thus, all the incoming edges of a node
are independent events. We construct the CPT of a node using
the risk scores of the incoming edges. All the probabilities can
now be calculated. Figure 3 illustrates the final stage of the BN
construction with the CPTs added.

The described algorithm leads to the construction of a BN
representing the joint probability distribution of the considered
cybersecurity risks over a given network of cyber components.
Given a joint probability distribution defined this factorized
form, we can efficiently calculate the risk of an individual or
even of the group of desired cyber components. A fundamental
feature of the inference mechanism is its ability to recalculate
the so-called posterior distribution of unobserved desired vari-
ables using the so-called prior distribution and the distribution
of the observed variables.

The output of the calculation is the probability of exploita-
tion of all the devices in the infrastructure. The users can sort
the devices in the network by this probability to locate devices
that are threatened the most by the current attack. Naturally,
the imminent threat is faced by the devices that are similar and
close to those already exploited. Nevertheless, the attack may
propagate in the infrastructure and exploit other devices that
are farther or less similar. If such devices support the critical
infrastructure or critical organization’s mission, the users may
be alerted of this fact and plan their protection ahead of the
attack spread.

V. CONCLUSION

In this paper, we proposed a novel approach to selecting the
most resilient configuration of the IT infrastructure. Instead
of relying on elaborate asset and vulnerability assessment,
we propose using a more lightweight approach based on the



projection of the attacker’s lateral movement and malware
infection spread based on the similarity and closeness of
devices in the network [6]. The data required to support
our approach are easily obtainable with common tools, and
the novel techniques are partially implemented in related
work [13], which makes our approach easily implementable
and quickly usable in practice. Moreover, it aligns well with
current incident response practices and procedures [8], which
further facilitates potential deployment and usage.

In our future work, we are going to provide a functional
sample or reference implementation of our approach, as well
as an artificial or well-anonymized data sample for evaluation
and experimentation. We plan on further intertwining the
cybersecurity tools and approaches to maximize the usability of
particular procedures and find novel uses for them that would
increase the capabilities of security teams without inflating
their toolsets and further overwhelming the incident handlers.
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