Mathematical Methods of Operations Research
https://doi.org/10.1007/s00186-023-00835-y

ORIGINAL ARTICLE

®

Check for
updates

Subnetwork constraints for tighter upper bounds and exact
solution of the clique partitioning problem

Alexander Belyi'?3@ - Stanislav Sobolevsky'*>® - Alexander Kurbatski3 -
Carlo Ratti®

Received: 8 March 2022 / Revised: 17 May 2023 / Accepted: 18 August 2023
© The Author(s) 2023

Abstract

We consider a variant of the clustering problem for a complete weighted graph. The
aim is to partition the nodes into clusters maximizing the sum of the edge weights
within the clusters. This problem is known as the clique partitioning problem, being
NP-hard in the general case of having edge weights of different signs. We propose a new
method of estimating an upper bound of the objective function that we combine with
the classical branch-and-bound technique to find the exact solution. We evaluate our
approach on a broad range of random graphs and real-world networks. The proposed
approach provided tighter upper bounds and achieved significant convergence speed
improvements compared to known alternative methods.

B Alexander Belyi
bely @math.muni.cz

Stanislav Sobolevsky
$s9872 @nyu.edu

Alexander Kurbatski
kurbatski @bsu.by

Carlo Ratti

ratti@mit.edu

Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlarska 2,
611 37 Brno, Czech Republic

2 Senscable City Lab, FM IRG, SMART Centre, 1 Create Way, Singapore 138602, Singapore

Faculty of Applied Mathematics and Computer Science, Belarusian State University, 4
Nezavisimosti Avenue, 220030 Minsk, Belarus

4 Institute of Law and Technology, Faculty of Law, Masaryk University, Veveri 70, 611 80 Brno,
Czech Republic

5 Center for Urban Science and Progress, New York University, 370 Jay Street, Brooklyn, NY
11201, USA

6

Senseable City Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge,
MA 02139, USA

Published online: 09 September 2023 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00186-023-00835-y&domain=pdf
http://orcid.org/0000-0001-5650-3182
http://orcid.org/0000-0001-6281-0656

A.Belyietal.

Keywords Clustering - Graphs - Clique partitioning problem - Community
detection - Modularity - Upper bounds - Exact solution - Branch and bound - Linear
programming

Mathematics Subject Classification 05C85 - 68T09 - 68R10 - 90C35 - 90C90 - 91C20

1 Introduction

Clustering is one of the fundamental problems in data analysis and machine learn-
ing (Jain et al. 1999). In general terms, clustering means grouping similar objects
together. At the same time, many real-world systems could be represented as net-
works (Newman 2018) or graphs. Traditionally, the word “graph” refers to the
mathematical model of the underlying network, but we will use these terms inter-
changeably as synonyms. Graphs are a powerful mathematical model often used to
study a broad range of objects and their relations. So, the clustering of real-world
objects is often modeled and formulated mathematically as the clustering of vertices
of a graph. If it is possible to quantify the similarity between objects, one can construct
a complete graph where vertices correspond to the objects, and edge weights represent
their similarity. In this case, the clustering problem could be formulated as a clique
partitioning problem (Grotschel and Wakabayashi 1989, 1990).

Formally, given a complete weighted graph, the clique partitioning problem (CPP)
is to find such a partition of vertices into groups (or clusters or modules) that maximizes
the sum of weights of edges connecting vertices within the same groups. Obviously,
this problem is not trivial only when the graph has both positive and negative edge
weights. In the literature, this problem is known under different names, including
clique partitioning, correlation clustering, and signed graph clustering (Hausberger
et al. 2022).

In a more general case, when a system could still be represented as a network
of connections between nodes, but similarities between objects are not given, the
clustering problem spawned a separate field of research known as community detection
in networks (Fortunato 2010). There are many approaches to community detection, but
one of the most widely adopted is to define a similarity or a strength of the connection
between nodes and then optimize the sum of these strengths within clusters. Probably
the most well-known quality function of such partitioning is modularity (Girvan and
Newman 2002; Newman and Girvan 2004; Newman 2006). For each pair of nodes,
a modularity score is defined as a normalized difference between actual edge weight
and expected weight in a random graph that preserves node degrees. Modularity of
a partition is then just a sum of modularity scores of pairs of nodes placed in the
same cluster. The problem of finding an optimal partition in terms of modularity can
now be formulated as the clique partitioning problem in a graph whose edge weights
correspond to modularity scores.

There are many real-world applications of CPP. The most famous, including those
studied in original works by Grotschel and Wakabayashi (1989), come from biology,
group technology (Oosten et al. 2001; Wang et al. 2006), and transportation (Dorndorf
et al. 2008). Community detection done through modularity maximization solved as

@ Springer

Subnetwork constraints for tighter upper bounds...

CPP could apply to areas ranging from geo-informatics (Belyi et al. 2016, 2017) and
tourism management (Xu et al. 2021) to biochemistry (Guimera and Nunes Amaral
2005) and the study of social networks (Girvan and Newman 2002). The practical
usefulness of the problem continues to attract researchers’ attention. However, solving
CPP is hard.

NP-hardness of CPP has been known since Wakabayashi (1986). And the same
result was later proven for modularity maximization too (Brandes et al. 2008). Thus,
most of the scholars’ efforts have been aimed at developing heuristic approaches that
allow finding relatively good solutions relatively quickly. Among such approaches
were simulated annealing and tabu search (de Amorim et al. 1992; Gao et al. 2022),
ejection chain and Kernighan-Lin heuristic (Dorndorf and Pesch 1994), noising
method (Charon and Hudry 2006), neighborhood search (Brusco and Kohn 2009;
Brimberg et al. 2017), iterative tabu search (Palubeckis et al. 2014), and their combi-
nations (Zhou et al. 2016). Usually, graphs considered in operational research are not
too big, comprising hundreds to a few thousands of nodes, and the quality of approx-
imate solutions is high (Zhou et al. 2016; Hu et al. 2021; Lu et al. 2021). At the same
time, in network science, graphs could be extremely large, spanning over millions of
nodes. Therefore, an extensive search for the solutions close to optimal is not feasible
for such networks, and often methods able to provide reasonably good solutions in
manageable time are favored (Blondel et al. 2008). However, some methods try to stay
within reasonable time limits while delivering solutions close to optimal (Sobolevsky
et al. 2014; Sobolevsky and Belyi 2022; Aref et al. 2023).

Given the NP-hardness of CPP, exact solutions are rarely proposed. Most of the
existing approaches utilize the branch-and-bound method (Dorndorf and Pesch 1994;
Jaehn and Pesch 2013) or cutting plane technique (Grotschel and Wakabayashi 1989;
Oosten et al. 2001). Many use both methods through the means of optimization
software packages that internally implement them (Du et al. 2022). Usually, such
works propose some extra steps to make the problem easier to solve with standard
packages (Miyauchi et al. 2018; Lorena 2019; Belyi and Sobolevsky 2022). A few
approaches were proposed for slight variations of CPP with different constraints, like
branch-and-price for the capacitated or graph-connected version (Mehrotra and Trick
1998; Benati et al. 2022) or branch-and-price-and-cut method for CPP with mini-
mum clique size requirement (Ji and Mitchell 2007). Integer programming models
for clustering proved to be a useful tool (Pirim et al. 2018), and the vast majority of
approaches try to solve CPP formulated as an integer linear programming (ILP) prob-
lem (Grotschel and Wakabayashi 1989; Oosten et al. 2001; Miyauchi et al. 2018; Du
et al. 2022). Researchers used similar methods in network science to maximize modu-
larity (Agarwal and Kempe 2008; Aloise et al. 2010; Dinh and Thai 2015; Lorena

2019). In their seminal work, Agarwal and Kempe (2008) proposed solving the
relaxation of ILP to linear programming (LP) problem and then rounding solution
to integers. They described a rounding algorithm that can provide a feasible solution
to the initial problem, which (after applying local-search post-processing), in many
cases, could achieve high modularity. In the most recent work, Aref et al. (2022)
propose the Bayan algorithm grounded in an ILP formulation of the modularity max-
imization problem and relying on the branch-and-cut scheme for solving the problem
to global optimality. While finding the global maximum is unfeasible for large net-

@ Springer

A.Belyietal.

works, studies in community detection showed that just providing the upper bound on
achievable modularity could be useful by itself, and a few approaches were proposed
recently (Miyauchi and Miyamoto 2013; Sobolevsky et al. 2017).

In this work, we present a new method for finding an upper bound on values that
the objective function of CPP could reach. By further developing the idea proposed by
Sobolevsky et al. (2017), we base our approach on combining known upper bounds of
small subnetworks to calculate the upper bound for the whole network. We describe
how to use obtained upper bounds to construct the exact solution of CPP. The pro-
posed method is similar to the algorithm of Jaechn and Pesch (2013) and its further
development by Belyi et al. (2019). However, by significantly improving the upper
bound’s initial estimates and recalculation procedure, it achieves a decrease of a couple
of orders of magnitude in computational complexity and execution time. Moreover,
we show that our algorithm can find exact solutions to problems that the algorithm
from Jaehn and Pesch (2013) could not. In the end, we discuss possible directions of
future research and show how adding new subnetworks could improve upper bound
estimates.

2 Problem formulation and existing solution approaches

We consider the following problem. Given a complete weighted undirected graph G =
(V,E,W),where V = {1...n}is asetof vertices, E = {{i, j} |i,j € V,i # j}is
asetof edges, W = {w;; e R | {i, j} € E, w;; = wj;} is a set of weights of edges,
find such a partition of its vertices V into clusters (represented by a mapping function
C : V. — N from vertices into cluster labels ¢, = C(v)) that sum of edge weights
within the clusters is maximized:

0G.CO)= > wj — max. (1)

I<i<j=nlci=c;

We denote this sum as Q and will refer to it as the partition quality function or CPP
objective function. Note that this problem can be defined for any graph by adding edges
with zero weight, ignoring loop edges, and averaging the weights of incoming and
outgoing edges. We will say that in a given partition, an edge is included (because its
weight is included in the sum in Eq. (1)) if it connects two nodes from the same cluster.
Otherwise, we will say that it is excluded. Also, we use the words graph/network and
vertex/node interchangeably here and throughout the rest of the text.

Grotschel and Wakabayashi (1989) showed that CPP can be formulated as the
following integer linear programming (ILP) problem. For every edge {i, j}, we define
a binary variable x;; that equals 1 when the edge is included and O otherwise. Then
the objective of CPP is to

@ Springer

Subnetwork constraints for tighter upper bounds...

maximize Q = Z Wij - Xij,
I<i<j<n
subject to x;; + xjx — xik < 1, foralll <i<j<k<n)
Xij = Xjk + Xik < 1, foralll <i<j<k<n
—Xij + Xjk + xip < 1, foralll <i<j<k<n
xij € {0, 1}, foralll <i < j <n.

Constraints are called triangle inequalities and ensure consistency of partition, i.e., if
both edges {i, j} and {j, k} are included, then edge {i, k} must be included too.

ILP formulation (2) has been employed by many algorithms for CPP and its vari-
ants. In their article, Grotschel and Wakabayashi (1989) empirically showed that many
constraints are not saturated in the optimal solution and are redundant for the prob-
lem. More recently, Dinh and Thai (2015) derived a set of redundant constraints in
formulation (2) for modularity optimization, then Miyauchi and Sukegawa (2015) gen-
eralized Dinh and Thai’s results to the general case of CPP, and recently Koshimura
et al. (2022) proposed even more concise formulation of ILP. Developing their idea
further, Miyauchi et al. (2018) proposed an exact algorithm that solves a modified ILP
problem and then performs simple post-processing to produce an optimal solution to
the original problem.

Extending the results of Grotschel and Wakabayashi (1990), Oosten et al. (2001)
studied the polytope of (2) and described new classes of facet-defining inequalities
that could be used in a cutting plane algorithm. Sukegawa et al. (2013) proposed a
size reduction algorithm for (2) based on the Lagrangian relaxation and pegging test.
They showed that for some instances of CPP, their algorithm, which minimizes the
duality gap, can find an exact solution. For the other cases, they provided an upper
bound of the solution. Even without an exact solution, knowing an upper bound could
be useful by itself (Miyauchi and Miyamoto 2013). For example, it allows estimating
how good a particular solution found by a heuristic is. The most common way to
obtain upper bounds is to solve the problem (2) with relaxed integrity constraints (i.e.,
when constraints x;; € {0, 1} are replaced with x;; € [0, 1]). We refer to this version
of the problem as the relaxed problem (2). In this case, the problem becomes an LP
problem and can be solved in polynomial time using existing methods (Miyauchi and
Miyamoto 2013).

Looking at the problem from a different angle, Dorndorf and Pesch (1994) and
Jaehn and Pesch (2013) did not use formulation (2). Instead, they approached CPP as
a combinatorial optimization problem and employed constraint programming to solve
it. In some sense, our approach combines both ideas: we will show how to obtain
tight upper bounds by solving another linear programming problem and then use the
branch-and-bound method to solve CPP.

3 Upper bound estimation

In the general case of CPP, there is no theoretical limit on what values the quality
function can reach since edge weights could be arbitrarily large. For modularity scores,

@ Springer

A.Belyietal.

Fig. 1 Illustration of definitions: a original network; b penalizing subnetworks (two triangles and a chain);
¢ reduced subnetworks; d permissible linear combination of reduced subnetworks with all weights A equal
to 1. Colors indicate one of the possible optimal partitions. While subnetworks’ optimal partitions do not
determine the optimal partition of the network, their penalties could be used to estimate the network’s
penalty

however, Brandes et al. (2008) proved that —1/2 < Q_ < 1. In practice, though, for
every network G = (V, E, W), a trivial upper bound Q could be obtained simply as
a sum of all positive edges:

0G)= Y wj=0(G.C), foranyC. 3)
{i,j}eE|w;;>0

But even this threshold is usually quite far above the actual maximum. To further
reduce this upper bound, Jaechn and Pesch (2013) used triples of vertices in which two
edges are positive (i.e., have positive weights) and one is negative (i.e., has negative
weight). However, their approach considered only edge-disjoint triples , i.e., triples of
nodes that have no more than one common node and thus no shared edges. In what
follows, we are developing a similar idea and generalizing it further. We show how
any subgraph, for which we know the upper bound of its partition quality function,
could be used to reduce the upper bound for the whole network. Furthermore, we also
show how to account for overlaps of such subgraphs. We start by introducing a few
definitions.

Definition 1 A subnetwork § = (V* C V, E*, W*) is a complete network built on
a subset of nodes of the original network G = (V, E, W) defined in Sect. 2, where
each edge {i, j} € E* has weight w;‘j € W* such that |w;‘j| < |wijl, wij € W and
w;"j -w;; > 0,1i.e., weights of subnetwork’s edges have smaller or equal absolute values
and the same sign (unless the weight is zero) as weights in the original network.

For example, networks in Fig. 1b, c are subnetworks of a network in Fig. 1a. For
small networks with just a few nodes or with a simple structure, it is often easy to
find the exact solution of CPP, e.g., by considering all possible partitions. For some
more complex networks, when finding the exact solution is already complicated, it
might still be possible to prove tighter upper bound estimates Q. than the trivial one
(Q(C) < Qmax < Q for any partition C). Our idea is to find such networks among
subnetworks of the original graph G and use their upper bound estimates to prove an
estimate for G.

@ Springer

Subnetwork constraints for tighter upper bounds...

Definition 2 For subnetwork S with an upper bound estimate Q4. its penalty (P)
is the difference between the trivial upper bound of the objective function given by
formula (3) and Qax: P = Q(S) — Omax-

We call a subnetwork with a positive penalty a penalizing subnetwork. For example,
it is easy to see the best partitions of subnetworks in Fig. 1b: we either keep all vertices
in one cluster, including the negative edge or split them into two clusters, excluding
the negative edge and the smallest positive edge. This way, we know the optimal value
of objective function @, which we can use as a sharp upper bound. Then the penalty is
just the difference between the sum of positive edge weights and this value of Q. We
call any subnetwork of a given penalizing subnetwork S having the same penalty as S
a reduced subnetwork. For example, subnetworks in Fig. 1c are reduced subnetworks
of their counterparts from Fig. 1b. The benefit of using them will become clearer by
the end of this section.

Definition 3 Given a set of subnetworks {Sx = (Vi, Ex, Wx) | k = 1... K} of graph
G, their permissible linear combination S* = (VI, EL, W) with non-negative
coefficients Ay is a subnetwork of the original network G with all the same nodes
vl = Ule Vi and edge weights equal to linear combinations wiLj = Zle Ak w;"jk
k ipgs s
wt if{i, j} € E
of the corresponding weights wfk =1 Y { J}. k.
J 0 otherwise

The intuition here is that we re-weight and combine several subnetworks to get
one. With some abuse of notation, it can be written that S¥ = Z/f: 1 McSk, where
multiplying a subnetwork by a scalar means multiplying all edge weights by this scalar,
and summing subnetworks means uniting vertex sets and summing corresponding edge
weights. For example, the network in Fig. 1d is a permissible linear combination of
reduced subnetworks from Fig. lc.

Now it is easy to see that the following proposition holds:

Lemma 1 (Summation lemma) Consider a set of subnetworks of graph G {S1, >, ...,
Sk} with penalties Py, P», ..., Px, and a permissible linear combination st =
Zle Sk with non-negative k. Then S™ has a penalty greater or equal to

Zle M Pr.

Proof Indeed, for each subnetwork Sy denote the upper bound estimate corresponding

to Py as QX . Then for any partition C of the subnetwork S”, score Q can be expressed

max
L _ L __ K sk
as Q(S™. C) =) 1cicjnili jieEl ci=c; Wij = Di<i<j<nllij)eEL.cimc; dak=1 MW]]

K K K
= Dkt M Xi<icj<nlli.j)eEr.ci=c; w{'(j = Yt MO Sk, ©) = X4y M Qs 0
oL = Zle Ak er(n ay 1s an upper bound for subnetwork § L and since for the trivial
upper bounds (3) Q(SY) = 3, Ak Q(Sk), ST has penalty PL = Q(st) — QL =

Zf:l)‘ka(sk) - Zlle)‘k er(nax = Zf:l)‘k @(Sk) - anax) = Zlf:l)‘kPk' o

Summation lemma allows us to prove a stronger result:

Theorem 1 Consider graph G, a set of its subnetworks {S1, Sz, ..., Sk} with penalties
Py, P, ..., P, and a permissible linear combination SL = Z,le A Sy with non-
negative Ax. Then G has a penalty greater or equal to Z,{;l Mk Py.

@ Springer

A.Belyietal.

@ ®— & o N
- Womet S/ pl
p
s |
9 k2 e
ST))
w, =0 P
3 W,,,=0 s
Y23 Wie2 k1 . /p p\
2 w, =0 F g K
2k / b 5 \
W2 1 ——-.._W;;(____»‘v""{‘-: Wik i 4 . b\ k Y

Fig.2 Penalizing subnetworks: a Chain; b Star

Proof Network G can be represented as a sum G = S + R of S* and some residual
subnetwork R, with edge weights w/ = wi; — w}l, where w}/ are equal to the
edge weights wiLj of SE, if edge {i, j} belongs to S, and zero otherwise. Then,
0(G) = O(SY) + Q(R), and for any partition C, Q(G, C) = Q(SL, C)+ Q(R, ©).
From the summation lemma, we have the following: Q (S L o)< @(S Ly_ >k Ak Pr.
S0, 0(G,C) < O(R,C) + Q(S") = Xy MmPr < O(R) + O(S5) — Yy Py =
0(G) — Y 4 M Pr = Qmax, and G has penalty P = Q(G) — Qmax =) A Pr. O

This result provides a framework for constructing tight upper bounds by com-
bining penalties of smaller subnetworks. Having a set of penalizing subnetworks
{S1, S2, ..., Sk} with their penalties Py, P», ..., Pk, we can construct a linear pro-
gramming problem to find the penalty of the whole network. LP problem can be
formulated as follows:

K
maximize P = Z)‘k Py,
k=1
K (4)
subject to Y Axlwif| < |wyjl, forall 1 <i < j<n,
k=1
0 < A, foralll <k <K.

Constraints ensure that the linear combination of subnetworks remains a subnetwork,
i.e., satisfies the condition |w;"j| < |w;j|. Here comes the benefit of using reduced

subnetworks: having smaller edge weights |w} k| while keeping the same penalty Py
allows the possibility of finding larger coefficients Ay, and thus larger global penalty
P. Note that this is not an integer problem and could be efficiently solved with modern
optimisation software packages in polynomial time (Lee and Sidford 2015; Cohen et al.

2021). A large penalty P found this way leads to a tight upper bound Q,,,,x = Q — P.

@ Springer

Subnetwork constraints for tighter upper bounds...

3.1 Chains

Our method primarily focuses on a particular case of penalizing subnetworks that we
call chains.

Definition 4 A chain of length k is a subnetwork consisting of k nodes relabeled within
achain 1%, ..., k*, connected by positive edges {1*, 2*}, {2*, 3*}, ..., {(k — 1)*, k*}
and a negative edge {1*, k*}. When k = 3, we call the chain a triangle.

Figure 2a illustrates a chain in a general case, and in Fig. 1b, we show triangles and
a chain of length 4.

It is always easy to find the exact solution of CPP for a chain. Indeed, in the optimal
partition, nodes 1* and k* appear either in the same cluster or different ones. In the
first case, the negative edge {1*, k*} is included in the total score, and in the second
case, one of the positive edges must be excluded. So, depending on which value is
larger |w;‘*’ el orming—y g (w;‘*’(i n 1)*), the optimal split of the chain will be into
one or two clusters with the objective function value equal to >, _; ;| w;**’ Gl
min(ws i, - .-, wzkk_l)*’k*, |wis 1), where min(wis 54, . . -, wz“k_l)*,k*, lwie 1+ 1) =
P is that chain’s penalty. Then to construct a reduced chain, we can set the weight
of each positive edge to P and the weight of the negative edge to — P. Repeating the
same reasoning, one can easily see that this chain has the same penalty P. In some
sense, this is the best reduction possible because assigning a smaller absolute value to
any weight in the original chain would lead to a smaller penalty.

Using chains alone, we can already calculate a non-trivial upper bound: find as
many chains as possible, reduce them, construct an LP problem, and solve it using
an appropriate method to obtain penalty P. Then the upper bound is the difference
Qmax = O — P. By as many as possible, we mean as many as we can find and a solver
can handle in a reasonable time (in our experiments, we used all penalizing chains
with three and four nodes). The following algorithm formalizes these steps.

Algorithm 1: Calculate penalty by solving LP problem

input : Graph G represented as weight matrix W = (w;;)
output: Penalty P and a set of penalizing chains Ch

1 find all chains of length 3 and 4; // Using four nested loops
2 construct LP problem ; // Using equations (4)

3 solve LP problem, obtaining total penalty P and weights of the chains;
4 Ch = chains with positive weights;

5 return P, Ch;

We note here that while adding more chains, in general, helps to construct tighter
upper bounds, it is possible that even after considering all chains, the upper bound will
not become sharp, i.e., it will not reach the optimal value of the objective function. We
show an example of such a network in Fig. 3. Moreover, we proved that solution to
relaxed problem (2) (i.e., when constraints x;; € {0, 1} are replaced with x;; € [0, 1])
always finds at least as tight upper bounds as considering only chains as penalizing
subnetworks (see Appendix A). Nevertheless, we will show that chains alone can
already give a tight upper bound for many networks while the resulting LP problem

@ Springer

A.Belyietal.

-1.5

Fig. 3 An example of a network for which the upper bound constructed using chains does not match the
optimal objective function value. Original network (a) has only three chains (b). After reducing them (c)
and constructing optimal permissible linear combination (d) by solving an LP problem, the best penalty is
16.5, and the upper bound is 33 — 16.5 = 16.5. However, it is easy to see (by considering all possibilities)
that the best partition of the original network has a score of 15 and a penalty of 18. Colors indicate one of
the possible optimal partitions

is smaller and faster to solve. Furthermore, the main advantage of our framework is
that it allows us to use not only chains but any penalizing subnetworks.

3.2 Stars

To show an example of penalizing subnetworks that can help to construct upper bounds
tighter than those found by solving the relaxed problem (2), we introduce one more
class of penalizing subnetworks that we call stars. The intuition comes from the
example in Fig. 3. A star is a network that has three nodes i, j, k connected to each
other by edges with weight —p, and a node m connected to i, j, k via simple non-
overlapping paths consisting of edges with weight p, for some positive number p (see
Fig. 2b). The solution of relaxed problem (2) for a star gives a penalty of 1.5p. So
it follows that the actual penalty is at least 2p, and it is easy to see how it can be
achieved.

4 Branch and bound

Here we describe how to use the method proposed in the previous section inside a
general branch-and-bound technique to solve CPP. In each step of branch and bound,
we select an edge of the network and fix it, i.e., consider two possibilities: (1) This
edge is included, i.e., lays within some cluster, so its weight is included in the total sum
of the objective function. So, the two nodes that it connects belong to the same cluster
in the final partition. (2) This edge is excluded, i.e., it connects nodes belonging to
different clusters in the final partition, and so its weight is not included in the objective
function score. In each of these two cases, we recalculate the estimate of what the
objective function score could be, and if the upper bound is equal to or smaller than
the value achieved by some already known feasible solution, then the case cannot lead
to a better solution, so it is fathomed. Then, for each case that is not fathomed, the

@ Springer

Subnetwork constraints for tighter upper bounds...

same steps are repeated recursively. This procedure creates a binary search tree that is
being traversed depth-first.

There are a few things we need to consider at each step. First, we must ensure that
constraints imposed by edge inclusion or exclusion are not contradictory. That means
we need to propagate transitivity condition: if edges between a and b, and b and ¢ are
included, then the edge between a and ¢ must be included too; and if edge {a, b} is
included and edge {b, c} is excluded, then edge {a, c} must be excluded. To ensure
this, we use the following algorithm.

Algorithm 2: Transitivity constraints propagation
input : Graph G, set of already fixed edges for which transitivity is already
satisfied, and a newly fixed edge {a, b}
output: Updated set of fixed edges in G, where transitivity condition is satisfied
again

1 define four initially empty sets of vertices A, B, X, Y;
2 foreach vertex u in graph G do

3 | if edge {u, a} is included then add u to A;

4 | elseif edge {u, a} is excluded then add u to X;

5 if edge {u, b} is included then add u to B;

6 | elseif edge {u, b} is excluded then add u to Y

7 if edge {a, b} is included then

8 | include all edges between vertices of A and B;
9 | exclude all edges between vertices of A and Y’;
10 | exclude all edges between vertices of B and X
11 else

12 L exclude all edges between vertices of A and B;

=0

13 return updated set of fixed edges;

The correctness of this algorithm follows from the observation that when the transi-
tivity condition is satisfied, nodes connected by included edges form cliques, and every
node is connected to all nodes in such a clique via the same type of edges (included,
excluded, or non-fixed). Fixing edge {a, b} may break this property, and Algorithm 2
restores it. The time complexity of this algorithm is 0 (n?), where n = | V| is the num-
ber of nodes in G because the number of all possible edges between sets A, B, X, Y
is not greater than the total number of edges, which is n(n — 1)/2. However, in prac-
tice, in many cases, we do not need to fix many edges, so sets A, B, X, Y are small
enough so that their sizes could be considered constant, as well as the number of edges

@ Springer

A.Belyietal.

between them, then the complexity of the algorithm is dominated by the first loop over
all nodes, and thus this algorithm runs in linear time O (n).

Algorithm 3: Calculate penalty using heuristic

input : Graph G, set of fixed edges F, previous set of chains Ch
output: Penalty P and a set of penalizing chains Ch

1 define penalty P = 0;

2 define a new set of chains Chy,e, = &;

3 foreach chain ¢ with penalty p in Ch do

4 | define boolean flag keep_chain = true;

5 | foreach edge (u, v) in c do

6 if (u, v) is included and w}, < 0 or (u, v) is excluded and w;;, > 0 then
keep_chain = false;

7 | if keep_chain then

8 Chyew = Chpeyy U{c}; // Add ¢ to new set of chains
9 P=P+p;

10 foreach not fixed edge (u, v) in c do

11 if w,, > 0then w,, =w,, — p;

12 L else w,, =w,, +p;

13 foreach len = 2 to Infinity do

14 | if there are no negative edges in positive connected components in G then
break;

15 | find all negative edges E, in G;

16 | foreach edge (u, v) in RandomShuffle (E,.) do

17 while w,, < 0do

18 path =FindShortestPositivePath (G, u, v) ; // simple
BF'S

19 if path length > len then break;

20 construct chain ¢ from path and edge (u, v);

21 calculate penalty p of chain c;

22 foreach not fixed edge (i, j) in path do w;; = w;; — p;

23 Wyy = Wyy + P;

24 P =P+ p;

25 Chpew = Chpey U{c};// AAd ¢ to new set of chains

26 return P, Chy,y;

A second consideration is that we want to update our upper bound estimate after each
edge fixation. We do so by noting that if we include a negative or exclude a positive edge
{i, j}, then |w;;| should be added to the network’s penalty since Q < 0 —|w; 71 1in this
case. However, any fixation of edge {i, j} changes the penalties of some subnetworks in
which it is present, so the penalty of each affected subnetwork needs to be recalculated.
Fortunately, it is easy to do for chains and stars. If we include a negative edge or exclude
apositive one, then adding |w; ;| to the network’s total penalty entirely accounts for any
penalty incurred by this edge in any chain containing it, so we should stop considering

@ Springer

Subnetwork constraints for tighter upper bounds...

such chains. We do the same for stars, but the reason is a bit less apparent. We stop
considering stars containing edge {i, j} because their penalties are accounted for by
weight |w; ;| added to the total penalty and by penalties of chains that do not go through
{i, j}. In contrast, if we exclude a negative or include a positive edge {i, j}, the total
penalty is not affected directly. To account for such fixation, we need to exclude this
edge from the constraints in LP formulation (4).

In our experiment, we implemented the branch-and-bound algorithm using only
chains to calculate upper bounds. Separately, we implemented a version where we
included stars to estimate the initial upper bound. In the rest of this section, we will
present algorithms for chains only. They could be easily generalized to use stars too.
However, in our experiments, the benefit of tighter upper bounds obtained from solving
the LP problem with stars was offset by the larger LP problem that was slower to solve.

Algorithm 4: Recursive branching

input : Graph G, list of positive edges L, current edge index e, set of fixed
edges F, the best partition C found so far and its score Q,,;,, current
recursion depth d
output: New the best feasible partition and its quality score
1 while L[e] is fixed do e = ¢ + 1;
2if e > |L| then // we have fixed all positive edges
3 | exclude all negative edges that are not fixed yet;
4 | return current partition, current Q;

5 foreach {include edge L|e], exclude edge L[e]} do

6 | F'=UpdateFixedEdges (G,F, L[e]) ;// Algorithm 2

7 | define penalty Py = 0;

8 | foreach edge (u, v) in set F' do

9 L if (u, v) is included and w,, < 0 or (u, v) is excluded and w,, > 0 then
Py = Py+ |wywl ;

// every few steps we try to obtain a higher

penalty

10 | if d mod 4 == 0 then

11 ‘ P,Ch=CalcPenaltyLP (G, F') ;// Adjusted algorithm 1

12 | else

13 P,Ch=CalcPenaltyHeuristic (G, F/, Ch) ;
// Algorithm 3

14 | if Q—Py— P > Quinthen // Recursive call
15 L C, Qmin =RecursiveBranching (G, L,e+ 1, F/, C, Quin, d +1);

16 return C, Qins

Moreover, it appeared that instead of solving the LP problem at each step, it is often
expedient to use a much faster greedy technique that produces less tight upper bounds.
The idea is to use a good set of chains with their weights A already found at previous
steps, and instead of constructing and solving the LP problem for the whole network,
construct a residual subnetwork R = G — S* and find new chains in it using a simple
heuristic: find a (random) chain and subtract it from R (with weight A = 1), then find

@ Springer

A.Belyietal.

another (random) chain and subtract it, repeat this process, until there are no more
chains. This procedure is formalized in Algorithm 3.

This method works quickly, but it accumulates inefficiencies. To deal with them,
after considering some number of levels (e.g. four) in the branch-and-bound search
tree, we still solve the complete LP problem to update chains and their weights. For
that purpose, we can use a slightly adjusted Algorithm 1 that takes into account fixed
edges.

Now we are ready to present Algorithm 4 - the main workhorse of branch and
bound: a recursive function that explores each node of the tree, i.e., tries to include
and exclude an edge and calls itself recursively to explore the search tree further.

Two more notes before we can finally formulate the main procedure: (1) The order
in which we consider edges influences performance quite a lot. However, calculating
penalty change after fixing each edge on every step is too computationally expensive.
So, we used edge weights as an approximation. The reasoning here is that excluding
a heavy positive edge would cause a higher loss in partition score. (2) For some most
simple cases, even the heuristic of Algorithm 3 can already find an upper bound that
matches a feasible solution proving its optimality. So to avoid spending time on solving
the LP problem, we try a few (e.g. three) times to calculate the initial upper bound
using the heuristic.

The following algorithm describes the main procedure of the branch-and-bound
method that calls the functions presented above to find a CPP solution.

Algorithm 5: Branch and bound
1 Graph G output: Optimal partition C and its quality score Qp;

2 C, Qpin =GetFeasibleSolution(G) ; // Run heuristic
3 repeat 3 times
4 P,Ch =CalcPenaltyHeuristic (G,&,9) ;// Algorithm 3
L if 0 — P == Qnin then return C, Q,in :
6 P,Ch=CalcPeanaltyLP(G) ;// Algorithm 1
7if O — P == Qpin then return C, Q,in ;
8 L = positive edges of G sorted in decreasing order of weight;
9 C, Qopr =RecursiveBranching (G,L,1,3,C,Qumin.1)
// Algorithm 4
10 return C, Qp;

5

Since both our method and the method by Jachn and Pesch (2013) implement the
standard branch-and-bound technique, they both have a similar recursive structure with
the same steps. However, each step of the two methods is implemented differently:
(1) We use Combo (Sobolevsky et al. 2014) to obtain lower bounds, while Jachn
and Pesch use a heuristic by Dorndorf and Pesch (1994). Our experiments show that
Combo is more efficient, agreeing with recent results (Aref et al. 2023). (2) We use
a more efficient algorithm 2 for constraints propagation. (3) The order in which we
consider edges is different. (4) And, most importantly, we use methods introduced
above to calculate much tighter upper bounds using penalizing subnetworks.

@ Springer

Subnetwork constraints for tighter upper bounds...

5 Computational experiment

We considered both proprietary solvers and open-source solutions to solve the LP
problem that arises when calculating the upper bound estimate. Based on the results
of the comparison of some of the most popular open-source solvers (Gearhart et al.
2013), we picked COIN_OR CLP (Forrest and Hall 2012) as an open-source candidate
for our experiments. Then, after it showed results similar to and often even better than
proprietary solutions, we stayed with it as our linear programming solver. Another
argument in favour of an open-source solution was that we wanted our results to be
freely available to everyone. Our code and the datasets generated and analysed in
this section are available on GitHub.! To find an initial solution of CPP, we used the
algorithm Combo (Sobolevsky et al. 2014), whose source code is also freely available.
All programs were implemented in C++, compiled using Clang 13.1.6, and ran on a
laptop with a 3.2 GHz CPU and 16 GB RAM.

Among the recent works, there are two methods for solving CPP exactly that show
the best results. Our method extends and improves upon the one by Jachn and Pesch
(2013). The other one is by Miyauchi et al. (2018), whose main idea was to provide a
way of significantly reducing the number of constraints in problem (2) for networks
with many zero-weight edges. So they tested their algorithm only on networks with
many zero-weight edges, which is the hard case for our method because a chain cannot
be penalizing if it has non-fixed edges with weight zero. Thus, the comparison with
their results would be unfair. Therefore we mostly adopted the testing strategy of Jachn
and Pesch (2013) and compared results with their method, which is much more similar
in spirit to ours.

We note that Jaehn and Pesch (2013) did not make their implementation available,
and our attempts to re-implement their method did not show any improvements com-
pared to already reported results, sometimes falling behind significantly. Therefore,
below, we compare our results with the results from their original paper. Although we
use a modern laptop, running our algorithm on a computer from 2011 with similar
characteristics to the one used by Jaehn and Pesch (2013) decreases the performance
only by a factor from 1.5 to 3, which is expected for a simple single-threaded program
without heavy memory usage, like our algorithm. So, we believe the difference in
laptop configuration cannot lead to misjudgments in our comparison.

Also, following Jaehn and Pesch (2013), we report times for solving ILP problem 2
using CPLEX Optimization Studio 20.1. We use the version of problem 2 without
redundant constraints as proposed by Koshimura et al. (2022). We tried incorporating
custom propagation techniques into CPLEX but could not achieve performance gains
compared to default settings. Finally, we note that there exists a benchmark for eval-
uating heuristic approaches adopted, for example, by Hu et al. (2021) and Lu et al.
(2021), but it consists of instances too large to be solved exactly, and therefore we did
not use it.

We tested our approach on both real-world and artificial networks. The real-world
networks were collected from previous studies found in the literature, and artificial
networks are random graphs generated according to specified rules. Jachn and Pesch

1 https://github.com/Alexander-Belyi/best-partition.

@ Springer

https://github.com/Alexander-Belyi/best-partition

A.Belyietal.

(2013) considered two sets of real-world networks. The first set studied by Grotschel
and Wakabayashi (1989) was obtained by reducing an object clustering problem to
CPP. Some of the networks were published in the article’s appendix, but some were
only referenced, so we could not find Companies network. For the network UNO,
we got the same results as Grotschel and Wakabayashi (1989), and they are slightly
different from the results of Jachn and Pesch (2013), probably because of the typo in
the data. Jaehn and Pesch (2013) mentioned this issue. We present results for these
networks in Table 1. In all the tables that follow: in column Nodes, we show the number
of nodes considered by the branch-and-bound technique; ¢ indicates execution time
in seconds; n is the network’s size; § is a trivial upper bound estimate (3); Qnin
represents the initial value obtained by a heuristic (Combo in our case); Q4 is the
upper bound obtained on the first step by using penalizing chains in our algorithm and
using triangles in the method of Jachn and Pesch (2013); Q,,, is the optimal solution;
asterisk (*) indicates the results of the algorithm proposed here; r¢"LEX is execution
time for CPLEX; results of Jachn and Pesch (2013) (E, Omin> Omax> Nodes, t) are
taken from their article; better values are shown in bold.

It could be seen that all instances were solved by our method within a second. Combo
had already found the optimal solution in all cases, and our method was applied only
to prove its optimality. There are a few cases where the method of Jaechn and Pesch
(2013) was faster due to the quick heuristic they use to construct upper bounds, while
our approach had to solve the LP problem. However, we would notice that we did not
have to use branch and bound for any network except Workers because the constructed
upper bound was already equal to the lower bound found by Combo.

The second set of real-world networks arises from a part-to-machine assignment
problem, which is often encountered in group technology, and was studied by Oosten
et al. (2001). Unfortunately, they did not publish their networks and only provided
citations to sources. Nevertheless, we obtained five out of the seven networks they
considered. These networks are particularly hard to solve because they are bipartite,
which means that every triple of nodes has an edge with zero weight, so there are
no triangles. Just as Oosten et al. (2001) and Jaehn and Pesch (2013), we quickly
solved three easy problems, but unlike them, we also solved MCC and BOC problem:s,
although, CPLEX showed even better time. Summary statistics are present in Table 2,
but neither Oosten et al. (2001) nor Jaechn and Pesch (2013) reported their execution
time.

To generate random graphs, we repeated the procedures described by Jaehn and
Pesch (2013). Similarly, we created four sets of synthetic networks. The first set
consists of graphs with n vertices where n ranges from 10 to 23. In the original paper
by Jaehn and Pesch (2013), authors used only networks of sizes up to 20 nodes, but we
extended all four datasets with networks of 21-23 nodes for better comparison with
CPLEX. In the first dataset, edge weights were selected uniformly from the range
[—¢g. q]. For every n and every g from a set {1, 2, 3, 5, 10, 50, 100} we generated five
random graphs, resulting in 35 graphs for each n or 490 graphs in total. Results for this
set are shown in Table 3. Each value corresponds to a sum over 35 instances. Because
our networks are different from those generated by Jachn and Pesch (2013), first, after
each experiment, we divided @, Omin> and Qax by Qopr and operated with relative
numbers instead of absolute values of the objective function. Second, we ran every

@ Springer

Subnetwork constraints for tighter upper bounds...

YL'LT 910 €00 84! 0 8I8°IL Ov8°IL SIS‘IL 111°zL 94! qc ONN
18°6¢ 0c0 900 €el 0 0z8°CL VLS TL 0Z8TL 8LI'EL 8S1 BCONN
9¥°'6C 900 €00 0 0 SLL'TT SLL'TT SLL'TT 6S8°11 6¢l qI ONN
L'y 800 S0°0 0 0 L61°TI L61°TI L61°TI el 8S1 Bl ONN
€L°0 Y00 ¥Z0 19 0 86L (374 862 816 123 ONN
w0 or'e o 101°1C 0 e01 9111 Pe0l 9¢el or OIS
10 100 000 I 0 L96 696 L96 866 9¢ BIOEIOD
yT0 430 €70 820¢C 6T 96 0co1 96 €eCl 123 SINIOM
o 800 SI'o 544 0 10S1T 68S1 TOST 8YLI €e SIeD
91’0 €00 000 6 0 o€l 8¢l POET oovl 0¢ $383 PIIM
) yg745° (s)1 () 4t SOpPON +SOPON 1dogy xpuigy G 0 u SHomIaN

(£107) yosed pue uyaef jo sjnsal yim paredwod (861) 1YseAeqeseay pue [9yasioin) £q payrdwod syIomjou prIom-[eal Jo 3as 1SII o) UO UOTEN[BAR JO SINSAY | 3|qel

pringer

As

A.Belyietal.

Table 2 Results of evaluation on the second set of real-world networks compiled by Oosten et al. (2001)

Network n 0 O ax Qopt Nodes* *(s) tCPLEX ()
KKV 24 32 23.0 23 24 0.02 0.08
SUL 31 71 48.0 46 8 0.05 0.87

SEI 33 77 55.7 54 34 0.11 0.37
MCC 40 85 56.7 43 16,095 95.35 22.03
BOC 59 126 84.0 67 106,620 1494.21 156.1

experiment ten times with different random instances and reported the mean and the
unbiased standard deviation estimate (as mean = std.).

As seen from Table 3, for this set of random graphs, our approach significantly
outperformed J aehn and Pesch (2013) on networks of all sizes. While averages of our
trivial estimates Q are pretty close to Q, indicating that generated random instances
were similar to those used by Jaechn and Pesch (2013), our estimates of upper bounds
were always more than 20% closer to the optimal solution. For the largest instances
with 20 nodes, our approach considered about 1800 times fewer nodes and completed
more than 250 times faster. On the other hand, we can see that for larger instances
CPLEX starts to perform even faster than the proposed method.

Graphs in the second set were generated using a procedure that is supposed to
resemble the process of creating similarity networks of Grotschel and Wakabayashi
(1989). First, for every graph with n vertices, we fixed a parameter p. Then, for each
vertex, we created a binary vector of length p, picking 0 or 1 with an equal probability
of 0.5. Finally, the weight of the edge between vertices i and j was set to p minus
doubled the number of positions where vectors of i and j differ. For every n from 10
to 30 and p from the set {1, 2, 3, 5, 10, 50, 100} we generated 5 instances of random
graphs. We show results for this set in Table 4. As previously, in every experiment,
results are summed up over 35 instances, and we report the mean and standard deviation
calculated over ten experiment runs.

Again, we can see that our approach gave a very significant speedup in execution
time compared to the method of Jachn and Pesch (2013). Comparable execution time
for smaller instances could be explained by the simplicity of these networks, where
even straightforward but fast methods work well. We can see that again, similar to
results of Jaehn and Pesch (2013), the largest instances are faster solved by CPLEX.
That can suggest that for now our method is better suited for smaller networks. In our
future research on this problem, we will try to address this by applying column and
row generation methods to speed up the solution of underlying LP problems.

The third set consists of graphs created using the same procedure as for the first
set, but then the weight of each edge was set to zero with 40% probability in the first
subset (Table 5) and 80% in the second subset (Table 6).

These subsets appeared to be the easiest to solve. Here again, our method was faster
than its competitor, but by a smaller margin primarily because, for such an easy set,
there was little room for improvement. While the simplicity of this set for both methods
is surprising because the abundance of zero-weight edges means fewer triangles and

@ Springer

Subnetwork constraints for tighter upper bounds...

Table 3 Results of evaluation on the first set of random graphs compared with results of Jachn and Pesch

(2013)

—%

n Q 0 Q:zin Omin Omax Omax
10 1.749 £ 0.048 1.764 0.998 + 0.003 0.994 1.014 £+ 0.005 1.226
11 1.807 £ 0.046 1.831 0.995 £ 0.005 0.988 1.018 £+ 0.007 1.272
12 1.844 £ 0.053 1.932 0.998 + 0.002 0.993 1.020 £+ 0.007 1.305
13 1.934 £ 0.049 1.867 0.997 £+ 0.003 0.986 1.032 + 0.010 1.287
14 2.015 £ 0.044 1.971 0.996 + 0.003 0.983 1.049 £+ 0.015 1.355
15 2.046 £ 0.029 2.071 0.997 £ 0.002 0.996 1.056 +0.013 1.367
16 2.088 £ 0.036 2.043 0.996 £ 0.002 0.999 1.068 = 0.018 1.341
17 2.152 £ 0.053 2.189 0.995 + 0.003 0.997 1.090 + 0.020 1.419
18 2.205 £ 0.045 2.230 0.994 + 0.004 0.993 1.109 + 0.022 1.433
19 2.236 £ 0.036 2.236 0.993 £ 0.006 0.994 1.123 £ 0.017 1.439
20 2.313 £ 0.037 2.251 0.993 £ 0.005 0.988 1.159 +£0.018 1.440
21 2.327 £0.048 0.994 £ 0.003 1.165 £ 0.023

22 2.399 £ 0.041 0.993 £ 0.002 1.200 £ 0.021

23 2.417 £ 0.047 0.993 £ 0.004 1.209 + 0.023

n Nodes* Nodes t*(s) t(s) tCPLEX (5)
10 133.8 + 48.30 1205 0.03 +0.01 0.05 0.19 £ 0.01
11 251.0 £72.97 4236 0.05 +0.01 0.13 0.28 £+ 0.01
12 406.9 £+ 74.07 7577 0.09 +0.01 0.18 0.41 £0.03
13 655.6 £ 170.80 20,005 0.16 +=0.03 0.47 0.71 £0.11
14 1506.3 + 268.70 50,101 0.35 +0.04 1.28 1.52 +£0.35
15 2184.4 +411.05 185,336 0.60 +0.10 5.26 2.49 +£0.51
16 4992.4 + 1089.81 499,569 1.32 +£0.29 16.3 433+ 0.77
17 9809.6 + 1122.03 4,186,427 2.96 + 0.30 155 7.88 £ 1.33
18 20,612.6 + 5574.21 9,811,533 6.86 + 1.73 466 13.86 +2.22
19 46,469.4 - 9524.13 37,572,347 16.46 + 3.23 1849 20.25 £2.37
20 106,454.3 + 30,381.30 185,321,420 41.84 +£10.38 11299 30.21 £ 2.86
21 225,597.7 & 88,749.61 104.13 £ 34.47 4373 £4.71
22 549,486.9 £168,302.47 271.45 £ 68.50 65.95 £4.36
23 1,142,782.7 £276,823.52 629.74 £ 115.34 90.15 £5.97

chains, our results confirm the conclusion of Jaehn and Pesch (2013) that zeroing out
edges at random only makes instances easier to solve.

As we mentioned in Sect. 4, we used only chains to estimate upper bounds in

our algorithms. However, as we proved in Corollary 1, this approach cannot provide
an upper bound tighter than the solution of the relaxed problem (2). Therefore, to
show how our method could be extended, we did an experiment where we also used
stars to estimate upper bounds. We applied our algorithm to maximize the modularity
of two well-studied real-world networks: a social network of frequent associations

@ Springer

A.Belyietal.

81T'1 9000 F ¥20'L 660 000 F L66°0 [43°0! 12070 F899°1 €C
[43a! 8000 F 9201 0660 €00°0 F 966°0 6£9'1 6200 F S99°1 (44
6Tl 000 F 610°T €860 2000 F 9660 1€9°1 6100 F ¥¥9°1 Ic
8¢T'l 900°0 F LIO'L 9860 20070 + 866°0 0€9°1 Y200 F 1€9°1 0¢
yITl 900°0 F 610°L L86°0 100°0 F 866°0 [LIOOF 619°1 6l
sol'l €000 F¥10°T 660 2000 F L66°0 SLS'L Y200 F 76571 81
881°1 000 FCI0°T 8360 €00°0 F L66°0 69¢°1 0€0°0 F 89¢°1 L1
I8I'L €000 F 010°1 660 20070 + 8660 vl 00 F vss'l 91
8LI'L 000 F 0101 $66°0 100°0 + 866°0 sl 810°0 F 9¢¢'l Sl
ELI'T 2000 F 8001 1660 20070 F 8660 91I¢’l 00 F 90871 4!
4! ¥00°0 F 9001 L66°0 100°0 + 866°0 Lev'l 0200 F 6L¥'1 €l
ovl'l €000 F L00'L 0001 100°0 F 666°0 k4! Se0'0 F 991 4!
LLT'T 1000 F €00°L $66°0 100°0 F 666°0 oLY'l 1200 F Syl I
[740! 2000 F s00°1 §86°0 100°0 F 6660 L8E'] 0€0°0 F Lol 01
10 Y g i 0 0 u

)L

(£107) Yyosad pue uyae(Jo s)nsar yim paredwiod syderd wopuer Jo 1os puodas oY) U UONENEAR JO SINSAY ¢ 3|qel

pringer

as

Subnetwork constraints for tighter upper bounds...

SCTFOrY 9¢1 LTO F 960 SLL'86S'T #1°099 F €F19T 0T
90 F LTE 799 870 F 78°0 6SL'68ET 0%'TC8 F 0°8SLI 61
890 F LI'T 59 600 F 6€°0 S61°091 8¢'9¥€ F I'S€8 81
80 F #¥'1 80'S 800 F 8T°0 S0E8ET 0$°'86T F €°LS9 L1
8I'0F €01 1L°0 SO0 F 8T°0 TSLIT rYLL F €95 91
90°0 F 9L0 0 100 F IT°0 618L 96'C9F T'0TE S1
€00 F #S°0 61°0 10°0 ¥ 80°0 8619 S9'89F 8'SST 4!
200 F 170 80°0 10°0 F S0°0 8L1C LS 19F 6°69T €l
100 F 20 S0°0 000 F €0°0 TL6 0F'9¢F 6°LIT Tl
000 F ¢T0 S0°0 000 F 20°0 796 8LYEF 6°0L 11
100 F LI'0 700 000 F 10°0 88% 09°LEF T°69 o1
) xg745" (OF: (8) 4 SIPON +S9PON u

LOO0 F SSO'1 200°0 F 966°0 0200 F 8LL'T 0¢

6000 F 6+0'1 T00°0 F 966°0 920°0 F 99L'1 6T

6000 F 1S0°1 1000 F L66°0 €200 F LOL'T 8T

100 F #10'T €00°0 F $66°0 1€0°0 F 8¥L'1 LT

0100 F #€0°T 7000 F 9660 8O0 F LIL'T 9T

S00°0 F S€0°'1 2000 F 9660 S100 F8IL'T ST
69T 6000 F €€0°T 7860 7000 F 966°0 8TL'T €€0°0 F TOL'T T
Y RO o - 0 0 u

s,

panunuod { 3jqe]

pringer

As

A.Belyietal.

8%'0C F OT'STI LYSEY F 67 LIL 86°LLETOEE F ¥0ELOY9 0¢
18°0C F €6'18 SEI91 F S8'6LT 69°088°9€T F 00 e 6C
90°Cl F LL'E9 €L'8S F ¥6'6S1 65°769°€9 F L'¥S8°CST 8¢
W07l F 6108 ¢S 001 F 9¥'€cl 19°L00°91T F 0°0¥1°0€1 LT
206 F TETE 6V €C F £¥'S¢ LLLOE9T F 0°9TS°8€E 9T
LYy F 8LVT 91'8 F S¢£0T 0T'8T9°TI F €TL6°ST ST
7S¢ F ¥9°81 $€0°L9 08t F TTOT 0T18S6'8LL SP'ST08 F I'SS9PI ¥C
Y9 TF 811 G081 S6'CF 0TS 0SLE1€°ST 81898y F L'STIL €C
'l F 658 796 o'l F0TE 88T IV V1 LTY8IE F I'SETS (44
LU'TF 019 1L 770 F 991 1€TLLO'TT 678501 F €£'€89T 1T
(s) x77d5° (8)1 (8) 4/ SOPON «SOPON u

panunuod { 3jqe]

pringer

as

Subnetwork constraints for tighter upper bounds...

Table5 Results of evaluation on the third set of random graphs with 40% probability of edge weight being

set to zero compared with results of Jachn and Pesch (2013)

*

n 0 0 Q;Fm'" Omin Omax Omax
10 1.421 £ 0.066 1.468 0.999 + 0.002 0.987 1.007 £+ 0.007 1.153
11 1.420 £ 0.041 1.494 0.998 + 0.003 0.985 1.007 + 0.004 1.173
12 1.486 £ 0.043 1.498 0.997 £+ 0.002 0.983 1.008 £+ 0.005 1.167
13 1.541 £ 0.054 1.513 0.998 + 0.003 0.988 1.012 + 0.007 1.192
14 1.582 + 0.026 1.492 0.998 + 0.003 0.990 1.014 £+ 0.007 1.184
15 1.627 £ 0.037 1.616 0.995 + 0.003 0.983 1.018 £+ 0.004 1.243
16 1.648 + 0.028 1.696 0.995 + 0.002 0.986 1.019 £ 0.006 1.267
17 1.707 £ 0.034 1.750 0.995 + 0.002 0.975 1.020 £+ 0.006 1.307
18 1.747 £ 0.023 1.699 0.995 + 0.003 0.974 1.028 + 0.007 1.263
19 1.768 + 0.027 1.800 0.996 + 0.002 0.984 1.028 + 0.006 1.315
20 1.816 £ 0.035 1.850 0.995 £+ 0.004 0.985 1.038 4+ 0.009 1.326
21 1.842 £ 0.038 0.994 + 0.003 1.045 £+ 0.009

22 1.863 £ 0.028 0.993 £ 0.002 1.046 £ 0.010

23 1.897 £ 0.034 0.993 + 0.003 1.053 £ 0.010

n Nodes™ Nodes t* (s) t(s) tCPLEX ()
10 33.2 £ 18.30 388 0.01 &+ 0.00 0.01 0.19 £ 0.01
11 60.6 £ 27.95 810 0.01 £ 0.00 0.01 0.26 + 0.01
12 100.0 £ 47.25 2442 0.02 + 0.00 0.04 0.33 £ 0.01
13 183.0 + 68.13 5128 0.03 +0.01 0.09 0.46 + 0.03
14 264.8 £ 91.02 4836 0.05 + 0.01 0.08 0.64 + 0.05
15 465.1 £ 96.36 25,647 0.08 + 0.01 0.54 0.90 + 0.09
16 640.8 £+ 190.18 54,728 0.13 +0.03 1.38 1.42 +£0.24
17 1134.5 £ 359.41 140,765 0.22 + 0.05 3.93 2.11 £0.40
18 1695.5 + 406.83 382,507 0.36 + 0.08 11.59 3.30 £0.79
19 2752.3 £592.63 1,469,527 0.63 +0.10 55.69 542 £ 1.06
20 3823.5 £ 950.63 3,195,924 1.04 £0.24 114 9.78 +£2.09
21 7842.5 +2975.48 2.32+0.74 1691 + 3.17
22 11,958.9 £ 3771.55 4.01+ 1.20 24.19 +4.57
23 20,967.8 + 4610.94 7.83+ 1.51 38.51 +3.42

between 62 dolphins (Lusseau et al. 2003) and a co-appearance network of characters
in Les Miserables novel (Knuth 1993). It took a couple of minutes to construct a set
of stars and solve the initial LP problem. However, for both networks, found solutions
(Omax) were already equal to the feasible solutions found by Combo, which proved
their optimality, while the solutions of relaxed problem (2) give higher values of upper
bounds (Miyauchi and Miyamoto 2013). These results make us believe that further
improvements to our algorithm will allow us to achieve even better performance for
more difficult networks.

@ Springer

A.Belyietal.

Table 6 Results of evaluation on the third set of random graphs with 80% probability of edge weight being

set to zero compared with results of Jachn and Pesch (2013)

*

n 0 0 Q;Fm'" Omin Omax Omax
10 1.037 £ 0.019 1.060 1.000 £ 0.000 0.992 1.000 £ 0.000 1.037
11 1.065 £ 0.036 1.067 1.000 % 0.000 1.000 1.000 £+ 0.000 1.013
12 1.064 £ 0.024 1.050 1.000 £+ 0.001 0.995 1.000 + 0.000 1.006
13 1.096 £ 0.027 1.088 1.000 £+ 0.000 0.977 1.001 £+ 0.002 1.023
14 1.091 £ 0.015 1.048 1.000 £ 0.000 0.999 1.001 £ 0.002 1.019
15 1.102 £ 0.021 1.110 1.000 £+ 0.001 0.982 1.003 £+ 0.005 1.059
16 1.124 £ 0.026 1.135 1.000 £+ 0.001 0.979 1.004 + 0.004 1.062
17 1.131 £ 0.021 1.114 1.000 £ 0.000 0.989 1.005 £+ 0.006 1.080
18 1.156 £ 0.027 1.143 1.000 £+ 0.003 0.985 1.006 + 0.005 1.082
19 1.160 + 0.015 1.195 0.999 + 0.001 0.985 1.010 £ 0.006 1.108
20 1.175 £ 0.027 1.147 0.999 + 0.002 0.986 1.019 +0.012 1.072
21 1.194 £ 0.031 0.998 + 0.003 1.016 % 0.006

22 1.213 £ 0.026 0.998 £ 0.002 1.027 + 0.008

23 1.234 £ 0.017 0.998 + 0.002 1.032 + 0.010

n Nodes* Nodes t* (s) t(s) tCPLEX ()
10 0+0 30 0.00 £+ 0.00 0 0.18 £ 0.01
11 0.8 +2.53 14 0.00 £+ 0.00 0 0.24 + 0.00
12 1.3 +3.77 55 0.00 £ 0.00 0 0.31 £ 0.00
13 4.4 +6.10 167 0.00 + 0.00 0.01 0.41 + 0.00
14 43 +544 71 0.00 &+ 0.00 0 0.52 +0.02
15 8.5+ 12.83 472 0.00 + 0.00 0.01 0.64 + 0.01
16 11.7 £ 10.81 720 0.00 + 0.00 0.01 0.78 + 0.01
17 20.7 £ 15.24 789 0.00 + 0.00 0.02 0.96 + 0.02
18 523+ 47.84 979 0.01 £ 0.00 0.02 1.15 £ 0.02
19 56.2 +25.47 2601 0.01 £ 0.00 0.06 1.35 £ 0.01
20 96.9 + 46.48 2423 0.01 £ 0.00 0.05 1.60 £ 0.04
21 133.7 + 57.00 0.02 + 0.00 1.86 £+ 0.03
22 233.8 +73.73 0.03 + 0.01 2.20 £ 0.05
23 295.4 +103.47 0.04 +0.01 2.58 £0.10

6 Conclusions

We propose a two-stage method, providing an efficient solution for the clique par-
titioning problem in some cases. First, we define penalizing subnetworks and use
them to calculate the upper bounds of the clique quality function. In many cases, our
method is much faster than other methods for upper-bounds estimation, and for many
networks, it finds tighter upper bounds. Second, we present an algorithm that uses
found upper bounds in the branch-and-bound technique to solve the problem exactly.

@ Springer

Subnetwork constraints for tighter upper bounds...

Our experiments showed that the proposed algorithm drastically outperforms some
previously known approaches even when using only a single class of penalizing sub-
networks that we call chains. Moreover, the proposed heuristic, which allows finding
upper bounds using chains quickly, works much faster than a well-known alternative
approach leveraging a linear programming problem, while the resulting upper bounds
are tight enough for many networks to find the exact solution efficiently.

We also provide a framework for using more general penalizing subnetworks when
chains are not effective enough. E.g., we introduce another class of subnetworks called
stars that can help find upper bounds much tighter than those found by chains and even
by a linear programming-based method. Constructing more diverse sets of penalizing
subnetworks and improving the efficiency of incorporating them into the method can
further improve finding exact solutions to the clique partitioning problem. Since some
larger graph instances are still solved faster by standard packages like CPLEX, we
plan to incorporate column and row generation methods and cutting plane techniques
into our algorithm. We believe that future work in this direction could provide efficient
solutions for the clique partitioning and its particular case—a modularity maximization
problem—for a broader range of networks, including larger ones.

Acknowledgements We thank Daniel Bretsko and Margarita Mishina for their careful review of the paper
and constructive comments and suggestions.

Author Contributions All authors contributed to the study conception and design. Methods and algorithms
were developed by AB and SS. Computational experiments and their analysis were performed by AB. The
first draft of the manuscript was written by AB, and all authors commented on previous versions of the
manuscript. All authors read and approved the final manuscript.

Funding Open access publishing supported by the National Technical Library in Prague. The work of
Alexander Belyi and Stanislav Sobolevsky was partially supported by the MUNI Award in Science and
Humanities (MASH Belarus) of the Grant Agency of Masaryk University under the Digital City project
(MUNI/J/0008/2021). The work of Alexander Belyi was also partially supported by the National Research
Foundation (prime minister’s office, Singapore), under its CREATE program, Singapore-MIT Alliance for
Research and Technology (SMART) Future Urban Mobility (FM) IRG. The work of Stanislav Sobolevsky
was also partially supported by ERDF “CyberSecurity, CyberCrime and Critical Information Infrastructures
Center of Excellence” (No. CZ.02.1.01/0.0/0.0/16_019/0000822).

Data availability Code, data and materials are available at https://github.com/Alexander-Belyi/best-
partition.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included

@ Springer

https://github.com/Alexander-Belyi/best-partition
https://github.com/Alexander-Belyi/best-partition

A.Belyietal.

in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A

Theorem 2 Solution of the relaxed problem (2) (i.e., when constraints x;; € {0, 1} are
replaced with x;; € [0, 1]) for any chain (see Definition 4) always finds upper bound
equal to the maximum of Q for this chain.

Proof Consider achain with k nodes and edge weights wy 2, w23, ..., Wk—1.k, —W1i k>
where w2, w23, ..., Wr—1 k, w1k > O(seeFig.2a). Letwy, ju41 = Min;je(1 x—1) Wi it+1-
There are two cases:

Lowik < wWpmyt
In this case, the optimal clique partition is to assign all nodes to one clique, i.e., to
include the negative edge {1, k}, Qopr = w12 + w23 + - + wrk—1 %k — Wi k. So,
we want to show that Wi+ w23+ -+ W1,k — Wik = X[2W12 + X23W23 +
oo+ Xpo 1 kWEk—1,k — X1,kW1k, for all x;; € [0, 1] satisfying triangle inequalities of
the problem (2). After regrouping, we get: (1 — x12)wi2 + (I —x23)wa 3z +--- +
(I = xp—1) wk—1,k = (I —x1)wy k. Since all w; ;41 > wix > 0and0 < x; ; <1,
itis enough toshow that 1 —x124+1—xp3+ -+ 1 =14 > 1 —x1 1.
From the constraints of problem (2), we have:
Il>xip0+xr—x1k <o 1l —Xx12> X2k — X145
1>x23+x3k —x2k & 1 —X23> X346 — X245

1> X241 +Xe—1.k — Xk—2k & 1 — Xp—2,k—1 = Xk—1,k — Xk—2.k-

After summing them, we get

I—xip+1—xo3+ -+ 1 =X 2k-1>X—1k — X1,k>

and by adding 1 to both sides and moving x;—1 i to the left, we get the needed inequality.
2. Wn,m+1 = W1 k

In this case, an optimal solution is to split all nodes into two groups by excluding

negative and the ‘cheapest’ positive edges, Qmax = w12 + w23+ -+ Wp—1,m +

Wit1,m+2 + - + Wk—1,k. Now, we want to show that w2 +w2 3+ -+ wWp—1,m +

Wit 1,mi2 -+ We—1 g = X1 2W12+X23W2 3+ - - +Xk— 1,k Wr—1,k — X1,k W1 k. After

rearranging, we have: (1—xj 2)wi 2+ (1—x23)wa 3+ - - +(1—=Xp—1.m) Win—1,m+(1—

Xin+1,m+2) W1, m+2 + -+ (1= Xe— 1) Wh— 1,k +X14WLE = X1 Win,m+1- Since

all w; j11 > Wy my1 > 0, W1k > Wiy me1 and 0 < x; j < 1,itis enough to show that

I=xio+l=x23+ +1=Xp—tm+1=Xmt1mt2+ -+ =X 1k +X1k6 = Xnm+1-

But we have already shownthat 1 —x; 24+ 1—x234+---4+1—x,—1 4 > 1 —x1 4,50

l—xio+1—x23+--+1=xp—1m+1—=Xmtime2+- -+ 1 =Xp—16 +x14 >

I—-1- xm,m+l) = Xm,m+1- O

Corollary 1 Solution of the relaxed problem (2) always finds an upper bound on Q that
is the same as or tighter than the upper bound Qnqx = Q(G) — Zk M Pr. obtained
by solving problem (4) for some set of chains {Si} with penalties { Py}.

@ Springer

http://creativecommons.org/licenses/by/4.0/

Subnetwork constraints for tighter upper bounds...

Proof Following the proof of Theorem 1, network G could be represented as
sum G = S’ 4 R of the linear combination of chains S* and some resid-
*R

ual subnetwork R with edge weights w; o= wij = wf“j, and for any par-

tition, Q(G) = Q(SY) + Q(R). So, for the optimal solution {x;;} of the
relaxed problem (2), we have: ij wij - Xij = ZRJ- x,-j~(w;‘jR+w;"j) =
Zi<j Xij - w;ij + Zi<j Xij Dk)‘kw;kjk = wajR>0 w?ij‘*'Zk A - Z:i<j Xij - w?}k =

S0 Wi + Lk Qop(SH) = QR + Ly (Supoowit —) =
OR) + O(SH) = ¥ M Pi = Q(G) — Yoy i Pre

O

References

Agarwal G, Kempe D (2008) Modularity-maximizing graph communities via mathematical programming.
Eur Phys J B 66(3):409-418. https://doi.org/10.1140/epjb/e2008-00425-1

Aloise D, Cafieri S, Caporossi G et al (2010) Column generation algorithms for exact modularity maxi-
mization in networks. Phys Rev E 82(4):46,112. https://doi.org/10.1103/PhysRevE.82.046112

Aref S, Chheda H, Mostajabdaveh M (2022) The Bayan algorithm: detecting communities in networks
through exact and approximate optimization of modularity. arXiv preprint

Aref S, Mostajabdaveh M, Chheda H (2023) Heuristic modularity maximization algorithms for community
detection rarely return an optimal partition or anything similar. In: Computational science—ICCS
2023. Springer, Cham

Belyi A, Sobolevsky S (2022) Network size reduction preserving optimal modularity and clique partition. In:
Gervasi O, Murgante B, Hendrix EMT et al (eds) Computational science and its applications—ICCSA
2022. Springer, Cham, pp 19-33. https://doi.org/10.1007/978-3-031-10522-7_2

Belyi A, Rudikova L, Sobolevsky S et al (2016) Flickr service data and community structure of countries.
In: International congress on computer science: information systems and technologies: materials of
international scientific congress, Republic of Belarus, Minsk, pp 851-855

Belyi A, Bojic I, Sobolevsky S et al (2017) Global multi-layer network of human mobility. Int J Geogr Inf
Sci 31(7):1381-1402. https://doi.org/10.1080/13658816.2017.1301455. arxiv:1601.05532

Belyi AB, Sobolevsky SL, Kurbatski AN et al (2019) Improved upper bounds in clique partitioning problem.
J Belarusian State Univ Math Inform 3:93—104. https://doi.org/10.33581/2520-6508-2019-3-93-104

Benati S, Ponce D, Puerto J et al (2022) A branch-and-price procedure for clustering data that are graph
connected. Eur J Oper Res 297(3):817-830. https://doi.org/10.1016/j.ejor.2021.05.043

Blondel VD, Guillaume JL, Lambiotte R et al (2008) Fast unfolding of communities in large networks. J
Stat Mech Theory Exp 2008(10):P10,008. https://doi.org/10.1088/1742-5468/2008/10/p10008

Brandes U, Delling D, Gaertler M et al (2008) On modularity clustering. IEEE Trans Knowl Data Eng
20(2):172-188. https://doi.org/10.1109/TKDE.2007.190689

Brimberg J, Jani¢ijevi¢ S, Mladenovié N et al (2017) Solving the clique partitioning problem as a maximally
diverse grouping problem. Optim Lett 11(6):1123—1135. https://doi.org/10.1007/s11590-015-0869-
4

Brusco MJ, Kohn HF (2009) Clustering qualitative data based on binary equivalence relations: neighborhood
search heuristics for the clique partitioning problem. Psychometrika 74(4):685. https://doi.org/10.
1007/511336-009-9126-z

Charon I, Hudry O (2006) Noising methods for a clique partitioning problem. Discrete Appl Math
154(5):754-769. https://doi.org/10.1016/j.dam.2005.05.029

Cohen MB, Lee YT, Song Z (2021) Solving linear programs in the current matrix multiplication time. J
ACM. https://doi.org/10.1145/3424305

de Amorim SG, Barthélemy JP, Ribeiro CC (1992) Clustering and clique partitioning: simulated annealing
and tabu search approaches. J Classif 9(1):17-41. https://doi.org/10.1007/BF02618466

Dinh TN, Thai MT (2015) Toward optimal community detection: from trees to general weighted networks.
Int Math 11(3):181-200. https://doi.org/10.1080/15427951.2014.950875

Dorndorf U, Pesch E (1994) Fast clustering algorithms. ORSA J Comput 6(2):141-153. https://doi.org/10.
1287/ijoc.6.2.141

@ Springer

https://doi.org/10.1140/epjb/e2008-00425-1
https://doi.org/10.1103/PhysRevE.82.046112
https://doi.org/10.1007/978-3-031-10522-7_2
https://doi.org/10.1080/13658816.2017.1301455
http://arxiv.org/abs/1601.05532
https://doi.org/10.33581/2520-6508-2019-3-93-104
https://doi.org/10.1016/j.ejor.2021.05.043
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1109/TKDE.2007.190689
https://doi.org/10.1007/s11590-015-0869-4
https://doi.org/10.1007/s11590-015-0869-4
https://doi.org/10.1007/s11336-009-9126-z
https://doi.org/10.1007/s11336-009-9126-z
https://doi.org/10.1016/j.dam.2005.05.029
https://doi.org/10.1145/3424305
https://doi.org/10.1007/BF02618466
https://doi.org/10.1080/15427951.2014.950875
https://doi.org/10.1287/ijoc.6.2.141
https://doi.org/10.1287/ijoc.6.2.141

A.Belyietal.

Dorndorf U, Jaehn F, Pesch E (2008) Modelling robust flight-gate scheduling as a clique partitioning
problem. Transp Sci 42(3):292-301. https://doi.org/10.1287/trsc.1070.0211

Du Y, Kochenberger G, Glover F et al (2022) Solving clique partitioning problems: a comparison of
models and commercial solvers. Int J Inf Technol Decis Mak 21(01):59-81. https://doi.org/10.1142/
50219622021500504

Forrest J, Hall J (2012) COIN-OR Linear Programming (CLP) v1.14.8

Fortunato S (2010) Community detection in graphs. Phys Rep 486:75-174. https://doi.org/10.1016/j.
physrep.2009.11.002

Gao J, Lv Y, Liu M et al (2022) Improving simulated annealing for clique partitioning problems. J Artif
Intell Res 74:1485—1513. https://doi.org/10.1613/jair.1.13382

Gearhart JL, Adair KL, Detry RJ et al (2013) Comparison of open-source linear programming solvers.
Sandia Natl Lab SAND2013-8847

Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad
Sci 99(12):7821-7826. https://doi.org/10.1073/pnas.122653799

Grotschel M, Wakabayashi Y (1989) A cutting plane algorithm for a clustering problem. Math Program
45(1):59-96. https://doi.org/10.1007/BF01589097

Grotschel M, Wakabayashi Y (1990) Facets of the clique partitioning polytope. Math Program 47(1):367—
387. https://doi.org/10.1007/BF01580870

Guimera R, Nunes Amaral LA (2005) Functional cartography of complex metabolic networks. Nature
433(7028):895-900. https://doi.org/10.1038/nature03288

Hausberger F, Faraj MF, Schulz C (2022) A distributed multilevel memetic algorithm for signed graph
clustering. arXiv preprint arXiv:2208.13618

Hu S, Wu X, Liu H et al (2021) A novel two-model local search algorithm with a self-adaptive parameter
for clique partitioning problem. Neural Comput Appl 33(10):4929-4944. https://doi.org/10.1007/
800521-020-05289-5

Jaehn F, Pesch E (2013) New bounds and constraint propagation techniques for the clique partitioning.
Discrete Appl Math 161(13):2025-2037. https://doi.org/10.1016/j.dam.2013.02.011

Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264-323. https://
doi.org/10.1145/331499.331504

Ji X, Mitchell JE (2007) Branch-and-price-and-cut on the clique partitioning problem with minimum clique
size requirement. Discrete Optim 4(1):87—102. https://doi.org/10.1016/j.disopt.2006.10.009

Knuth DE (1993) The Stanford GraphBase: a platform for combinatorial computing. AcM Press, New York

Koshimura M, Watanabe E, Sakurai Y et al (2022) Concise integer linear programming formulation for
clique partitioning problems. Constraints 27:99-115. https://doi.org/10.1007/s10601-022-09326-z

Lee YT, Sidford A (2015) Efficient inverse maintenance and faster algorithms for linear programming. In:
2015 IEEE 56th annual symposium on foundations of computer science, pp 230-249. https://doi.org/
10.1109/FOCS.2015.23

Lorena LHN, Quiles MG, Lorena LAN (2019) Improving the performance of an integer linear programming
community detection algorithm through clique filtering. In: Misra S, Gervasi O, Murgante B et al (eds)
Computational science and its applications—ICCSA 2019. Springer, Cham, pp 757-769. https://doi.
org/10.1007/978-3-030-24289-3_56

Lu Z, Zhou Y, Hao JK (2021) A hybrid evolutionary algorithm for the clique partitioning problem. IEEE
Trans Cybern. https://doi.org/10.1109/TCYB.2021.3051243

Lusseau D, Schneider K, Boisseau OJ et al (2003) The bottlenose dolphin community of Doubtful Sound
features a large proportion of long-lasting associations. Behav Ecol Sociobiol 54(4):396—405. https://
doi.org/10.1007/500265-003-0651-y

Mehrotra A, Trick MA (1998) Cliques and clustering: a combinatorial approach. Oper Res Lett 22(1):1-12.
https://doi.org/10.1016/S0167-6377(98)00006-6

Miyauchi A, Miyamoto Y (2013) Computing an upper bound of modularity. Eur Phys J B 86(7):302. https://
doi.org/10.1140/epjb/e2013-40006-7

Miyauchi A, Sukegawa N (2015) Redundant constraints in the standard formulation for the clique parti-
tioning problem. Optim Lett 9(1):199-207. https://doi.org/10.1007/s11590-014-0754-6

Miyauchi A, Sonobe T, Sukegawa N (2018) Exact clustering via integer programming and maximum
satisfiability. In: Proceedings of the AAAI conference on artificial intelligence, vol 32(1)

Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci 103(23):8577—
8582. https://doi.org/10.1073/pnas.0601602103

Newman M (2018) Networks. Oxford University Press, Oxford

@ Springer

https://doi.org/10.1287/trsc.1070.0211
https://doi.org/10.1142/S0219622021500504
https://doi.org/10.1142/S0219622021500504
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1613/jair.1.13382
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1007/BF01589097
https://doi.org/10.1007/BF01580870
https://doi.org/10.1038/nature03288
http://arxiv.org/abs/2208.13618
https://doi.org/10.1007/s00521-020-05289-5
https://doi.org/10.1007/s00521-020-05289-5
https://doi.org/10.1016/j.dam.2013.02.011
https://doi.org/10.1145/331499.331504
https://doi.org/10.1145/331499.331504
https://doi.org/10.1016/j.disopt.2006.10.009
https://doi.org/10.1007/s10601-022-09326-z
https://doi.org/10.1109/FOCS.2015.23
https://doi.org/10.1109/FOCS.2015.23
https://doi.org/10.1007/978-3-030-24289-3_56
https://doi.org/10.1007/978-3-030-24289-3_56
https://doi.org/10.1109/TCYB.2021.3051243
https://doi.org/10.1007/s00265-003-0651-y
https://doi.org/10.1007/s00265-003-0651-y
https://doi.org/10.1016/S0167-6377(98)00006-6
https://doi.org/10.1140/epjb/e2013-40006-7
https://doi.org/10.1140/epjb/e2013-40006-7
https://doi.org/10.1007/s11590-014-0754-6
https://doi.org/10.1073/pnas.0601602103

Subnetwork constraints for tighter upper bounds...

Newman MEIJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E
69(2):26,113. https://doi.org/10.1103/PhysRevE.69.026113

Oosten M, Rutten JHGC, Spieksma FCR (2001) The clique partitioning problem: facets and patching facets.
Networks 38(4):209-226. https://doi.org/10.1002/net. 10004

Palubeckis G, Ostreika A, TomkeviCius A (2014) An iterated tabu search approach for the clique partitioning
problem. Sci World J. https://doi.org/10.1155/2014/353101

Pirim H, Eksioglu B, Glover FW (2018) A novel mixed integer linear programming model for cluster-
ing relational networks. J Optim Theory Appl 176(2):492-508. https://doi.org/10.1007/s10957-017-
1213-1

Sobolevsky S, Belyi A (2022) Graph neural network inspired algorithm for unsupervised network commu-
nity detection. Appl Netw Sci 7(63):1-19. https://doi.org/10.1007/s41109-022-00500-z

Sobolevsky S, Campari R, Belyi A et al (2014) General optimization technique for high-quality community
detection in complex networks. Phys Rev E Stat Nonlinear Soft Matter Phys. https://doi.org/10.1103/
PhysRevE.90.012811. arXiv:1308.3508

Sobolevsky S, Belyi A, Ratti C (2017) Optimality of community structure in complex networks. arXiv
preprint arXiv:1712.05110

Sukegawa N, Yamamoto Y, Zhang L (2013) Lagrangian relaxation and pegging test for the clique partitioning
problem. Adv Data Anal Classit 7(4):363-391. https://doi.org/10.1007/s11634-013-0135-5

Wakabayashi Y (1986) Aggregation of binary relations: algorithmic and polyhedral investigations. PhD
thesis, Doctoral Dissertation. University of Augsburg

Wang H, Alidaee B, Glover F et al (2006) Solving group technology problems via clique partitioning. Int J
Flex Manuf Syst 18(2):77-97. https://doi.org/10.1007/s10696-006-9011-3

XuY,LiJ, Belyi A etal (2021) Characterizing destination networks through mobility traces of international
tourists: a case study using a nationwide mobile positioning dataset. Tour Manag. https://doi.org/10.
1016/j.tourman.2020.104195

Zhou Y, Hao JK, Goéffon A (2016) A three-phased local search approach for the clique partitioning problem.
J Comb Optim 32(2):469-491. https://doi.org/10.1007/s10878-015-9964-9

Publisher’'s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1002/net.10004
https://doi.org/10.1155/2014/353101
https://doi.org/10.1007/s10957-017-1213-1
https://doi.org/10.1007/s10957-017-1213-1
https://doi.org/10.1007/s41109-022-00500-z
https://doi.org/10.1103/PhysRevE.90.012811
https://doi.org/10.1103/PhysRevE.90.012811
http://arxiv.org/abs/1308.3508
http://arxiv.org/abs/1712.05110
https://doi.org/10.1007/s11634-013-0135-5
https://doi.org/10.1007/s10696-006-9011-3
https://doi.org/10.1016/j.tourman.2020.104195
https://doi.org/10.1016/j.tourman.2020.104195
https://doi.org/10.1007/s10878-015-9964-9

	Subnetwork constraints for tighter upper bounds and exact solution of the clique partitioning problem
	Abstract
	1 Introduction
	2 Problem formulation and existing solution approaches
	3 Upper bound estimation
	3.1 Chains
	3.2 Stars

	4 Branch and bound
	5 Computational experiment
	6 Conclusions
	Acknowledgements
	Appendix A
	References

