J 2023

A Borel-Weil theorem for the quantum Grassmannians

CAROTENUTO, Alessandro, Colin MROZINSKI and Réamonn Ó. BUACHALLA

Basic information

Original name

A Borel-Weil theorem for the quantum Grassmannians

Authors

CAROTENUTO, Alessandro (380 Italy, guarantor, belonging to the institution), Colin MROZINSKI and Réamonn Ó. BUACHALLA

Edition

Documenta Mathematica, EMS Press, 2023, 1431-0635

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

Germany

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

RIV identification code

RIV/00216224:14310/23:00134241

Organization unit

Faculty of Science

UT WoS

001052392200001

Keywords in English

Quantum groups; noncommutative geometry; quantum flag manifolds; complex geometry

Tags

Tags

International impact, Reviewed
Změněno: 5/4/2024 10:56, Mgr. Marie Šípková, DiS.

Abstract

V originále

We establish a noncommutative generalisation of the Borel–Weil theorem for the celebrated Heckenberger–Kolb calculi of the quantum Grassmannians. The result is formulated in the framework of quantum principal bundles and noncommutative complex structures, and generalises previous work of a number of authors on quantum projective space. As a direct consequence we get a novel noncommutative differential geometric presentation of the twisted Grassmannian coordinate ring studied in noncommutative projective geometry. A number of applications to the noncommutative Kähler geometry of the quantum Grassmannians are also given.

Links

GX19-28628X, research and development project
Name: Homotopické a homologické metody a nástroje úzce související s matematickou fyzikou
Investor: Czech Science Foundation