Detailed Information on Publication Record
2024
Flash droughts in Central Europe and their circulation drivers
ŘEHOŘ, Jan, Rudolf BRÁZDIL, Miroslav TRNKA and Jan BALEKBasic information
Original name
Flash droughts in Central Europe and their circulation drivers
Authors
ŘEHOŘ, Jan (203 Czech Republic, guarantor, belonging to the institution), Rudolf BRÁZDIL (203 Czech Republic, belonging to the institution), Miroslav TRNKA (203 Czech Republic) and Jan BALEK
Edition
Climate Dynamics, Springer-Verlag GmbH, 2024, 0930-7575
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10500 1.5. Earth and related environmental sciences
Country of publisher
Germany
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 4.600 in 2022
Organization unit
Faculty of Science
UT WoS
001072227100001
Keywords in English
Soil moisture; Flash drought; Spatiotemporal variability; Atmospheric circulation; Central Europe
Tags
Tags
International impact, Reviewed
Změněno: 6/3/2024 12:31, Mgr. Marie Šípková, DiS.
Abstract
V originále
Flash droughts, defined as events with unusually rapid onset and intensification, are emerging into the spotlight as dangerous subseasonal climatic phenomena capable of causing substantial socioenvironmental impacts. However, research on their spatiotemporal variability and major drivers in Central Europe has been limited thus far. This study used gridded soil moisture data from the SoilClim model for the region consisting of the Czech Republic, Slovakia and northern part of Austria in the 1961–2021 period. Established methods of flash drought detection were implemented and adapted to conduct their comprehensive spatiotemporal analysis. The gridded flash drought results were divided into four clusters using the Ward’s hierarchical agglomerative method. Individual flash drought episodes were delimited for each cluster, divided into three phases (onset, course, end) and investigated separately in terms of drivers, represented by three meteorological variables (precipitation, actual evapotranspiration, maximum temperature) and atmospheric circulation types based on the objective classification (derived from flow strength, direction and vorticity). The frequency of flash droughts slightly decreased in the winter half-year and slightly increased in the summer half-year, with substantial amplification in the April–June season. The increase was slower than in the case of seasonal droughts, being driven by the longer-term accumulation of water deficit. Circulation drivers exhibited much stronger and more direct influence in the summer half-year, particularly causing the onset of flash drought episodes during the predominance of anticyclonic types and absence of cyclonic types, while the course of flash drought episodes was also connected to increased temperatures and often connected to warm airflow.
Links
MUNI/A/1323/2022, interní kód MU |
|