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Abstract. Pivoting is a sophisticated strategy employed by modern
malware and Advanced Persistent Threats (APT) to complicate attack
tracing and attribution. Detecting pivoting activities is of utmost impor-
tance in order to counter these threats effectively. In this study, we exam-
ined the detection of pivoting by analyzing network traffic data collected
over a period of 10 days in a campus network. Through NetFlow mon-
itoring, we initially identified potential pivoting candidates, which are
traces in the network traffic that match known patterns. Subsequently,
we conducted an in-depth analysis of these candidates and uncovered a
significant number of false positives and benign pivoting-like patterns. To
enhance investigation and understanding, we introduced a novel graph
representation called a pivoting graph, which provides comprehensive vi-
sualization capabilities. Unfortunately, investigating pivoting candidates
is highly dependent on the specific context and necessitates a strong
understanding of the local environment. To address this challenge, we
applied principal component analysis and clustering techniques to a di-
verse range of features. This allowed us to identify the most meaningful
features for automated pivoting detection, eliminating the need for prior
knowledge of the local environment.

Keywords: pivoting · lateral movement · monitoring · NetFlow.

1 Introduction

Lateral movement has become a major research topic in network security [22].
Adversaries are always finding new ways of breaching systems and avoiding de-
tection, often by moving laterally in the target network. The most valuable
targets are often not accessible from the Internet, or the network is protected by
intrusion detection systems (IDS) on the perimeter. The goal of the adversary
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in such cases is to get a foothold elsewhere in the network, such as on a common
workstation exploited by social engineering attack (e.g., a phishing email) or
a weakly secured IoT device. Creating a backdoor to such a device allows the
adversary to use it as a pivot and connect to other targets in the network from
within. The term pivoting [2,22] refers to such a scenario and can also be referred
to as island hopping [23], stepping stone attack [33] or command propagation in
the literature. Pivoting is no longer an advanced attack technique reserved for
Advanced Persistent Threats (APT) and other advanced adversaries [9, 22] but
is more and more often seen adopted by novel malware [8, 26].

Although pivoting or lateral movement detection, in general, has gained much
attention in recent years [22], the state-of-the-art in the field is limited by sev-
eral factors. First, the existing pivoting detection methods (e.g., [5, 7, 18]) are
mostly host-based, meaning they can only detect the pivoting on (or with ac-
cess to the data from) the machine that acts as a pivot. While such methods
achieve high accuracy, their scope is limited to machines that have the neces-
sary software equipment or those that can forward their logs elsewhere, which
is often infeasible in large and heterogeneous networks. Moreover, the attacker
may exploit a common workstation or IoT device as a pivot, where such de-
vices would likely not be equipped with proper detection mechanisms. Thus, a
network-based approach is vital and could play a key complementary role in such
a context. Second, the related works mostly evaluated the detection capability
using datasets or in environments with an insufficient amount of background
traffic. Thus, existing approaches may achieve a high true positive rate but also
a high false positive rate because it is not clear what false positive or benign
events can be detected. Attempts to approach this problem were made [15] but
needed to deliver long-term measurements or a detailed analysis of the false pos-
itives. We aim herein to fill this gap by detecting pivoting in real-world settings
while differentiating between benign and suspicious events.

The contributions of this work to the state-of-the-art can be summarized
as follows. First, we employ a modified state-of-the-art network-based pivoting
detection algorithm [2] to detect pivoting and pivoting-like events in a campus
network, focusing on SSH communication. Following the observations in related
work [15], we employ a two-layer detection tactic starting with pivoting candidate
detection with a high true positive rate followed by a second analytical phase
aiming at false positive reduction leading to the selection of true positive candi-
dates. The scope of this measurement vastly exceeds any experiments in related
work. Second, we empirically analyze the measurement results, identify true and
false positives, and investigate the benignity or maliciousness of the detected
events. To this end, we (i) extract a list of heuristics based on knowledge of the
local environment and convert them into rules for automatic annotation. Conse-
quently, we (ii) devise a novel graph-based representation of pivoting activities,
which provides comprehensive visualization and additional contextual features.
Further, (iii) we study the evolution of pivoting-like events over time. Third,
we perform principle component analysis and clustering in order to identify the
most meaningful features and feature sets that would allow for the design and
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development of a (semi-)automated pivoting detection tool without relying on
local knowledge.

The remainder of this work is structured as follows. Section 2 comprehen-
sively summarizes the background and relevant related work . Section 3 inititally
presents the scenario and experiment setup for pivoting detection in the cam-
pus network. Subsequently, the pivoting detection algorithm and measurement
results are described. Section 4 presents a detailed analysis of the measurement
results using three approaches, heuristic filtering, graph-based representation,
and timing analysis. Section 5 presents the approaches taken toward for the au-
tomation of the analysis. Section 6 discusses the measurement findings and their
implication towards in-practice, pragmatic usages. Section 7 concludes the paper
and paves the way for future work.

2 Background and Related Work

In this section, we first define the pivoting maneuver and its characteristics.
Then, we provide the necessary background on network measurements. We also
provide an overview of the related work on pivoting detection.

2.1 Pivoting Maneuver and its Characteristics

Pivoting, also known as island hopping or stepping stone attack, is gaining more
and more popularity among attackers. The documented cases of cyber attacks in-
volving pivoting include the events of Operation Aurora [8], in which the attack-
ers gained control over the system of large corporations and exfiltrated business
secrets. In 2015, the Ukrainian power grid faced a complex attack involving piv-
oting [12]. Such an attack caused a blackout in hundreds of thousands of house-
holds. The MEDJACK attack [26] abused hospital equipment, such as X-ray
scanners, to exfiltrate data on patients. The report by TrapX Security [28] com-
ments on other pivoting-based attacks in the healthcare domain. SamSam is an
example of ransomware leveraging pivoting activities [1], while the Archimedes
tool [31] uses pivoting and forwards network traffic to fake websites to steal
authentication credentials. In line with the strategic pivoting tactics, amid the
Russo-Ukrainian conflict, an attacker laterally maneuvered within the trusted
management network of KA-SAT which eventually allowed him to execute legit-
imate, targeted management commands on a large number of residential modems
simultaneously [30].

Here, we define pivoting as a pair of network connections involving three
actors. First, the Source initiates a connection to the Pivot. Subsequently, either
immediately or up to ϵ seconds later, the Pivot initiates a connection to the
Target. The Target is different from the Source. The scenario is depicted in
Figure 1.

A malicious case of pivoting may involve an attacker located anywhere on the
Internet as the Source. The attacker aims at a Target that is behind a firewall
or in a private network segment. Thus, the attacker exploits a Pivot first since
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Fig. 1. An illustrative depiction of a pivoting maneuver through SSH.

it has both a public IP address and can reach the Target. However, pivoting
can also be benign and even part of a typical daily workflow. For example, a
user working from home connects to a publicly accessible SSH server in the
employer’s network and uses it to connect to another device in the network
that is not directly accessible. This is essentially pivoting but conducted by a
legitimate user and, thus, is benign unless it violates internal security policy that
would, for example, prohibit connecting to SSH from outside of the network.

2.2 Related Work on Pivoting Detection

Despite the rising frequency of attacks involving pivoting, the research on de-
tecting such events it is still scarce or limited in its applicability [22]. Ear-
lier works [3, 27] conceptualized pivoting attacks without proposing a detec-
tion method. Since pivoting and lateral movement is often a part of APT at-
tacks as carefully studied by Gonzales et al. [13] according to the MITRE
ATT&CK framework, it was mostly studied in terms of detecting and preventing
APT [9, 22]. The earliest works focused on alert correlation, not processing raw
data. The foundational work by Valeur et al. [29] illustrates the correlation of
alerts raised by IDS (Intrusion Detection Systems). However, the malicious ac-
tivity may avoid being detected or would not trigger an alert, which complicates
this approach [21].

The topic of lateral movement spans intrusion detection as well as forensics.
Liu et al. [16] proposed Latte, a lateral movement detection system based on
graphs with computers and users as nodes and connection and logon events as
edges. Their approach is host-based and bridges forensic analysis and detection.
Wilkens et al. [32] researched the reconstruction of lateral movement. Their con-
tribution is a detection method where, using indicators of compromises, suggests
the path of the attacker’s lateral movement and narrows down the set of nodes
to analyze to only 5 % of all network hosts.

Host-based approaches are the most common in the proposed pivoting de-
tection research. Here, Bai et al. [4, 5] proposed an approach to detect lateral
movement in RDP logs; the work is limited only to Windows-based hosts. Their
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approach utilizes an ML classifier which yielded high performance illustrated on
several datasets while also being robust against adversarial attacks [5]. Bian et
al. [7] further elaborated on the topic, scrutinizing graph-based features and con-
ducting dimensionality reduction. However, the low quality of network flow data
in the used dataset prevented the authors from including such data in their ap-
proach. Recent approaches to lateral movement detection do not rely solely on
system logs but combine multiple data sources, including monitoring network
traffic. APIVADS [18] is a privacy-preserving approach to pivoting detection
that can be used in complex networks. The proposed approach relies on Net-
Flow data collected on the pivot and, thus, it is a de-facto host-based method,
even though network-based data are used. Powell [20] proposed a role-based
lateral movement detection using unsupervised learning, utilizing systems calls
and network connections alike, leveraging earlier work on graph-based anomaly
detection in authentication logs [19]. Smiliotopoulos et al. [24] propose a Sys-
mon log-based lateral movement detection technique encompassing the labelling
and pre-processing of the data, as well as the classification through a supervised
machine learning approach.

The first attempts at characterizing stepping stones dated back to 1995 [25]
and detecting it to 2000 [33]. Even back then, the authors mention the vast
false positive rates. Since then, the dynamics of network traffic and the threat
landscape have fundamentally changed, and research has mostly focused on host-
based methods. The work of Apruzzese et al. [2] is the state-of-the-art network-
based pivoting detection algorithm. The authors proposed an algorithm that
correlates NetFlow data [14] and is capable of detecting sequences of pivoting
activity of arbitrary length. Such an approach is well suited to private networks
with not much background traffic. However, Husák et al. [15] recently evaluated
an algorithm by Apruzzese et al. [2] in operational settings and pinpointed the
challenges related to that, given that they have achieved a high rate of false posi-
tive detections and too few true detections of pivoting activity involving relevant
services (e.g., SSH, RDP, Telnet). The authors proposed Principal Component
Analysis (PCA) to infer characteristics of true pivoting events to enable further
development of ML-based detection. Another angle was considered by Dong et
al. [10,11] in which they identified lateral movement traces in enterprise network
by performing behavior deviation measurement.

With respect to the state-of-the-art, the proposed work herein is scoped
towards the detection of pivoting activities based on network traffic analysis
(namely using NetFlow); hence it aims at detecting pivoting occurring anywhere
in the network. Such a goal is highly ambitious and will require long-term em-
pirical measurements and evaluation. In this vein, we start with the setup of
the pivoting detection pipeline that would enable the latter. With the help of
contextual information, heuristics, and machine learning, our goal is to devise
an approach which reduces the false positive rate while distinguishing between
benign and suspicious (or even malicious) pivoting activities.
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3 Pivoting Candidate Detection

We describe in this section the experimental environment and the measurement
setup (see Figure 2) followed by the pivoting detection algorithm and the gen-
erated results. By pivoting candidates, we refer to the outputs of the detection
algorithm as is, without any post-processing, which is discussed in the subse-
quent sections.
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Fig. 2. Pivoting detection pipeline.

3.1 Environment and Experiment Setup

We executed a longitudinal measurement in March 2023 in the campus network
of Masaryk University5. The campus network serves more than 30,000 students
and 6,000 employees. Over 15,000 unique IPv4 addresses in the /16 IPv4 address
range can be seen on a daily basis. The campus network is to be open and re-
strict only malicious network traffic and hazardous services rather than blocking
everything and allowing only certain services. This makes the campus network
an excellent environment to study benign pivoting-like activities.

The university operates a cybersecurity team CSIRT-MU6 to manage cyber-
security in the network and operate a network monitoring infrastructure based
on the NetFlow technology [14]. NetFlow monitoring enables the CSIRT-MU
to perform intrusion detection and network forensics. The NetFlow probes are
located at strategic locations to monitor network traffic flowing through major
links in the campus network. No measurement is conducted on the routers or
other active network devices. Two probes are located on the perimeter, monitor-
ing any inbound and outbound traffic, and six are located inside the network,
monitoring the most important internal links. The probes on the perimeter ob-
serve the highest traffic rates but do not have any visibility into internal network
traffic, while the internal probes are capable of observing the majority of net-
work connections within the campus network, including any connection inbound
or outbound to the campus network. Thus, we chose to use only the data from
5 https://www.muni.cz/en
6 https://csirt.muni.cz/?lang=en

https://www.muni.cz/en
https://csirt.muni.cz/?lang=en
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the internal probes. As such, all the data from the probes are sent to two NetFlow
collectors, where they are retained. Since the NetFlow measurement is primarily
used for security purposes, no traffic sampling is applied, even on high-speed
links, to allow for precise monitoring. The active time-out is set to 30 seconds
for the same reason, diverting from traditional settings of 5 minutes [14].

Notably, only SSH communication (i.e., identified by TCP destination port
22 ) is considered during our measurement. The reasons are two-fold; (i) consid-
ering multiple protocols or protocol-agnostic detection would explode in com-
plexity and would complicate the analysis (see the discussion); and (ii) SSH is
widely used in the campus network and is less strictly regulated than other con-
siderable protocols, including Telnet and/or RDP. The amount of Telnet traffic
in the campus network is negligible, and RDP is strictly regulated by firewalls,
which also leads to negligible amounts of observed traffic.

3.2 Candidate Detection Algorithm

The pivoting detection in NetFlow data follows two fundamental related works.
First, we adapted the algorithm proposed by Apruzzese et al. [2]. Second, we
enhanced the two-level approach proposed by Husák et al. [15], i.e., detecting
candidates first and then using other approaches to classify the candidates as
true and false positives (and benign and suspicious ones).

The algorithm by Apruzzese et al. [2] extracts the bi-flows (i.e., bi-directional
network flows created by merging pairs of default uni-directional flows in opposite
directions [14]) and then finds the paths of arbitrary lengths in which the next
flow’s source is the previous flow’s destination. In addition, the new biflow has
to start immediately or up to 30 seconds after the previous one. The algorithm
is capable of detecting pivoting of arbitrary length.

We made several changes to the algorithm. First, we process data from mul-
tiple probes. Thus, all the biflows from all probes are merged into one list and
sorted by timestamp. Duplicate biflows (e.g., connections observed by two or
more probes) are removed. Second, we detect only simple pivoting consisting of
two network connections (source to pivot, pivot to target). Pivoting over several
pivots would still appear in the results as several candidates. Moreover, candi-
dates of fixed form are easier to post-process. Finally, the time limit of 30 seconds
was kept as a default but implemented as an optional parameter. The default
time window is one day (midnight to midnight), but it is also subject to settings.
The final form of the algorithm is summarized in pseudocode in Algorithm 1.

3.3 Results

The measurement and pivoting candidate detection spanned ten days. The re-
sults are summarized in Table 1. Processing the NetFlow data collected through-
out the day by six probes took around 30 minutes on average on commodity
hardware.

The pivoting detection algorithm has one parameter, namely, the time prop-
agation delay (ϵ), i.e., a maximal time difference between the source-to-pivot
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Algorithm 1 Pivoting candidate detection algorithm.
1: f ← list of flows on the input
2: ϵ← 30
3: len ← size of f
4: for i in [0, len] do
5: for j in [i+1, len] do
6: if fi.dstIP == f2.srcIP then
7: if f1.ts < f2.ts < f1.ts+ ϵ then
8: candidates← (fi, fj)
9: end if

10: end if
11: end for
12: end for

Table 1. Pivoting candidate detection.

Measurement Artifacts Min Max Total
Biflows 3,416,328 6,412,670 39,399,832
Candidates 17,026 75,116 313,193
Unique Sources (S) 297 646 3,410
Unique Pivots (P) 64 112 238
Unique Targets (T) 76 227 468
Unique Triplets (S, P, T) 695 6,956 22,655
Pivoting Graph Components 12 21 14

and pivot-to-target communication [2]. We were interested in how various set-
tings of ϵ influence the overall results. The values of 2, 10, 30 (default), and 60
seconds were considered. The higher the ϵ, the higher the number of detected
candidates and unique actors, but also highly increased processing time (from
several minutes at lowest ϵ to close to one hour with the highest ϵ). However,
the increases were observed mostly in false positive detections (see the following
section). The number of suspicious candidates (i.e., those we aim to detect, see
the next section) changed only marginally with various ϵ. It is also worth not-
ing that higher fragmentation of NetFlows in time due to active timeouts is an
influential factor allowing the use of low ϵ values.

4 Manual Pivoting Candidate Analysis

The second phase of the experiment is the analysis of pivoting candidates, i.e.,
the output of the pivoting detection algorithm. The algorithm is relatively simple
but provides a solid true positive detection rate. However, it is prone to a high
false positive rate, which needs to be addressed. Thus, the second phase primar-
ily addresses the false positive rate reduction manner. Three approaches were
taken and are discussed in the sequel. First, we leverage the knowledge of the
environment and manually classify the candidates. Second, we employ a novel



Pivoting Maneuver Detection 9

approach based on graph-based visualization. Finally, we analyze the evolution
of pivoting candidates over time.

4.1 Empirical Analysis and Heuristic Filtering

The empirical analysis of the results was conducted in collaboration with admin-
istrators of the campus network. The administrators have detailed knowledge of
the environment and the roles of most of the deployed devices. The goal of
this analysis was to either confirm that the detected candidate is some sort of
pivoting-like activity or a false positive. Simultaneously, the empirical analysis
served as a basis for the construction of a heuristic filter that can be used to filter
the candidates, disregard false positives, and mark benign events. The empirical
analysis was conducted manually. All the IP addresses were translated to domain
names for increased comprehension. The analysts iterated the list starting with
the most frequently appearing sources, pivots, targets, and their combinations.
Several frequent patterns became apparent and a heuristic filter was filled with
entries. A detailed breakdown of its results is displayed in Table 4.1.

Table 2. Rule-based annotation of pivoting candidates.

Class Rule Candidates
Monitoring 288,161
(Anonymized Services) 15,761
Git & Backup 5,404
Management & Cloud 1,288

Benign and False Positives

Pentesting 1,627
Internal 29
Inwards 338
Outwards 19Unclassified and Suspicious

In and Out 566

Total - 313,193

First, a large number of candidates included one of the network measurement
nodes. Tools like Nagios and Icinga deployed in the network use SSH to connect
to or receive connections from other hosts in the network to update the status of
the devices and services running on them. If the monitored nodes open another
network connection, a candidate is detected. Either the monitored host received
an SSH connection from elsewhere and then updated its status, or the monitoring
node queried a monitored host, which then connected elsewhere. At one depart-
ment, the administrators operate two monitoring hosts, one actively probing the
devices and the second receiving updates. Simultaneous connections to and from
both of them resulted in a number of pivoting candidates with the same source
and target but different pivots. All the cases can be declared as false positives,
and the following filtering rule was established: if a known network monitoring
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node is involved in pivoting-like activity, the candidate is marked as monitoring
and dismissed. The list of monitoring hosts can be provided by network admin-
istrators. Alternatively, if a common naming scheme is used, a rule can be stated
as: if the actor’s domain name is {monitor,icinga,nagios}*.domain, then dismiss
this candidate. A network-wide penetration test from a known dedicated host
taking the role of a source was also observed and was marked as pentesting.

Second, a similar observation was made with hosts belonging to the cloud
or network management infrastructure. However, in such cases, the behavior is
rather true benign pivoting than false positive. For example, a cloud management
device receives a command via SSH connection from a controller and propagates
it to one or more hosts in the cloud. Other network infrastructures, such as cen-
tralized identity management systems or various APIs to services in the private
network display similar behavior. Again, a rule can be set: if a pivot is one of the
hosts providing pivoting-like service, it is marked as management and considered
benign or dismissed. Again, the list of hosts is provided by network administra-
tors or derived by its domain name (e.g., cloud-management*.domain).

Third, some candidates involved the IP address of the Git repository or a
backup device as a target. Typically, a user connected to a server via SSH did
some development work, and committed the code to the Git repository via SSH,
thus generating a pivoting-like event. This is a benign scenario and could be
filtered by a rule checking for a domain name of a target containing strings, such
as *.github.com, gitlab*.domain, or backup*.domain. One distributed system in
the network used three hosts constantly updating each other via SSH, generating
many pivoting-like events (without interacting with other hosts in the network).
This was marked separately, and the rule contained three distinct domain names.

The heuristic filtering marked the vast majority of candidates as false pos-
itives or benign events. The remaining candidates (less than 1%) were sorted
by the location of the actors. A small number of candidates had all three actors
inside the network. Since no interaction with the Internet was observed, we may
assume these candidates as benign.

Other unclassified candidates involved an actor outside the network, which
was either the source (inwards scenario), target (outwards scenario), or source
and target in and out scenario. In such scenarios, actors outside the network
may pose a danger. Moreover, the vast majority of such actors and candidates
were unique in the sense that they appeared only once during the measurement.

We were mostly interested in the inwards scenario since it corresponds the
most to the attack model. A few detected candidates were attributed to users
working from home and pivoting through their own SSH servers to internal
services, which turned out to be the most problematic observed behavior (the
use of VPN is recommended instead). Although no violation of security was
observed, the few observed inwards candidates served as true positive samples.

The remaining candidates in the in and out and outwards scenarios were
found to be associated with cloud computing, which was apparent from the do-
main names of the actors. The communication patterns involved hosts in cloud
environments of the campus network, clouds of other institutions (collaborating
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Algorithm 2 Pivoting graph construction.
1: G ← new empty directed graph
2: for each candidate do
3: for N in S, P, T do
4: if N not in G then:
5: insert node X
6: end if
7: if (S,P) not in G then:
8: insert edge (S,P)
9: end if

10: if (P,T) not in G then:
11: insert edge (P,T)
12: end if
13: end for
14: end for

universities), or public cloud service providers. Although we cannot tell what
happened in those events (the cloud services are outside of our scope, and data
sharing and distributed computing are expected there), we did not observe any-
thing highly suspicious or clearly malicious. Setting a new location (cloud) should
be considered for future work.

4.2 Visual Analysis via Pivoting Graph and Its Decomposition

In the second part of the manual analysis, we investigated an approach based
on graph-based visualization. We composed the pivoting graph and subsequently
decomposed it into components that are easier to evaluate than a list of candi-
dates.

The pivoting graph is a directed graph that represents the network’s hosts
as nodes and the connections between them as edges. However, it is important
to note that the construction of the pivoting graph is based solely on pivoting
candidate events rather than capturing all network (or SSH) traffic within the
network. The process of constructing the graph is outlined in Algorithm 2.

The pivoting graph contains all the network hosts that were detected to be
involved in pivoting maneuvers at any role. The motivation for constructing the
graph is correlating all the pivoting candidates that share some of the actors or
(recalling the limitation to only one pivot per candidate) merging pivoting events
with more pivots. Indeed, the pivoting graph represents various situations well.
Moreover, it is also a graph with many unconnected components, which allows
for approaching each component individually, which turned out to be highly
valuable.

The graph decomposition partitions the graph into components, precisely
weakly connected components since the pivoting graph is directed. Standard
decomposition algorithms from the NetworkX library [17] were used in this work.
During the experiment, we found 12-21 components in the pivoting graph for
every day of measurement and 14 components in the graph constructed from
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Fig. 3. An excerpt from the pivoting graph displaying the components of three different
patterns.

all the data. An excerpt from such a graph can be found in Figure 3. Several
patterns became imminent and are closely described next. For simplicity, we
refer to the common component by the number of actors (sources, pivots, and
targets) they contain, let the number be either 1 or n for 1 or more actors.

The n : 1 : 1 patterns represent a component with numerous sources but only
one pivot and one target. Pivots in these components were typically Internet-
facing SSH servers, which receive incoming connections all the time, while the
target is a monitoring node, to which the pivot reports its status. Indeed, all of
them were found to be related to monitoring in manual analysis. The 1 : n : 1 was
observed at one department due to the unique setting of their host monitoring
infrastructure, as we discussed in the manual analysis. The 1 : 1 : n pattern
with multiple targets usually indicates a cloud orchestration or host monitoring,
which was confirmed in the manual analysis. Although it may seem that any
pattern with n is benign, we are aware that an attacker may compromise one
pivot and use it to exploit multiple targets. Thus, unless the pattern is labeled
as benign by the local rules, it should be investigated.

The 1 : 1 : 1 pattern was the most common; each component represented
an isolated pivoting event involving actors not involved in other patterns. While
some of these were evaluated as benign, it is rather a good indicator of suspicious
activity that is worth investigating.

4.3 Pivoting over Time

Figure 4 shows the frequency of how often each pivot was detected throughout
the measurement. Out of 238 unique pivots detected over 10 days, 120 were
seen in only one day, while 41 were seen every day. It is not surprising that
benign pivoting-like activities related to network management and monitoring
are happening almost every day, while suspicious connections are more likely to
happen in only one day.
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Fig. 4. Temporal analysis of pivot presence: observing candidate events across mea-
surement days.

Nevertheless, it would be a false assumption to automatically consider one-
time events as suspicious and repeated as benign. We assume the attackers
adopting the pivoting technique are also considerate of timing and, thus, per-
form “low and slow”. With this in mind, a single event may not be significant,
but a repeated, long-lasting activity involving unknown actors may be a sign of
an advanced attacker, which we aim to expose.

5 Towards Automated Candidate Filtering

Herein, we present the third phase of our experiment. In the previous section,
we presented the results of manual analysis, in which we outlined what frequent
false positive and benign candidates were detected. Since the analysis was mostly
based on the knowledge of the local environment, we could infer the contextual
features of pivoting that could be leveraged for automated filtering of pivoting
candidates.

5.1 Features

A total number of 39 features was selected for the experiment, along with the
labeling provided by rule-based filtering. The first set of 18 features is derived
from the NetFlow data and represents the duration and number of flows between
the actors and the number of transferred packets and bytes in both directions.
Moreover, the ratios of the features between the two communications are added.
These features were already used in related work [15] and may signalize the
similarity between the two flows.

The other features are contextual and describe the location of the actors
and their relation to the remainder of the dataset. Three features designate the
location of the actor: 0 for an external IP (anywhere on the Internet outside
the campus network), 1 for public IP in the campus network, and 2 for an IP
in a private address range. Subsequently, we assume seven features for each
combination of the actors, i.e., Source (S), Pivot (P), Target (T), and their
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combinations (SP, PT, ST, SPT). These features designate how many times
was the combination of actors observed in the candidate list. Four features are
inspired by the degrees of a corresponding node in the pivoting graph, i.e., the
out-degree of S, the in- and out-degrees of P, and the in-degree of T. The last
seven features represent the timing. For each combination of actors, a feature
indicates whether this combination was observed on the previous day or not. For
practical reasons, we assume only the previous day. However, we can generalize
this feature to indicate the number of occurrences in any number of previous
days. It is worth noting that the candidates from the first day were excluded
from this experiment since their history was not observed.

5.2 Analysis and Results

We used Principal Component Analyses (PCA) to find the relations between
the 39 features and their labels. We limited the number of principal components
to 2 so that we could plot them in the graph. This was done with different
feature sets, with all features and with contextual features only. The results are
presented in Figure 5.

Unfortunately, the obtained results were inconclusive in providing a defini-
tive answer to the questions we were most interested in. Specifically, we were
unable to determine the most significant features or their combinations, as well
as whether it is feasible to cluster the pivoting candidates in a manner that aligns
with the given labels. Even though the true positive (i.e., suspicious) candidates
can be found in certain small areas of the graph, they are still mixed with false
positive and benign candidates. However, the enrichment of the pivoting can-
didate with additional contextual features seems to help. Employing only the
NetFlow-based features is the least illustrative while using only the contextual
features results in clearer clusters.

Despite making several attempts at clustering and visualization throughout
the experiment, the ones presented here are considered the most compelling.
However, the results are rather negative as they did not reveal any key fea-
tures that could effectively differentiate between benign and suspicious pivoting
activities.

6 Discussion

The discussion is structured in three areas. First, we list the limitations of our
approach. Second, we comment on the security implications, such as avoiding
detection. Finally, we put forward a few recommendations for pivoting detection
using our approach in practice.

6.1 Limitations

We are aware pivoting can be conducted using any suitable protocol, not only
SSH. The other viable options would be RDP, Telnet, or even protocols asso-
ciated with network printers (e.g., LPD, LPR, IPP). The attackers could even
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Fig. 5. Clustering analysis. The top figure shows clustering with all features, the bot-
tom figure shows clustering with contextual features only. Colors are assigned as follows:
blue for benign and false positive candidates, orange for in-and-out and outwards sce-
narios, red for inwards scenarios.
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switch protocols and use one to access the pivot and another to contact the
target. Nevertheless, it is not common in related work to use protocol-agnostic
detections. At this stage of research, we have to first understand the command
propagation before devising detection algorithms. Moreover, protocol-agnostic
detections suffer from false positive detections far more and explode in complex-
ity [15]. We estimate that if a measurement similar to this one is conducted with
a focus on other protocols, we may gather enough insights to propose a detection
method that would reduce the false positive rates across the protocols.

As for the second limitation of our work, we do not reflect the situation in
which the pivot may use two different IP addresses (e.g., public and private). We
have observed pivoting-like traffic from public to private IP address ranges and
vice versa via single-interface pivots. However, pivoting through multi-interface
pivots could have been missed and would be worth investigating, even though
that would mean additional complexity.

The final limitation is the lack of ground truth and extreme imbalance given
by the very few true positives. No attacks were observed nor confirmed, only a
small number of suspicious behavior samples, which, compared to the tremen-
dous amount of false positive and benign samples, look negligible. Indeed, it is
extremely difficult to refine reasonable data mining outputs or machine learn-
ing models. On the contrary, we documented a number of pitfalls for pivoting
detection in real-world network traffic that could not be observed in laboratory
experiments or in the available datasets.

6.2 Security Implications

The fact that we did not observe any clearly malicious activity is good news,
but the ground truth is missing. Thus, we had to label the suspicious events
as true positives. We assume the attacker would gain a foothold in the network
by exploiting unsecured network host, such as a common workstation or IoT
device. Then, the attacker would use the exploited device to access services
available only to hosts within the campus network. This corresponds to the
inwards scenario. Subsequently, the attacker would instruct the pivot to access
the internal resources and exfiltrate data. Then, it could also fit the outwards
scenario.

We argue that a potential attacker would be detected using the proposed
method. Malware or an attacker with no knowledge of the environment would
explore the surrounding of the exploited device by network scanning and per-
forming brute-force password attacks, which could be detected by common IDS,
assuming it is deployed within the network and not only on the perimeter. Since
perimeter protection is often a priority and IDS in the internal network can be
costly, solely NetFlow-based detection might be key.

However, an advanced attacker, such as in the case of APT, would target
specific services and remain unnoticed unless pivoting detection is in place. Con-
sidering we were able to detect benign pivoting conducted by personnel working
from home, we assume the advanced attacker would be detected, too. They would
have three options to hide:



Pivoting Maneuver Detection 17

1. switch protocols or port numbers to avoid detection, which is certainly pos-
sible but could be approached in the detection by further measurements,
development, and combining with related work,

2. exploit hosts on the whitelist or move laterally in a way that avoids vantage
points, but that would require excellent knowledge of the environment,

3. set large command propagation delays to disassociate connection to and from
pivot; the attacker would then have to, for example, connect to pivot, instruct
it to perform an action after 5 minutes, disconnect, wait for 10 minutes, and
connect again to see the results.

6.3 Recommendation for Pivoting Detection in Practice

Unfortunately, fully automated precise network-based pivoting maneuver detec-
tion was not yet achieved. However, a semi-automated solution is achievable
under these conditions.

First, the algorithm by Apruzzese et al. [2] is robust and efficient for the
first stage of detection. The second stage may use the knowledge presented in
this paper to filter the vast majority of unwanted results and comprehensively
visualize the remaining ones, thus helping the users in the investigation of the
detected patterns.

Second, while deploying the pivoting detector, the users should check for the
monitoring and cloud management infrastructure and write up filtering rules,
preferably with the detection running for several days to get more samples.
Setting more zones or locations is advisable to filter benign events like pivoting
within the network or across clouds of collaborating institutions.

Third, the filtered results should be presented in graphical form as compo-
nents of the pivoting graph (preferably with domain names and with actors from
different locations in different colors) so that the user may promptly comprehend
what the actors are and if such traffic is benign or suspicious.

An important issue to mention is the number of results. Our experiment
shows tens or hundreds of candidates per day with mostly tens of unique combi-
nations of actors and a low number of pivoting graph components. After careful
filtering, these numbers can be reduced to under 10, which is a fair number that
could be processed even by analysts under a heavy workload. Additional filters
may be used to highlight or alert pivoting candidates with interesting parame-
ters, such as an unknown 1 : 1 : n pattern, inwards pivoting from an external
IP address with low reputation [6], pivot or target is vulnerable or has been
compromised recently, or pivoting involving valuable network assets, such as a
part of critical infrastructure. Such events are not expected to be very rare and
would definitely trigger further investigation, thus justifying the deployment of
the presented pivoting detection procedures.

7 Conclusion

We presented an empirical study in pivoting maneuver detection in network
traffic. Building upon a modified algorithm from related work [2], we performed
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experiments to identify real-world detection patterns. Although no clear mali-
cious event was detected, our analysis yielded valuable insights into the network
traffic landscape, revealing a significant number of false positives and benign
pivoting-like events. The scope of the experiment exceeds previous works [15]
and complements results achieved in laboratory settings [7] and host-based meth-
ods [18].

We discovered that distinguishing between benign and suspicious pivoting
events heavily relies on contextual factors. Consequently, we explored several
contextual features that enhance the understanding of automated detection out-
comes, reduce false positive rates, and dismiss benign results. While achieving
precise pivoting detection in real-world settings remains an open challenge, our
study offers critical insights, paving the way for the development of an auto-
mated pivoting detection tool that minimizes the burden on human analysts.
Implementing such a tool and conducting long-term evaluations are proposed as
future research directions.
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