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Abstract
Objective: High-frequency oscillations are considered among the most prom-
ising interictal biomarkers of the epileptogenic zone in patients suffering from 
pharmacoresistant focal epilepsy. However, there is no clear definition of patho-
logical high-frequency oscillations, and the existing detectors vary in methodol-
ogy, performance, and computational costs. This study proposes relative entropy 
as an easy-to-use novel interictal biomarker of the epileptic tissue.
Methods: We evaluated relative entropy and high-frequency oscillation biomark-
ers on intracranial electroencephalographic data from 39 patients with seizure-
free postoperative outcome (Engel Ia) from three institutions. We tested their 
capability to localize the epileptogenic zone, defined as resected contacts located 
in the seizure onset zone. The performance was compared using areas under the 
receiver operating curves (AUROCs) and precision-recall curves. Then we tested 
whether a universal threshold can be used to delineate the epileptogenic zone 
across patients from different institutions.
Results: Relative entropy in the ripple band (80–250 Hz) achieved an average 
AUROC of .85. The normalized high-frequency oscillation rate in the ripple band 
showed an identical AUROC of .85. In contrast to high-frequency oscillations, 
relative entropy did not require any patient-level normalization and was easy and 
fast to calculate due to its clear and straightforward definition. One threshold 
could be set across different patients and institutions, because relative entropy is 
independent of signal amplitude and sampling frequency.
Significance: Although both relative entropy and high-frequency oscillations 
have a similar performance, relative entropy has significant advantages such 
as straightforward definition, computational speed, and universal interpatient 
threshold, making it an easy-to-use promising biomarker of the epileptogenic 
zone.
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1   |   INTRODUCTION

Epilepsy is one of the most prevalent diseases in the popula-
tion.1 Whereas approximately two thirds of patients respond 
well to antiseizure medication, the remaining one third 
should be considered for surgical management.2 Operative 
removal of epileptogenic tissue provides the best chance for 
patients with pharmacologically intractable focal epilepsy to 
become seizure-free.3 To accurately determine the epilepto-
genic zone (EZ), many patients have to undergo implanta-
tion of intracranial electrodes. However, long-term seizure 
freedom is achieved in only one third of these patients.3

The current clinical gold standard for determination of 
the EZ uses ictal data, which are inspected visually by epi-
leptologists.4 The need to record habitual seizures prolongs 
patients' stays in specialized video-electroencephalographic 
(EEG) monitoring units, increases risks for patients, and 
increases the workload of medical staff. To improve the 
outcomes of the treatment and shorten the hospitalization 
time, identification of reliable interictal biomarkers of the 
pathological area is crucial.

Among of the recognized interictal biomarkers are in-
terictal epileptiform discharges (IEDs). Although they are 
known to spatially correlate with the EZ, their specificity 
is low.5 In the past 2 decades, high-frequency oscillations 
(HFOs) have been studied. Their higher specificity with 
the EZ compared to IEDs makes them a more promising 
interictal biomarker.6 Numerous studies have confirmed 
their association with epileptic foci,7 and one study re-
ports a 100% success rate.8 However, the studies used 
grouped statistics across patient cohorts, the localization 
of seizure-generating tissue using HFOs in individual pa-
tients is successful in roughly two thirds of cases,9,10 and 
a recent randomized control trial claims that HFOs are 
not ready for clinical interpretation.11 The discrepancies 
between studies could be ascribed to the lack of a clear 
definition of HFOs. This leads to high interrater variabil-
ity12 and development of a vast array of automated HFO 
detectors.13 Another limiting factor for using HFOs is that 
physiological HFOs occur as a result of normal cognitive 
processing,14–17 which might mask pathological HFOs and 
result in variations of HFO counts in individual patients.

More recently, multiple studies reported altered connec-
tivity patterns inside the EZ compared to the non-EZ, sug-
gesting functional connectivity as a promising new interictal 
biomarker.18,19 To date, none of the proposed connectivity 
measures reached the sensitivity and specificity of HFOs on 
a systematic and representative data sample.20,21

Another approach is to quantify the level of complex-
ity of physiological signals, because disease degrades the 
physiological function and therefore decreases signal 
complexity.22 Costa et al.23 suggest a multiscale entropy 
measure, which was successfully used to localize the 

seizure onset zone (SOZ) in the dataset of 13 pediatric pa-
tients with focal cortical dysplasia.24 In general, different 
entropy measures for localization of the EZ are used in 
Dauwels et al.,19 Ben-Jacob et al.,25 Gazit et al.,26 and Mooij 
et al.27 These articles use various entropy measures as part 
of complex algorithms mostly based on time-frequency 
analysis and either have few patients to compare its per-
formance to HFO or do not have comparable results.

In this study, we propose relative entropy (REN) as a 
novel interictal biomarker of the EZ. Our previous work 
showed increased linear correlation within the EZ and re-
duced functional connections on its edges, using “bridging 
contacts”—two adjacent contacts on a depth electrode.28,29 
We hypothesize that REN calculated as a bivariate mea-
sure on adjacent contacts has the potential to reflect this 
phenomenon in a broader context of spectral complexity, 
which can provide additional information for the delin-
eation of EZ. Our hypothesis is that REN is higher inside 
the EZ than in the remaining area, as a larger difference 
between signals is typical for more excitable pathological 
tissue as present in the EZ. In contrast, REN is lower in the 
case of more similar signals between two brain regions. 
Furthermore, we hypothesize that REN does not require 
any patient-level normalization and thus is able to provide 
more stable and reproducible results than HFOs.

2   |   MATERIALS AND METHODS

2.1  |  Patients

Three centers participated in this study: (1) Brno Epilepsy 
Center, St. Anne's University Hospital; (2) Mayo Systems 
Electrophysiology Laboratory, Mayo Clinic, Rochester; 
and (3) ANPHY Lab, Montreal Neurological Institute and 
Hospital (MNI).

The patient selection criteria for all institutions were: 
(1) invasive phase 2 presurgical workup with stereo-EEG 
(SEEG); (2) subsequent curative surgery or radiofrequency 

Key Points

•	 Relative entropy localizes the epileptogenic 
zone with the same performance as high-
frequency oscillations

•	 Relative entropy is computationally more effi-
cient than high-frequency oscillations

•	 When delinating the epiloeptogenic zone, rela-
tive entropy can use one threshold for all pa-
tients and keep the performance of individual 
thresholding
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thermocoagulation; (3) excellent outcome defined as 
Engel 1A or International League Against Epilepsy 1 at 
least 1 year after resective surgery; (4) availability of pre-
surgical and postsurgical brain imaging for localization 
of electrode contacts and resection cavity; (5) at least one 
contact that was resected in the clinically marked SOZ; 
and (6) minimum sampling frequency of 2000 Hz.

Artifacts were annotated with Signalplant30 software in 
Brno, custom-made software based on MATLAB was used 
for artifact annotation in Rochester, and Stellate Harmony 
software was used in Montreal.

2.2  |  Recordings

Data from Brno were recorded with standard intracra-
nial depth electrodes (five, 10, and 15) contact semiflex-
ible multicontact platinum electrodes (DIXI Medical or 
Alcis; contact surface area  =  5.02 mm2 and intercontact 
distance = 1.5 mm). The average signal from all SEEG con-
tacts was used as a reference. Data were initially sampled at 
25 kHz and downsampled to 5 kHz. Patients from Rochester 
were recorded with intracranial depth electrodes (AD-Tech 
Medical, four and eight contact clinical depth electrodes with 
platinum/iridium clinical macroelectrode contacts, contact 
surface area = 9.4 mm2 and intercontact distance = 10 mm) 
and subdural grids and strips (4.0-mm-diameter platinum/
iridium discs [2.3 mm diameter exposed] with 10-mm in-
tercontact distance). The original sampling frequency of 
32 kHz was downsampled to 5 kHz with a 1-kHz Bartlett–
Hanning window low-pass filter. An electrode mounted 
on the earlobe served as a reference electrode; however, all 
contacts were subsequently averaged to create a new com-
mon reference. Standard or homemade intracranial depth 
electrodes were used for invasive EEG (iEEG) at the MNI 
(DIXI or MNI electrodes). Recordings were sampled at 2 Hz 
with an epidural electrode fixed in the bone far from the 
suspected epileptic focus as a reference. A new reference 
signal was created by averaging all SEEG contacts.

Positions of electrodes were determined by coregistra-
tion of preimplant magnetic resonance imaging (MRI) 
with postimplant computed tomography or MRI scans with 
electrodes. All recordings were manually reviewed for data 
quality, and noisy channels were omitted from the study.

2.3  |  Identification of the SOZ, resected 
contacts, and sleep scoring

The recordings were inspected by neurologists at the 
given center, and the SOZ was visually identified from 
all clinical seizures based on the earliest changes at sei-
zure onset in the iEEG.31 Postresection imaging served for 

determination of the contacts placed in the resection area. 
In the Brno and MNI patients, sleep was scored visually 
in the scalp EEG combined with electrooculography and 
chin electromyography in 30-s epochs by a board-certified 
neurophysiologist following the current guidelines of the 
American Academy of Sleep Medicine.

2.4  |  Calculation of REN

Kullback–Leibler divergence, called REN,32 has its basis 
in information theory, where it is used to compare two 
probability distributions pX and pY and is calculated as 
REN =

∑

pX∗ log
�

pX

pY

�

 (Figure 1).
REN was evaluated in 1-s nonoverlapping rolling win-

dows across two signals, where a 10-bin signal histogram 
was used as a probability distribution of each signal. 
Testing different parameters of REN computation was 
done before we started the analysis. We chose a 10-bin 
histogram as a minimal number that will capture the am-
plitude variability and achieve good localization results. 
The window size of 1 s was chosen because of our internal 
pipeline, where we compute more features in this sliding 
window. However, we tested window sizes of .5, 1, and 10 
s on the 19 patients from Brno (see Table S3), and the re-
sults showed no significant change in localization perfor-
mance (all p > .25, Wilcoxon sign-rank test on individual 
area under the receiver operating curve [AUROC]). Using 
the equation, we computed REN between neighboring 
contacts on every electrode. Because REN is direction-
dependent (if pY and pX are swapped, REN will have a 
different value), we evaluated REN in both directions and 
took the higher value. For every adjacent pair of contacts, 
there were n REN values, where n is the length of the sig-
nal in seconds. These values were averaged over the whole 
recording to have one value for every pair. To evaluate 
every contact separately, we obtained one value for every 
contact by averaging entropies of adjacent pairs. Only one 
value was used for the first and the last contacts on an 
electrode. REN was calculated in the raw signal and in six 
frequency bands (1–4 Hz, 4–8 Hz, 8–12 Hz, 12–20 Hz, 80–
250 Hz, 250–600 Hz), calculated by third order bandpass 
Butterworth filter. Each frequency was evaluated sepa-
rately. We skipped the gamma frequency band (30–70 Hz) 
because of power line noise, which varies between institu-
tions and therefore could not be processed equally.

2.5  |  Detection of HFOs

Navarrete et al.13 compared 19 HFO detectors. If we omit 
the worst and the best detector, their sensitivity varied 
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      |  965TRAVNICEK et al.

between 74.4% and 93%. Different HFO detectors work 
differently at different centers. We chose the line-length 
(LL) detector, because we have a good experience with 
this algorithm at our center, it showed a sensitivity of 
89.5% in the previously cited work,13 and it seemed a fair 
choice for the purpose of our comparison.

The LL detector33 was used to detect HFOs in the ripple 
band (80–250 Hz) and fast ripple band (250–800 Hz). The 
following parameters were chosen as an input for this al-
gorithm: statistical window of 10 s; 3 (Brno, Montreal) or 6 
(Rochester) SDs as the detection threshold; and window size 
calculated as (5/low_fc) * fs samples, where low_fc stands 
for low cutoff frequency and fs for sampling frequency. 
Window overlap was set to 25% of the sliding window 
length. Detection thresholds were determined individually 
for each institution by visually verifying the detections on 
three random patients. For each of these three patients, we 
detected HFOs with five different thresholds and manually 
reviewed the detections. Based on the manual review, we 
chose the best threshold for each site. The final HFO count 
for every contact was divided by the recording length in 
minutes to compensate for different recording lengths, so 
that we obtained one HFO rate for each contact.

2.6  |  Statistical analysis

Epileptogenic tissue (localization target) defined as SOZ 
contacts overlapped with resected contacts in patients 
with excellent postsurgical outcomes.27 Thus, elements in 
the confusion matrix were defined as following:

True positive: Contact that was both SOZ and resected, 
marked as epileptogenic.
False positive: Contact that was either only resected, 
only SOZ, or neither of these, marked as epileptogenic.
True negative: Contact that was either only resected, 
only SOZ, or neither of these, marked as healthy.
False negative: Contact that was both SOZ and re-
sected, marked as healthy.

The algorithms were evaluated using the AUROC and 
the area under the precision-recall curve (AUPRC) in two 
ways. A combination of these two statistical measures was 
used to compensate for imbalanced datasets (the localiza-
tion target comprises only 7.9% ± 5.6%) that can lead to 
overly optimistic results. First, to evaluate the capability of 
each feature to localize epileptogenic tissue individually 

F I G U R E  1   Explanation in two columns (column A, column B) of how entropy of two signals from adjacent contacts was calculated. 
The first row shows two signals that are being compared; in the second row, the input signals were filtered by a bandpass Butterworth filter 
(80–250 Hz). The third row illustrates the similarity of histograms of filtered signal amplitudes ordered from 1 to 10. These histogram values 
represent probability distributions that are used as inputs of the relative entropy (REN) equation. REN of Column A is 7.92, whereas REN of 
the signals in Column B is <10−3.
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966  |      TRAVNICEK et al.

in a single patient, the curves were constructed for each 
patient individually resulting in one receiver operating 
curve (ROC) and one precision-recall curve (PRC) per pa-
tient. Final AUROC and AUPRC values for every feature 
were calculated by averaging patient-specific values over 
patients. We also used patient-specific AUROC values for 
every feature as the input to the Wilcoxon signed-rank test 
and used the results to statistically compare the perfor-
mance between all features. The same values were used to 
compare the performance between institutions using the 
Mann–Whitney test.

Second, to investigate whether there is one common 
threshold that can distinguish between physiological and 
epileptogenic tissue in all patients, the ROCs and PRCs 
were constructed for each feature using all contacts from 
all patients, resulting in one PRC and one AUC per feature. 
From the unnormalized ROC curves, we identified the ideal 
threshold providing maximal values of the subtraction of 
the true positive rate (tpr) and false positive rate (fpr).

This approach was repeated with per patient z-score 
normalization and normalization with function x/70th 
percentile. The 70th percentile was chosen to mitigate the 
influence of outliers. The purpose of this demonstration 
is to simulate the delineation of epileptogenic tissue pro-
spectively, without any prior knowledge of SOZ or resected 
contacts, using a common feature threshold for all patients.

In this study, we included three different institutions, 
which differ in protocols, electrodes, amplifiers, and other 
settings. These differences can influence the biomarker 
performance. Using the AUROC of individual patients, we 
calculated the intraclass correlation to describe how much 
variability was caused by the affiliation with a particular 
institution. Venn diagrams were constructed for the best 
performing REN and best performing LL features. This was 
done to visualize how many target contacts were detected 
by either of the features and how many were overlapping.

The computation time of each algorithm was tested 
on a subset of 10 recordings from Brno Epilepsy Center 
sampled at 5000 Hz. LL and REN algorithms were run on 
a computer with a Intel Xeon Silver 4116 processor and 
NVIDIA GeForce GTX 1080 Ti graphic card. Every algo-
rithm was evaluated within bands of 80–250 Hz and 250–
600 Hz. We used the graphic card for bandpass filtering 
and the processor (always 20 processes) for the evaluation 
of the given algorithm. Measured time includes band-
pass filtering. We processed the whole recording and di-
vided computational time by recording length in minutes 
and electrode count. In this way, we calculated the aver-
age computation time per 1 min and electrode contact. 
Multiplying this number by 150 (representative electrode 
contact count for one patient), we obtained an estimation 
of computation time for 1 min of a representative patient 
recording.

3   |   RESULTS

3.1  |  Patients

The final cohort consisted of 39 patients from three in-
stitutions. Demographic and clinical data for all patients 
are provided in Tables S1–S3. In Brno, patients recorded 
between January 2012 and January 2020 were selected 
for this study. The final cohort consisted of 19 patients 
who met the inclusion criteria with an average ± SD 
age of 36.7  ± 12.3 years, 10 males and nine females. In 
Rochester, patients recorded between October 2006 and 
May 2012 were selected. The final cohort consisted of nine 
patients with an average age of 37.6 ± 9.9 years, four males 
and five females. In Montreal, patients recorded between 
January 2010 and January 2018 were selected. The final 
cohort consisted of 11 patients with an average age of 
36.4 ± 11.5 years, five males and six females. Contacts in 
white matter were included in the analysis. Our cohort of 
patients had a median of 2.4% (interquartile range = 0%–
18.4%) of contacts in white matter, whereas 16 patients 
of 39 had no contacts in white matter (patients with elec-
trocorticography). If we exclude EZ contacts and compare 
white matter contacts to healthy gray matter contacts, 
we found no statistically significant difference in REN 
(p = .065, Mann–Whitney).

3.2  |  Datasets

The first dataset consists of recordings from 39 patients 
with excellent outcomes, from whom 30 min of artifact-
free iEEG regardless of the state of vigilance were chosen 
for the analysis. The average length of the recordings was 
31.26 ± 2.4 min. This dataset is labeled as the "Rest data-
set" for the purpose of this study.

In the second dataset, there are only patients from the 
Rest dataset. Random 10-min selections of both N2 and 
N3 sleep were chosen for the second analysis as the vig-
ilance states that best identify the EZ.34 This dataset in-
cludes 16 patients with 10 min of continuous recordings 
without artifacts of both N2 and N3 sleep stages. Because 
sleep scoring was not available for Rochester, this dataset 
contains only patients from Brno and Montreal. This data-
set is further referenced as the "Sleep dataset." A complete 
list of patients and their inclusion in datasets can be found 
in Tables S1–S3.

3.3  |  Results for the Rest dataset

The best performing features in the Rest dataset were 
REN (80–250 Hz) and LL (80–250 Hz). Figure  2 shows 
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how these features behave in the EZ versus non-EZ. Both 
features show low means and low variances in the non-
EZ, whereas in the EZ both means and variances are in-
creased. The significance of the distribution difference 
between non-EZ and EZ channels was confirmed by a 
Mann–Whitney test. Both LL (80–250 Hz) and REN (80–
250 Hz) have p  < .001; effect size was measured by Cliff 
delta and was large (d = .64) in the case of REN and me-
dium (d = .47) in the case of LL. The percentage of target 
channels (as defined in the previous section) varies from 
1.19% to 30.51%, with a mean value of 6.9% ± 5.6%. The 
intraclass correlation was 6.21% for LL (80–250 Hz) and 
2.24% for REN (80–250 Hz).

REN (80–250 Hz) and LL (80–250 Hz) both have an av-
erage AUROC of .85. There was no significant difference 
in performance between these two features and REN (250–
600 Hz, p > .05). LL (250–600 Hz) performed significantly 
worse (p  < .05, Wilcoxon sign-rank on AUROC values). 
Frequency ranges 1–4 Hz, 4–8 Hz, 8–12 Hz, and 12–20 Hz 
were not suitable for delineating the epileptogenic tis-
sue, because their performance was significantly worse 
than any of the leading features (p < .01). There was no 
significant difference in any feature performance across 
institutions (p > .05). All the feature results at all three in-
stitutions are shown in Figure 3. A statistical comparison 
between feature performance is provided in Figure 4.

We constructed one ROC for every feature by apply-
ing one threshold that was common for all patients. The 
left panel in Figure  5 shows ROCs constructed for the 
five best performing features. Applying one common 
threshold instead of the patient-specific one decreased 
the performance of every feature. The ideal threshold for 
REN (80–250 Hz) was .116, providing tpr-fpr of .54. For 
LL (80–250 Hz), the ideal threshold was 21.7 oscillations 
per minute, providing tpr-fpr of .5. The best performing 

features were REN (80–250 Hz) and REN (250–600 Hz), 
with AUROC of .82 and .77.

Subsequently, we applied patient-specific normal-
ization. Whereas there was no significant difference be-
tween normalized and unnormalized REN features, the 
LL feature performance increased significantly in both 
frequency bands when applying normalization (p < .01).

We localized target contacts using a common thresh-
old for all patients without patient-specific normaliza-
tion. Of 219 target contacts, the LL algorithm localized 
157 true positives and REN localized 166 true positives. 
Whereas 128 target contacts were localized by both 
features, 38 contacts were localized only by the REN 
feature and 29 contacts were localized only by the LL 
feature. Twenty-four pathological contacts remained 
unlocalized.

3.4  |  Results for the Sleep dataset

Results for the Sleep dataset are similar to those in the Rest 
dataset. The best performing features are LL (80–250 Hz) 
and REN (80–250 Hz). Unlike the Rest dataset, there is a 
significant interinstitutional difference in AUROC per-
formance between Brno and Montreal patients (p < .05). 
AUROC and AUPRC results for all features and institu-
tions are shown in Figure 6.

For LL (80–250 Hz), the effect of normalization 
decreased the AUROC from .85 to .82; however, the 
Wilcoxon signed-rank test did not prove significance 
(p  > .05). For REN (80–250 Hz), the normalization in-
creased AUROC from .83 to .84, but it was not signif-
icant either (p  > .05). The ideal threshold for REN 
(80–250 Hz) was .102 and for LL (80–250 Hz) was 21.2 
oscillations per minute.

F I G U R E  2   Boxplots show how the two best features differentiate between the epileptogenic zone (EZ) and non-EZ as defined in the 
previous section from the Rest dataset. (A) Line-length (LL; 80–250 Hz); the y-axis shows oscillation count (osc) per minute. (B) Relative 
entropy (REN); the y-axis has no units. The boxes show the quartiles of the dataset, and the whiskers extend to show the rest of the 
distribution. Outliers are not visualized. HFO, high-frequency oscillation. ***p < .0001.
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3.5  |  Computation time comparison

Evaluation of a 1-min recording of a representative patient 
(150 contacts) sampled at 5 kHz for the LL algorithm took 
11.8 ± .8 s and for REN 8.8 ± .7 s, suggesting that both al-
gorithms are suitable for real-time processing with a given 
hardware.

4   |   DISCUSSION

Delineation of epileptogenic tissue is the critical step 
before proceeding to suggest a surgical solution. HFOs 
have great localization potential35; however, they are 
known for significant interpatient variability. In addi-
tion, HFOs are ambiguously defined, and provide many 

F I G U R E  3   Averaged area under the receiver operating curve (AUROC) and area under the precision-recall curve (AUPRC) values 
across individual patients in the Rest dataset. Results are visualized for every institution separately (Brno, Montreal, and Rochester) and 
altogether. Darker background means better performance. LL, line-length; REN, relative entropy.

F I G U R E  4   Matrix constructed by 
Wilcoxon signed-rank test on individual 
area under the receiver operating curve 
values testing the zero hypothesis, that 
two features have the same performance. 
This analysis was performed for all 
patients regardless of their affiliation with 
institutions. Darker background means 
higher significance. LL, line-length; ns, 
not significant; REN, relative entropy.  
ns - not significant, * p < .05, ** p < .01,  
*** p < .001, **** p < .0001.
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different approaches in detection, often requiring raw 
signal normalization. We previously showed that a com-
bination of multiple interictal features achieves superior 
performance to individual biomarkers.36 Therefore, new 
interictal biomarkers carrying complementary informa-
tion to those already known are needed to provide accu-
rate information and interpatient stability for automatic 
algorithms providing delineation of epileptogenic tissue 
across institutions.

Previous studies proved functional isolation of the EZ 
with neighboring tissue,29,31 suggesting the analysis of 
these bridging areas to improve the localization and delin-
eation of the EZ. Any univariate feature, including HFOs, 
has limited potential to capture these changes within, and 
around, the epileptogenic region. REN, on the other hand, 
is a bivariate feature, and as such it captures relationships 
between two areas of the brain and the corresponding neu-
ronal assemblies. In general, REN evaluated within the EZ 

F I G U R E  5   Receiver operating curves (ROCs) are constructed for all patients together. (A) ROCs constructed from unnormalized data. 
(B) For the construction of ROCs, z-score normalization was performed for each patient individually. Relative entropy (REN) performs 
well regardless of normalization, whereas the line-length (LL) algorithm was influenced by normalization, showing significantly worse 
performance on unnormalized data (ps < .05). AUC, area under the curve.

F I G U R E  6   Averaged area under the receiver operating curve (AUROC) and area under the precision-recall curve (AUPRC) values 
across individual patients in the Sleep dataset. Results are visualized for institution and sleep stage separately (Brno and Montreal, N2 and 
N3). ‘Column all averages every AUROC and AUPRC value in the row’. LL, line-length; REN, relative entropy.
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is much higher than REN within healthy tissue. Entropy in 
general reflects the spectral complexity of the signal. A flat, 
white-noise-like-looking spectrum has higher entropy in 
contrast to a spectrum with distinct peaks. Increased REN 
is then observed when there are differences in spectral con-
tents of two signals—in our case, two adjacent contacts on 
a depth electrode. We hypothesize that REN has the poten-
tial to reflect the bridging phenomena of the EZ in a context 
of spectral richness of analyzed signals, which can provide 
additional information for the delineation of EZ.

This study proposes REN as a novel bivariate bio-
marker for the localization of epileptic tissue in patients 
suffering from pharmacoresistant focal epilepsy. It has 
a clear and simple definition and, thanks to its indepen-
dence on signal amplitude and sampling frequency, does 
not require any complex signal preprocessing or within-
patient normalization. That allows for the determination 
of a general threshold setting across different recordings, 
patients, and institutions with different signal character-
istics caused by different recording conditions, types of 
electrodes, hardware filters, A/D converter parameters, 
and sampling frequencies.

In practice, having a general threshold differentiat-
ing between physiological and epileptogenic tissue al-
lows fully automatic prospective presurgical evaluation, 
while preserving high performance. A method that can 
be universally applied across institutions has the poten-
tial to contribute significantly to the creation of a general 
model. The generalizability of a model is still one of the 
major challenges in the current endeavor to automati-
cally localize the EZ. Many proposed automatic methods 
for EZ localization are developed, trained, and tested on 
datasets from a single center34 or retrained on recordings 
from a different center with different input parameters.36 
Development of a model that would not require retrain-
ing and resetting of detection thresholds is of great impor-
tance, and mandatory in order to make these algorithms 
ready for primetime in clinical practice.

REN fulfills these criteria. Our conclusions are derived 
from statistical tests on 39 patients with seizure-free post-
surgical outcomes from three independent institutions. 
Although these institutions have different recording hard-
ware and protocols, the intraclass correlation showed that 
only <10% of result variability was caused by affiliation 
with a particular institution. We have found that REN 
achieves similar results as HFOs regardless of the state of 
vigilance, and shows stable results across three sites while 
having a shorter computation time. For comparison with 
REN, we chose the LL HFO detector33 for its wide use across 
multiple studies, straightforward methodology, and com-
putational efficacy. Using our custom Python scripts, REN 
showed faster processing times than the LL algorithm and 
was proved to be suitable for real-time processing.37 The 

best performing HFO and REN features (in ripple band) 
showed a high overlap of true positive cases, meaning that 
REN computation could be used as a surrogate for HFO 
detection, although it inherently carries different informa-
tion about the state of the brain. Nonetheless, some of the 
contacts were detected exclusively by only one of the two 
algorithms, which allows use of REN as a complementary 
iEEG feature to HFO detection, combining both results in 
machine learning models to achieve superior results.34,36

Lack of comparison of REN with different HFO de-
tectors might be considered a limitation of this study. 
However, to date, there is no clear definition of patholog-
ical HFOs.7 Many HFO detectors have been developed in 
the past 2 decades13 and typically, each center uses its own 
HFO detector or whichever works the best on its record-
ings. The overall performance of individual HFO detec-
tors is, however, not significantly different when tuned to 
the optimal parameters.33,38,39

EZ definition is ambiguous. For the purpose of this 
study, we defined the EZ as resected SOZ contacts in pa-
tients with excellent postsurgical outcomes. This approach 
was selected based on previous results in Cimbalnik et al.,36 
where the definition of the EZ as resected SOZ contacts 
achieved the best results in comparison with EZ defined 
as SOZ contacts or EZ defined as resected contacts in pa-
tients with excellent postsurgical outcome. A limitation 
of this approach might be in the evaluation of false pos-
itive (in the case of a non-SOZ contact that was resected, 
marked as pathological) and true negative (in the case of 
a non-SOZ contact that was resected, marked as healthy). 
The tissue surrounding these contacts can potentially be 
either healthy or pathologic. On the other hand, this lim-
itation is the same for both methods. Therefore, HFO and 
REN results are influenced by the same bias.

The results in this study are derived from 30 min of re-
laxed recordings without the definition of the state of vigi-
lance and 10 min of N2 and N3. Significant variability was 
proved in the case of HFO rates in long recordings.40,41 
Although our results do not prove any differences in the 
performance between Rest and Sleep datasets, a more 
comprehensive analysis of continuous recordings would 
be needed to test for the stability of individual methods.

In conclusion, the proposed REN biomarker shows 
promising results for localization of epileptogenic tissue 
with a similar performance to the localization potential 
of HFO but the great advantage that it does not require 
any signal normalization of the patient level or threshold 
selection. Our results suggest that REN can be used as a 
surrogate for HFO or as its complement.
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