J 2023

Genetic analysis challenges the presence of Ixodes inopinatus in Central Europe: development of a multiplex PCR to distinguish I. inopinatus from I. ricinus

HRAZDILOVA, Kristyna, Ondrej DANEK, Alena HRBATOVA, Barbora CERVENA, Eva NOSKOVÁ et. al.

Basic information

Original name

Genetic analysis challenges the presence of Ixodes inopinatus in Central Europe: development of a multiplex PCR to distinguish I. inopinatus from I. ricinus

Authors

HRAZDILOVA, Kristyna, Ondrej DANEK, Alena HRBATOVA, Barbora CERVENA, Eva NOSKOVÁ (203 Czech Republic, belonging to the institution), Peter ADAMIK, Jan VOTYPKA, Andrei Daniel MIHALCA, Mechouk NOUREDDINE, David MODRÝ (203 Czech Republic, belonging to the institution) and Ludek ZUREK (guarantor)

Edition

Parasites & Vectors, BMC, 2023, 1756-3305

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

30310 Parasitology

Country of publisher

United Kingdom of Great Britain and Northern Ireland

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 3.200 in 2022

RIV identification code

RIV/00216224:14310/23:00132172

Organization unit

Faculty of Science

UT WoS

001083412600001

Keywords in English

Tick; Ixodes ricinus; Ixodes inopinatus; 16S rDNA; TROSPA; COI; ITS2; Algeria; Czech Republic

Tags

Tags

International impact, Reviewed
Změněno: 14/11/2023 10:58, Mgr. Marie Šípková, DiS.

Abstract

V originále

Background Ixodes ricinus is an important vector of several pathogens, primarily in Europe. Recently, Ixodes inopinatus was described from Spain, Portugal, and North Africa and then reported from several European countries. In this study, a multiplex polymerase chain reaction (PCR) was developed to distinguish I. ricinus from I. inopinatus and used in the surveillance of I. inopinatus in Algeria (ALG) and three regions in the Czech Republic (CZ). Methods A multiplex PCR on TROSPA and sequencing of several mitochondrial (16S rDNA, COI) and nuclear markers (TROSPA, ITS2, calreticulin) were used to differentiate these two species and for a subsequent phylogenetic analysis. Results Sequencing of TROSPA, COI, and ITS2 separated these two species into two subclades, while 16S rDNA and calreticulin could not distinguish I. ricinus from I. inopinatus. Interestingly, 23 nucleotide positions in the TROSPA gene had consistently double peaks in a subset of ticks from CZ. Cloning of these PCR products led to a clear separation of I. ricinus and I. inopinatus indicating hybridization and introgression between these two tick taxa. Based on a multiplex PCR of TROSPA and analysis of sequences of TROSPA, COI, and ITS2, the majority of ticks in CZ were I. ricinus, no I. inopinatus ticks were found, and 10 specimens showed signs of hybridization. In contrast, most ticks in ALG were I. inopinatus, four ticks were I. ricinus, and no signs of hybridization and introgression were detected. Conclusions We developed a multiplex PCR method based on the TROSPA gene to differentiate I. ricinus and I. inopinatus. We demonstrate the lack of evidence for the presence of I. inopinatus in Central Europe and propose that previous studies be re-examined. Mitochondrial markers are not suitable for distinguishing I. inopinatus from I. ricinus. Furthermore, our data indicate that I. inopinatus and I. ricinus can hybridize, and the hybrids can survive in Europe.