Detailed Information on Publication Record
2023
The relationship between spectral and plant diversity: Disentangling the influence of metrics and habitat types at the landscape scale
PERRONE, Michela, Di Febbraro MIRKO, Luisa CONTI, Jan DIVÍŠEK, Milan CHYTRÝ et. al.Basic information
Original name
The relationship between spectral and plant diversity: Disentangling the influence of metrics and habitat types at the landscape scale
Authors
PERRONE, Michela (guarantor), Di Febbraro MIRKO, Luisa CONTI, Jan DIVÍŠEK (203 Czech Republic, belonging to the institution), Milan CHYTRÝ (203 Czech Republic, belonging to the institution), Petr KEIL, Maria Laura CARRANZA, Duccio ROCCHINI, Michele TORRESANI, Vitezslav MOUDRY, Petra SIMOVA, Dominika PRAJZLEROVA, Jana MULLEROVA, Jan WILD and Marco MALAVASI
Edition
REMOTE SENSING OF ENVIRONMENT, UNITED STATES, ELSEVIER SCIENCE INC, 2023, 0034-4257
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10511 Environmental sciences
Country of publisher
United States of America
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 13.500 in 2022
RIV identification code
RIV/00216224:14310/23:00134281
Organization unit
Faculty of Science
UT WoS
000989649700001
Keywords in English
Biodiversity monitoring; Plant functional traits; Remote sensing; Species richness; Spectral variation hypothesis; Vascular plants
Tags
Tags
International impact, Reviewed
Změněno: 24/1/2024 15:16, Mgr. Marie Šípková, DiS.
Abstract
V originále
Biodiversity monitoring is crucial for ecosystem conservation, but ground data collection is limited by cost, time, and scale. Remote sensing is a convenient approach providing frequent, near-real-time information with fine resolution over wide areas. According to the Spectral Variation Hypothesis (SVH), spectral diversity (SD) is an effective proxy of environmental heterogeneity, which ultimately relates to plant diversity. So far, studies testing the relationship between SD and biodiversity have reported contradictory findings, calling for a thorough investigation of the key factors (i.e., metrics applied, habitat type, scale, and temporal effects) and conditions under which such a relationship exists. This study investigates the applicability of the SVH for monitoring plant diversity at the landscape scale by comparing the performance of three types of SD metrics. Species richness and functional diversity were calculated for >2000 grid cells of 5 ' x 3 ' covering the Czech Republic. Within each cell, we quantified SD using a Landsat-8 "greenest pixel" composite by applying (i) the standard deviation of NDVI, (ii) Rao's Q entropy index and (iii) the richness of "spectral communities". Habitat type (i.e., land cover) was included in the models of the relationship between SD and ground biodiversity. Both species richness and functional diversity showed positive and significant relationships with each SD metric tested. However, SD alone accounted for a small fraction of the deviance explained by the models. Furthermore, the strength of the relationship depended significantly on habitat type and was highest in natural areas with transitional bushy and herbaceous vegetation. Our results underline that despite the stability of the significance of the relationship between SD and plant diversity at this scale, the applicability of SD for biodiversity monitoring is contextdependent and the factors mediating such a relationship must be carefully considered to avoid misleading conclusions.
Links
GX19-28491X, research and development project |
| ||
SS02030018, research and development project |
|