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ABSTRACT: meso-Methyl BODIPY photocages stand out for
their absorption properties and easy chromophore derivatization.
However, their low uncaging efficiencies often hinder applications
requiring release of protected substrates in high amounts. In this
study, we demonstrate that the sulfonothioated BODIPY group
photocleaves a sulfonylthio group from the meso-methyl position
with a 10-fold higher quantum yield than the most efficient leaving
groups studied to date. Photocleavage, observed in solution and in
cells, is accompanied by the spatiotemporally controlled photo-
release of H2Sn. For this reason, sulfonothioated BODIPY may be
applied in cell signaling, redox homeostasis, and metabolic
regulation studies.

Photoremovable protecting groups (PPGs), also known as
photocages, are photosensitive molecules attached to a

leaving group (substrate) via a covalent bond. The photo-
chemical cleavage of this bond at the desired wavelength
enables us to spatiotemporally control the release of the leaving
group with high precision.1 Such on-demand, on-site substrate
release can be used to develop light-responsive compounds for
a wide range of applications. These applications depend on the
properties of both the substrate and PPG,1,2 as shown by the
photorelease of signaling lipids,3 mitochondrial uncouplers
(2,4-dinitrophenol),4 or signaling molecules (H2S) in living
systems.5−7

Among PPGs, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene
(BODIPY) stands out for its relatively easy derivatization,
low cytotoxicity,8,9 and good absorption properties, such as
sharp absorption bands, high molar absorption coefficients,
and bright emission.10 But the photorelease quantum yields of
the parent meso-methyl BODIPY photocages are usually too
low to release sufficient amounts of a substrate.2,11,12

Therefore, overcoming this limitation requires an adequate
increase of the uncaging efficiency of BODIPY PPGs.
Because BODIPY PPGs efficiently release anions of simple

strong acids (e.g., Cl−) and their uncaging efficiency increases
with the decrease in pKa of the leaving group,

2 we designed
and studied a sulfonothioate leaving group with a low pKa
(≤2).13 This sulfonothioate leaving group can be structurally
modified and is expected to show high photorelease quantum
yields. In addition, this group is a good nucleophile, which
enables us to sulfonothioate a BODIPY chromophore through
nucleophilic substitution of a halogen atom at the meso-methyl
position.

In this study, we designed a BODIPY derivative substituted
with a thiodansyl, N,N′-dimethyl-5-[(4,4-difluoro-1,3,5,7-tetra-
methy l -4H -3aλ 4 ,4a-d iaza-4λ 4 -bora-s - indacen-8-y l) -
methylthiosulfonyl]-1-naphthylamine 1 as a model molecule
(Figure 1). Because the fluorescence properties of thiodansyl
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Figure 1. Comparison between the photorelease quantum yields of 1
and the most efficient nonhalogenated meso-methyl BODIPY
photocages reported in the literature.2
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differ from those of the BODIPY moiety (λem = 460 and 530
nm, respectively), we hypothesized that 1 could efficiently
release a fluorescent thiodansyl group as a caged fluorophore.
Moreover, the photocleavage of a weak S−S bond in the
sulfonothioate functional group may enable the release of
reactive sulfur species (RSS),14 which are relevant in a wide
range of cellular mechanisms. Accordingly, sulfonothioated
BODIPY may be applied in vivo for signaling, redox
homeostasis, and metabolic regulation purposes.
We synthesized compound 1 in three steps. In the first step,

we prepared BODIPY chloride 2 (Scheme 1). Subsequently,
we substituted the chloride for sulfonothioate 3, previously
synthesized in a reaction between dansyl chloride and Na2S.

Halogen substitution in BODIPY positions 2 and 6 enhances
the photorelease quantum yields of common leaving groups
from the meso-methyl group.2 Thus, we synthesized 2,6-
halogenated analogs 2-Cl, 2-Br, and 2-I from 2 using the
corresponding N-halogenosuccinimide. However, the subse-
quent substitution of the chloride leaving group for 3
unexpectedly yielded sulfinate esters 4-X (X = Cl, Br, or I),
products of formal reduction (Scheme 2). As sulfinates are also

good leaving groups, we systematically studied the entire 4-X
series. For this purpose, we further synthesized 4-H from 2 in a
reaction with 5-(dimethylamino)naphthalene-1-sulfinate, re-
sulting from the reduction of 3 with NaHSO3.
The photochemical properties of the target compounds are

shown in Table 1. Compound 1 has absorption and emission
maxima at 516 and 530 nm (with a Stokes shift Δṽ of 512
cm−1), respectively, and a fluorescence quantum yield Φf of
0.014. This unusually low fluorescence quantum yield is a
consequence of (i) efficient photorelease and (ii) quenching of

the excited BODIPY core by charge transfer from the electron-
rich sulfur moiety.15 Irradiating 1 with green light (λirr = 525
nm), both in solution and adsorbed on a silica plate soaked
with its methanolic solution, yielded highly emissive photo-
products (Figure 2a,b). As a result, a new absorption band
appeared at ∼500 nm, and fluorescence was enhanced (up to
7-fold) at ∼530 nm (a BODIPY fragment) and ∼460 nm (a
dansyl fragment; Figure 2c,d). The dansyl moieties were
released with a quantum yield of 0.16, which is 2−3 orders of
magnitude higher than that of acetate released from 1-OAc.2

Photoreactivity was also observed in a DMSO/water mixture
(1:1) with an efficiency similar to that in methanolic solutions
(Figure S32).
The absorption properties of sulfinate esters 4 were

analogous to those of their acetate counterparts,2 but their
fluorescence was much weaker (Table S1). Although sulfinate
is an excellent leaving group, irradiating BODIPY-sulfinate
esters did not release the leaving group, most likely because the
excited state was quenched by intramolecular charge transfer
from the lone pair of the sulfinate group to the excited
BODIPY chromophore.17 This process also accounted for their
fluorescence quenching.
To demonstrate its potential for biological applications, 1

was administered in U-2 OS cells before monitoring the
buildup of fluorescence corresponding to the photorelease of
more emissive photoproducts (Figure 2e,f, Figures S34−36).
meso-Methyl alcohol 5 was released in an aqueous solution, as
shown by HPLC-MS analysis (Figure S37). Furthermore, the
concentration ratio between the oxidized and reduced forms of
glutathione (GSSG/GSH), reflecting redox homeostasis,18

increased in the presence of irradiated 1 (Figure S38).
Compound 1 was also nontoxic after 24 h at concentrations
below 100 μM, which is its solubility limit. Its phototoxicity
after 24 h was also minimal (<10 μM, Figure S33).
To understand the photodeprotection mechanism, 1 was

irradiated with a 525 nm LED in an aerated dichloromethane/
methanol mixture (1:9, v/v). Several products were identified
by high-performance liquid chromatography coupled with
mass spectrometry detection (HPLC-MS). The main photo-
products were BODIPY meso-methyl alcohol 5 and the product
of its oxidation, aldehyde 6 (Figure 3a,b). The expected
product of photo-SN1 solvolysis, methoxy-substituted BODIPY
7, was detected only in trace amounts (∼7%). These results
indicate that the sulfonyl thioate group likely induces
significant changes in the photorelease mechanism.
The amounts of photoproducts 5 and 6 were approximately

2.2 times higher in aerated solutions than in degassed reaction
mixtures. Oxygen dissolved in the reaction mixture thus likely
played a key role in the reaction mechanism as a radical trap
and oxidant. Although 5 and 6 were identified as the two main
products in aerated samples, several other compounds were
formed in degassed reaction mixtures due to the lack of
oxygen, which enabled subsequent reactions of radical
intermediates (Figure 3c).
To confirm that 5 was formed in the reaction of a BODIPY

meso-methyl moiety with oxygen and not with the residual
moisture, 1 was irradiated with a 525 nm LED in a degassed
dichloromethane/methanol/H218O (5:4:1, v/v/v) mixture.
High-resolution mass spectrometry analysis did not reveal
any product containing isotopically labeled oxygen (Figures
S6−9). This fact, together with the oxygen-dependent
formation of 5 and 6, helped us to identify O2 as the only
source of the hydroxyl oxygen atom in 5.

Scheme 1. Synthesis of BODIPY Sulfonothioate 1

Scheme 2. Synthesis of BODIPY Sulfinate Esters 4-X
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We also assessed whether thiodansyl photorelease from 1
proceeded via a radical mechanism using a spin trap19 (N-
methyl-N-phenyl-methacrylamide, Scheme S2) in degassed
and nondegassed solutions by analyzing the resulting photo-
reaction mixtures by HPLC-MS (Figure 3d). Two 1-
methylindolin-2-one derivatives were detected in irradiated,
degassed mixtures in the presence of a spin trap. However,
their accumulation in the reaction mixture was unlikely, given
their low thermal and photochemical stability and trapping
efficiency and the incomplete deaeration of the irradiated
solution (Figure S10). For this reason, we used these results
only for qualitative evaluation purposes.
The photochemical cleavage of the sulfonothioate bond in 1

provided dansyl sulfonate 8 (Scheme 3) as the only non-
BODIPY-containing chromophoric product. Product 8 was not
detected when 1 was heated in the dark (Figure S11). This
finding can be explained only by the release of one sulfur atom
from the sulfonothioate group during the photochemical
process. Supporting this hypothesis, compound 3 photochemi-

cally generated 8 upon direct excitation at 365 nm and at 525
nm in the presence of 7 as a sensitizer (Scheme S3). When
irradiated alone at 525 nm, compound 3 remained in the
solution because it did not absorb in this region.
We also assessed whether H2S was released from 1 using the

methylene blue assay.20 No sign of H2S was detected until the
addition of glutathione (GSH) to the irradiated mixture
(Figure S5). This result indicated the reduction of photo-
chemically generated polysulfides (H2Sn).

21 Using this method,
the chemical yield of H2S was approximately 76%. To assess
whether the polysulfides were produced as H2S2 or as longer
polysulfides (H2Sn, n > 2), we determined the amount of H2S2
formed when irradiating 3. For this purpose, we used a
fluorescein probe for H2S2 (Scheme S3).

22 The results showed
that H2S2 accounts for 10% yield, while the remaining sulfur-
containing products correspond to higher polysulfides.
To determine the multiplicity of the productive excited state

in the release, we irradiated compound 1 together with either

Table 1. Spectroscopic and Photochemical Properties of the Synthesized Compoundsa

λabsa εmaxb λfluoc Δṽd Φf
e Φr

f

1g 516 56 000 530 512 0.014 ± 0.002 0.165 ± 0.002h

2i 523 44 400 534 393 0.20 ± 0.002 0.016 ± 0.001
1-OAci 517 71 000 529 438 0.73 ± 0.008 0.0014 ± 0.0001

aAbsorption maximum in nm. bMolar absorption coefficient in the absorption maximum in M−1 cm−1. cFluorescence maximum in nm. dStokes
shift in cm−1. eFluorescence quantum yield. fPhotorelease quantum yield. gMeasured in aerated dichloromethane/methanol (1:9, v/v) c ≈ 2 × 10−5

M. hDetermined by irradiation at 525 nm using indolyl fulgide as an actinometer.16 iIn aerated methanol, c ≈ (1−10) × 10−6 M (data retrieved
from the literature).2

Figure 2. Irradiation of 1 with a 525 nm LED in nondegassed
methanol (c ∼ 0.1 μM): (a) irradiated (left cuvette) and
nonirradiated (right cuvette) solutions under 365 nm light, (b)
TLC plate soaked with the solution of 1 immediately irradiated
(without drying) through a star-shaped photomask visualized under
365 nm light, and (c) absorption and (d) emission (λexc = 330 nm)
spectra. Fluorescence images of U-2 OS cells treated with 1 (c = 100
μM) were acquired after (e) incubation in the dark for 1 min and (f)
irradiation with 492 nm light for 3 min. The scale bar is 50 μm.

Figure 3. HPLC chromatograms of 1 (a) before and (b) after
irradiation with 525 nm LED in nondegassed and (c) degassed
solutions. (d) Trapping experiment in an irradiated degassed solution
of 1 containing N-methyl-N-phenyl-methacrylamide as a spin trap.
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thioxanthone as a triplet sensitizer or cyclooctatetraene as a
triplet quencher (Figures S3−4). The photoreaction was more
efficient upon addition of the triplet sensitizer and suppressed
when using the triplet quencher. Since the triplet quenching
was incomplete, the reaction likely proceeded through a short-
lived triplet state or, simultaneously, a singlet excited state.2

The suggested reaction mechanism can be summarized as
follows. On one hand, photoinduced homolytic cleavage can
occur at either meso-methyl−S or S−S bonds of 1 (Scheme 3,
pathways a and b, respectively, Scheme S4). Both pathways
lead to BODIPY meso-methylthio or meso-methyl radicals. The
former releases H2S2, whereas the latter can (i) abstract
hydrogen atoms, forming 9 (photoreduction), (ii) dimerize
into 10, or (iii) form 5 and 6 when trapped by oxygen (O2).
On the other hand, heterolytic cleavage at the meso-methyl
position (Scheme 3, pathway c) is a minor (∼7%) pathway,
affording 7 as a product of solvolysis and H2S2 by a sensitized
release from 3 (which does not absorb at the wavelength of
irradiation). The released H2S2 is further polymerized in the
presence of free radicals.23

In conclusion, 1 is a readily synthesized cage compound with
a photorelease quantum yield 1 order of magnitude higher than
that of the most efficient heavy atom-free meso-methyl
BODIPY photocages reported so far.2 The markedly enhanced
deprotection quantum yield of 1 is derived from its dual
photodeprotection mechanism: a weak sulfonothioate bond
undergoes both heterolytic and homolytic photoinduced
cleavage, releasing H2S2 and other polysulfides. Photorelease
from 1 was monitored in U-2 OS cells by fluorescence
microscopy. The released reactive sulfur species affected the

GSSG/GSH ratio, a redox homeostasis model. Photocage 1 is
thus a promising tool for spatiotemporally controlling the
release of reactive sulfur species (RSS)14 and may be used in
vivo for studying cell signaling,24 redox homeostasis,25

metabolic regulation,26 and cellular recovery from oxidative
stress.27 The released polysulfides can also be reductively
converted into an important gasotransmitter−hydrogen
sulfide.6,23
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