New kid on the (translation) block

Petr Těšina

National Institute of Virology and Bacteriology

About me

- PhD at IOCB Prague, group of Pavlína Řezáčová, Structural biology
- Postdoctoral experience in Gene Center Munich from 2016, AGs Halic and Beckmann
- Cryo-EM of co-translational surveillance processes
- PI position at CEITEC MU Brno (since July)

Introduction – mRNA decay

Buschauer R. et al., Science, 2020

Tesina P. et al., NSMB, 2019

Tesina P. & Lessen L. et al., EMBO J, 2020

Introduction: Ribosome-associated quality control (RQC)

Ē

- Ribosomal collision is the hallmark of problematic translation
- mRNA decay (NGD) + Ribosome-associated quality control (RQC)

Introduction - RQC

- RQC is conserved from bacteria to humans (CArboxy-Terminal tails)
- How does Rqc2 govern peptide elongation cycle without 40S and mRNA?

Overview

I

CAT tailing cycle

Ē

Decoding

Ę

• Rqc2 stucture selects for NGY anticodon, RCN in "codon language" - GCN = Ala; ACN = Thr

Peptide transfer

• eIF5A present in all peptide transfer states

eIF5A is a novel CAT tailing factor

• eIF5A is essential for CAT tailing

Data from the Inada laboratory

- eIF5A is a novel factor in eukaryotic CAT tailing
- Rqc2 governs initiation, decoding specificity and peptide transfer
- Rqc2 undergoes conformational rearrangement to allow for tRNA translocation
- Ltn1 exerts a broad range of movement to ubiquitinate a variety of degradation targets

Molecular Cell

Article Molecular basis of eIF5A-dependent CAT tailing in eukaryotic ribosome-associated quality control

Petr Tesina,^{1,3,*} Shuhei Ebine,^{2,3} Robert Buschauer,^{1,3} Matthias Thoms,¹ Yoshitaka Matsuo,² Toshifumi Inada,^{2,*} and Roland Beckmann^{1,4,*}

Future plans: human host-pathogen interactions

- Mechanistic understanding by cryo-EM
- Challenges of the human system

Ę

• Key objective: unlock the potential of controlled *in vitro* translation in the human system.

Future plans: human host-pathogen interactions

- Mechanistic understanding by cryo-EM
- Challenges of the human system
- Key objective: unlock the potential of controlled *in vitro* translation in the human system.

• Proof-of concept-study on human collided disomes (RQC substrate)

Narita M. et al., Nat Commun, 2022

RQC initiation in host-pathogen interaction

Viperin and translation stalling

- The ddhCTP product inhibits viral RDRPs but not RNA Pol II, activation of ZAKa and GCN2
- Incorporation into mRNA and ribosome stalling?

3'-Deoxy-3',4'-didehydro-cytidine triphosphate

EBV vDUB

• Counters ZNF598 activity

Hsu et al., Mol Cell, 2022

ISR and RSR

SARS-CoV-2 and translation control

NSP2 and interferone response inhibition

- NSP2 enhances binding of RQC pathway component GIGYF2 to cap-binding translation inhibitor 4EHP to inhibit interferone response
- Elusive connection to ribosome stalling

NSP1 and viral protein translation

- NSP1 shuts down host translation by blocking mRNA entry channel
- How are the viral mRNAs translated? Role of the 5' leader sequence.

Xu et al., *PNAS*, 2022

Acknowledgements

<u>The Beckmann lab</u> Prof. Roland Beckmann Robert Buschauer Matthias Thoms

The Inada lab

Prof. Toshifumi Inada Yoshitaka Matsuo Ebine Shuhei

The Jacquier lab

Prof. Alain Jacquier Micheline Fromont-Racine Abdelkader Namane

The Green lab

Prof. Rachel Green Laura Lessen Collin Wu Allen Buskirk

Central European Institute of Technology BRNO | CZECH REPUBLIC

@petesoi1

erc

Tesina lab We are hiring!

Starting Grants

National Institute of Virology and Bacteriology MINISTRY OF EDUCATION, YOUTH AND SPORTS

Funded by the European Union NextGenerationEU