Detailed Information on Publication Record
2023
OPTIMALIZATION OF ELSD PARAMETERS FOR HPLC CARBOHYDRATES ANALYSIS WITH AN ARTIFICIAL NEURAL NETWORK
CRHA, Tomáš and Jiří PAZOUREKBasic information
Original name
OPTIMALIZATION OF ELSD PARAMETERS FOR HPLC CARBOHYDRATES ANALYSIS WITH AN ARTIFICIAL NEURAL NETWORK
Authors
Edition
Student Scientific Conference MUNI Pharm, Doctoral Students, 2023
Other information
Language
English
Type of outcome
Prezentace na konferencích
Country of publisher
Czech Republic
Confidentiality degree
není předmětem státního či obchodního tajemství
Organization unit
Faculty of Pharmacy
ISBN
978-80-280-0324-1
Keywords in English
carbohydrates, HILIC, HPLC, CCM, ELSD optimalization
Tags
Změněno: 29/2/2024 09:47, Mgr. Daniela Černá
Abstract
V originále
Evaporative light-scattering detector (ELSD) is a simple and inexpensive way to determinate analytes without a suitable chromophore. Three ‘analogue’ parameters for ELSD can be set: nebulization gas flow, temperature of an evaporator and temperature of a nebulizer. For better and faster optimalization of these parameters, a central composite (CCM) response surface design with an artificial neural network (ANN) can be used with advantage. Output of the ANN is a prediction, which gives us probably the best ELSD condition for sugars analysis. Of course, the prediction must be confirmed and verified with HPLC-ELSD measurements.