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Abstract

PredictONCO 1.0 is a unique web server that analyzes effects of mutations on proteins frequently altered in various cancer types.
The server can assess the impact of mutations on the protein sequential and structural properties and apply a virtual screening to
identify potential inhibitors that could be used as a highly individualized therapeutic approach, possibly based on the drug repurposing.
PredictONCO integrates predictive algorithms and state-of-the-art computational tools combined with information from established
databases. The user interface was carefully designed for the target specialists in precision oncology, molecular pathology, clinical
genetics and clinical sciences. The tool summarizes the effect of the mutation on protein stability and function and currently covers
44 common oncological targets. The binding affinities of Food and Drug Administration/ European Medicines Agency -approved drugs
with the wild-type and mutant proteins are calculated to facilitate treatment decisions. The reliability of predictions was confirmed
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against 108 clinically validated mutations. The server provides a fast and compact output, ideal for the often time-sensitive decision-
making process in oncology. Three use cases of missense mutations, (i) K22A in cyclin-dependent kinase 4 identified in melanoma, (ii)
E1197K mutation in anaplastic lymphoma kinase 4 identified in lung carcinoma and (iii) V765A mutation in epidermal growth factor
receptor in a patient with congenital mismatch repair deficiency highlight how the tool can increase levels of confidence regarding
the pathogenicity of the variants and identify the most effective inhibitors. The server is available at https://loschmidt.chemi.muni.cz/
predictonco.

Keywords: oncology; cancer; single-nucleotide polymorphism; personalized medicine; targeted therapy

INTRODUCTION
In 2020 alone, more than 19 million cases of cancer were diag-
nosed, of which 10 million were mortal [1, 2]. Cancer has a
projected load of 28.4 million cases in 2040 [2]. Cancer treatment
is generally based on the following three traditional approaches:
operative removal via resection/excision surgeries, radiotherapy
and chemotherapy. These traditional treatment options tend to
have higher mortality rates as compared to personalized (preci-
sion) medicine-based techniques, which match the right drugs to
the right patients [3].

Personalized medicine-based techniques have their limita-
tions. Decisions are often based on next-generation sequencing
technologies, which can generate a large amount of genomic or
transcriptomic data. It can be difficult to analyze and interpret
this amount of data in a clinically feasible manner. This leads to
a divide between the generation of experimental data and their
application during the decision-making process. For example,
when targeted next-generation sequencing panels are used
for analyzing multiple genes simultaneously, various coding
sequence mutations are typically found. And when no previous
data on the effect of such mutations on the expressed protein
are available, the data cannot effectively support decisions since
there is usually little space to study each mutation in sufficient
detail [4].

With the recent advances in protein modelling [5, 6], e.g., in
prediction of the effect of single missense mutation on a pro-
tein structure [7], stability [8, 9], function [7] and protein–ligand
interactions [10], much more information can be harvested from
exome sequences of mutated proteins. Computed and carefully
interpreted information can be used for making high-quality, well-
informed decisions. Furthermore, the data retrieved from protein
structures may be coupled with additional analyses, such as the
virtual screening of drug libraries [11]. Comparative analysis may
be carried out if the calculations are performed in the same
conditions on both the wild type(s) and the mutated protein(s).

On the one hand, the traditional method of deliberation and
discussion by multiple experts is naturally time-consuming.
On the other hand, an alternative consisting of performing all
the aforementioned analyses requires significant knowledge of
computational biology and bioinformatics. It would also entail
considerable time if performed manually. Here, we introduce
PredictONCO, a web server for fully automated and fast analysis of
the effect of mutations on protein structure, stability and function
in 44 known protein targets relevant for oncology. PredictONCO
applies computational methods and bioinformatic analyses and
produces actionable reports within a few days. To ensure the high
quality of the results, the entire pipeline was thoroughly validated
using 108 clinically and experimentally characterized mutations
covering all 44 proteins. The final report includes visualizations
to help with data comprehension.

WORKFLOW
The workflow of PredictONCO consists of two major steps: (i)
selection of target protein and mutation and (ii) data analysis
(Figure 1). In the first step, the users are requested to select a pro-
tein of their interest from the list of 44 cancer-associated drivers
and targets (Supplementary Material) and specify a mutation for
its analysis. In the second step, the calculations are executed con-
secutively, and users are provided with results for an interactive
and visual inspection and analysis.

Mutation selection
The first step of the workflow is the specification of an input
as one of the 44 pre-defined oncology-relevant proteins (Supple-
mentary Material). Clinicians carefully selected these proteins
with the aim of covering the majority of common oncogenic
drivers and therapeutic targets. The upload of custom structures
is currently not supported in our pipeline. The rationale for this
decision is that such input would incur a severe risk of biological
misinterpretation of the obtained results. Most oncology-relevant
targets are complex transmembrane proteins, for which a single
and reliable experimental structure that can be used for analyses
without extensive manual processing is generally unavailable.
Therefore, adding a new target requires non-trivial manual cura-
tion and integration of knowledge from multiple bioinformatics
strategies. To increase the applicability of PredictONCO, we offer
the opportunity to request the addition of a new oncology-related
protein to the list of targets. The advantage of this approach
is that all targets will be carefully prepared and thoroughly
validated.

All of the 44 proteins available to the users were previously
curated, following a number of steps. The most suitable calcu-
lation parameters were optimized for each target to increase the
reliability of the results. First, the protein sequence and annota-
tions were fetched from the UniProt database [12]. The essential
residues were then re-confirmed in literature. For cytoplasmic
units, the best available experimentally derived structure was
selected from the wwPDB database [13] and the residue indices
were mapped using the SIFTS database [14]. In the case of two
proteins, there was no experimental structure available. For the
first one (PDGFRβ), the structure was fetched from the AlphaFold
database [15]; for the second one (VEGFR3), the structure was
modelled using the SWISS-MODEL web server [16]. After that, all
structures were semi-automatically processed to treat unnatural
amino acids, remove non-co-factor ligands and improve their
quality by modelling missing parts of the structure and reverting
mutations using MODELLER [5]. As the last step, homologous
sequences with sufficient identity (more than 50%) and coverage
(±20% of the query sequence length) were downloaded from the
UniRef database [17], and a multiple sequence alignment was gen-
erated using Clustal Omega [18] from EMBL-EBI web services [19].
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Figure 1. The workflow of PredictONCO. The only required input is a protein and a mutation (orange boxes). The grey boxes show pre-treatment steps
that were done manually in advance to prepare high-quality protein structures as a reliable starting point for the calculation. Once the calculation is
submitted, multiple analyses are executed. The sequence-based analyses (dark blue boxes), such as annotations gathering, pathogenicity prediction,
conservation prediction and HOPE, are performed for all of the mutations. For mutations in the catalytic domain with available 3D structure, also
structure-based analyses (light blue boxes), such as stability and pKa prediction, pockets detection and virtual screening, are performed. Once all the
results are available, the effect of the mutation is predicted using our in-house machine learning predictor, and the results can be visualized and explored
(green boxes). The yellow boxes briefly describe outputs collected from each analysis. The entire pipeline and all the individual steps are described in
more detail in the Workflow section.

This alignment was further used for conservation analysis using
the Jensen–Shannon divergence algorithm [20] and transformed
to mutability grades by using HotSpot Wizard [21] thresholding.
All these steps are pre-calculated for each of the 44 listed curated
proteins.

Once the protein is selected, users are requested to specify
the mutation by typing in the substitution or selecting the
position of the substituting amino acid using a visualized
protein sequence. These calculations usually take up to 48 h,
depending on the protein sequence length and other structural
parameters (could be longer under heavy workload of the server).
This time threshold was carefully selected as a balanced spot
between time constraints of medical boards and the possibility
to use the most reliable and accurate computational methods.

However, all finished calculations are stored in a database
and when a previously computed mutation is requested, the
calculation output is immediately served from saved results.
All 913 mutations used during the training and testing of the
predictor (see The Mutation Effect Predictor) are pre-calculated
in such fashion. Optionally, the users can also provide the job title
and email address, which will be used to deliver alerting emails
about initiating and completing the calculations, links to relevant
output pages and the reference to be cited whilst publishing the
results obtained using the PredictONCO server.

Data analysis
Once the job is submitted, all calculations are executed auto-
matically. The specific analyses depend on the region where
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the mutation is located and on the availability of a structure
information for that region. If a high-quality 3D structure is
available and the mutation is located in the cytoplasmic domain
responsible for ligand binding, all analyses are performed, includ-
ing the function-related and drug-related calculations to assess
the potential inhibiting role of small molecules. The function-
related and drug-related calculations are omitted if the mutation
is in the extracellular unit. Only sequence-based analyses can
be performed for the transmembrane and undefined regions, as
these regions often lack the experimental structural information
required for precise force-field calculations. Finally, the effect
of the mutation is predicted using a newly developed machine
learning-based predictor (see The Mutation Effect Predictor).

Structure analyses
Initially, a mutant structure is constructed using the MODELLER
[5] software. The mutant structure is used to check any possible
disruptive changes in the structure and to perform a compar-
ative analysis against the wild-type structure. Then, the effect
of a mutation on protein stability is estimated using Rosetta
ddg_monomer [9] and FoldX [22]. Function and drug-related prop-
erties are predicted in the case the mutation is located in the
cytoplasmic domain. These include calculating the pKa change
of catalytic residues using PROPKA3 [23] and identifying residues
forming the ligand-binding pocket using P2Rank [24]. In the last
step, only in the cases required (the mutation and ligand binding
site located in the cytoplasmatic domain), the virtual screening of
a large dataset (4380 small molecules) of Food and Drug Admin-
istration (FDA)- and European Medicines Agency (EMA)-approved
drugs extracted from the ZINC database [25] is performed using
AutoDock Vina [11].

Sequence analyses
The most important sequence analysis is a prediction of an effect
of a mutation on a protein function performed by the meta-server
PredictSNP [7], which combines six established tools (MAPP [26],
PhD-SNP [27], PolyPhen-1 [28], PolyPhen-2 [29], SIFT [30] and SNAP
[31]) into a single prediction. Other important values, such as an
estimation of potential local changes induced by the placement of
different amino acids, are calculated using the HOPE server [32].

Database mining
The next step is the extraction of important and relevant infor-
mation from publicly available database. We use the UniProt
database [12] as the primary source, which provides an exhaustive
amount of data aggregated from multiple sources. Data fetched
from UniProt are heavily filtered out to retain only information
related to diseases, known clinically relevant drugs and known
mutations.

The mutation effect predictor
In the end, all obtained values from the structure and sequence
analyses were used as features for our newly trained predictor:
essentiality of the mutated residue (yes—1/no—0), the conserva-
tion of the position (the conservation grade and score), the domain
where the mutation is located (‘cytoplasmic’, ‘extracellular’,
‘transmembrane’, ‘other’—one-hot encoded), the PredictSNP
score, the number of essential residues, FoldX and Rosetta
ddg_monomer scores, whether the residue is in the catalytic
pocket (yes—1/no—0) and the pKa changes (the minimum,
maximum changes and the number of essential residues whose
pKa was changed). The predictor is based on the XGBoost
classification model and returns the probability of the oncogenic
effect of a mutation. This model consists of a collection of small

decision trees, trained sequentially by fitting each one of them to
the gradients of the loss function from the previous iteration. On
every iteration, the predictions of the current set of decision trees
(the probabilities of a mutation being oncogenic) are weighted and
evaluated against the ground truth to calculate the loss function.
Therefore, even despite having weak predictive power separately
(each decision tree typically uses one to three features only),
when combined they often show state-of-the-art performance,
comparable with advanced methods from deep learning.

The predictor was developed using a dataset of 509 oncogenic
and 564 non-oncogenic mutations, 377 and 76 of which, respec-
tively, had structural information as described previously. All
mutations were compiled from the ClinVar [33] and OncoKB [34]
databases and annotated with a clinically verified effect based on
the available information in these and other precision oncology
databases [35–38] and primary literature. The resulting predictor
was validated on the independent subset of 20% held-out data,
grouped by mutated positions to ensure that positions in the
test set do not appear in the training set (213 mutations for the
sequence-based and 89 mutations for the structure-based pre-
dictions; for more information on the dataset, see https://zenodo.
org/records/10013764), showing the areas under the receiver oper-
ating characteristic curve (ROC AUC) of 0.96 and 0.93 and the
average precision from the precision–recall curve of 0.99 and 0.93
for the structure-based and sequence-based predictions, respec-
tively (Figure 2). The performance of the predictor on the corre-
sponding test set was also compared with individual tools (Pre-
dictSNP, conservation score, FoldX, Rosetta) as well as the recently
published state-of-the-art tool ESM variants for predicting the
disease variant effects [39]. More details about the predictor train-
ing and testing are available at https://loschmidt.chemi.muni.cz/
predictonco/help.

DESCRIPTION OF THE WEB SERVER
Input
PredictONCO requires only two inputs from the users—a protein
and a mutation (Figure 3). The protein selection is made from
a comprehensive table of 44 proteins (Supplementary Material).
Each protein is represented by its most important identifiers, such
as the gene name, protein code, UniProt accession id and protein
name. The table is sortable by any of its columns and can be
interactively searched. Furthermore, details about each protein
can be displayed with a single click on the ‘>’ button on the left.
These include detailed information about the catalytic function
and regulation and preview images of the available structures
for all the units. The second required input is a mutation. It can
be selected either by quick textual input or interactive selection
of a position and target amino acids from a protein sequence
preview. In both cases, the user gets immediate feedback if there
is any problem with the input, such as when a wrong position or
amino acid is selected. Optionally, users can provide their email
addresses to be notified about the job status and give the job
a custom title. The last step is the confirmation of the user’s
academic status required by licenses of some of the integrated
tools (MODELLER, Rosetta and FoldX). Some analyses will be
excluded for commercial users if the company does not own a
proper license.

Output
After the job submission, the user is redirected to the results page
(Figure 3). If the same mutation was already analyzed in a previ-
ous job, the data are retrieved from the library of finished jobs, and
all results are shown immediately. Otherwise, the calculations are
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Figure 2. The performance of the structure-(STR) and sequence-based (SEQ) predictors on the held-out test set of 213 and 89 mutations, respectively.
Left: The area under the receiver operating characteristic curve (ROC AUC) and average precision values show strong performance for the probability of
the oncogenic effect of a mutation returned by the predictors. The remaining values were calculated for the cut-offs of 0.50 applied to this probability,
corresponding to the maximum of the Fowlkes–Mallows index. Right: The comparison to the individual tools and the state-of-the-art method ESM
variants according to ROC AUC and average precision metrics show overall better performance in both SEQ and STR evaluations.

started, and the results appear continuously whenever individual
calculations are finished. To improve the users’ experience, a
panel with a list of sections (Figure 3D) on the left allows quick
navigation amongst the analyses. Moreover, the sections can be
interactively collapsed to allow the user to create a customized,
cleaner view of the results. As the tool is designed mainly for users
without advanced bioinformatics knowledge, most details and
numerical values are hidden and represented by a unified system
of five categorical labels—Large Increase, Moderate Increase, No
change, Moderate Decrease and Large Decrease. In the cases
where further explanation or context is needed, the results are
provided in the form of easily understandable sentences. This
makes data interpretation possible even without understanding
the underlying values, which was requested particularly by the
users from the medical community. However, all the computed
values can still be displayed by checking show details. Moreover,
in the results section, the emphasis lies on the analysis of the
differences between the mutant and the wild-type protein. This
helps to focus the users’ attention on what is more scientifically
relevant: the effects caused by the mutation rather than absolute
values. Still, the values for both the wild-type and the mutant
protein can easily be displayed.

The results are grouped into eight main sections. The most rel-
evant information is displayed in the Summary (Figure 3A), which
provides a quick and comprehensive overview of the data. The key
information shown is the overall predicted effect of the mutation
and the easy-to-understand description of the mutation location
and residue importance. Furthermore, it displays the probability
of damaging the protein function, conservation score, estimation
of changes in the protein stability, changes in pKa of catalytic
residues and an overview of changes in the binding energies of
drugs. Also important amongst results is the Inhibitors section
(Figure 3B), which displays the binding energies of all potential
drugs from the FDA/EMA-approved database in a tabular format.
This table is also sortable and fully searchable, which assists
in the identification of the most suitable drugs for repurposing.

Furthermore, all drugs with a known association with the tar-
get protein are labelled using a special icon to indicate their
importance. For an easier and more comprehensive comparison,
binding energies can also be explored in the form of an interactive
chart below the table (Top scoring inhibitor chart, Figure 3C).
The remaining sections provide details about various important
properties, such as a description of differences between the prop-
erties of wild-type and mutant amino acids (Mutant description,
Catalytic residues); assessment of conservation of mutated posi-
tion (Conservation); interactive 3D visualization of the protein
structure with highlighted mutation using the Mol∗ Viewer [40]
(Structure viewer, Figure 3E); and information extracted from the
UniProt database about function, interactions and known involve-
ment in diseases (Additional information). To save the results for
later use, users can either print the currently displayed view of
the results or download them as a PDF report. Moreover, a detailed
table of inhibitors is also available for download.

Server testing and performance
The robustness of the calculations was tested by analyzing a set of
1073 mutations used for the development of the mutation effect
predictor. Moreover, 108 mutations covering all target proteins
were used for thorough validation of obtained results. Seventy-
seven of 108 jobs were run on parts of protein sequence for
which structural information was available. All 1181 jobs finished
without errors. The lengths of the calculation varied between 1
and 10 hours.

USE CASE 1: ANALYSIS OF
CYCLIN-DEPENDENT KINASE 4 K22A
MUTATION IN A PATIENT WITH
MELANOMA
Cyclin-dependent kinase 4 (CDK4) is a crucial molecule mediating
the cell cycle [41]. The CDK4 gene is frequently altered in a
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Figure 3. The PredictONCO graphical user interface displays results for the case study on CDK4 mutation K22A. (A) The Summary section provides the
final impact prediction accompanied with a visual representation of the most important data collected for a given mutation. (B) The Inhibitors table
displays a comprehensive list of binding energies for 4380 FDA/EMA-approved inhibitors with a special label for those with known association with the
given protein. (C) Inhibitors chart is a visual representation of binding energies for the top hits. (D) The Contents panel enables quick navigation through
the results page. (E) Structure viewers provide interactive 3D insight into the mutant and wild-type structures, their differences and binding poses of
inhibitors.
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wide spectrum of malignancies, including lung adenocarcinoma,
tumours of the central nervous system or melanoma [42]. The
most commonly observed alteration is CDK4 amplification. How-
ever, several point mutations resulting in non-synonymous amino
acid changes have also been reported and can present a challenge
for interpretation and treatment [43–45].

The tumour-derived DNA from a patient with melanoma
was analyzed by whole-exome sequencing, and amongst other
findings, CDK4 K22A alteration was identified. The mutation
K22A previously showed to significantly decrease CDK4 binding
to cyclin D1 and tumour suppressor p16 [46, 47] but no clinical
evidence of mutation effect is available. Given the known
significance of CDK4 in melanoma, evaluating its deleteriousness
from sequential and structural perspectives is required to assess
its clinical potential further. The effect of the mutation on
protein function was assessed as deleterious with a confidence
score 76% if only bioinformatic predictive algorithms within
PredictSNP were applied. Once evaluated comprehensively by
PredictONCO with the inclusion of advanced computational tools,
the confidence level increased to almost 100%; therefore, the
mutation impact points towards a significant pathological effect
(Figure 3). Stability prediction by Rosetta shows a destabilizing
effect of the mutation K22A on protein structure (energy
change +3.2 kcal/mol), also suggesting its importance in tumour
pathophysiology. This residue is not essential for function,
and changes in ionization constants pKa of catalytic residues
are predicted to be negligible. Based on visualization, we can
observe that the mutation is on the edge of the binding site
and can have some effect on the interactions with critical
molecules. Moreover, the protein loses an important interdomain
salt bridge interaction. Therefore, an impact on the structure
and/or substrate binding affinity can be expected based on these
analyses.

For therapeutic implications, it is essential to have an overview
of existing inhibitors that can target the studied protein and see
if the mutation causes any differences in their binding energy
estimated by molecular docking calculation. Proteins can be gen-
erally targeted by multiple inhibitors. However, only a few of them
represent FDA/EMA-approved therapeutics for oncology use. Pre-
dictONCO identified four FDA/EMA-approved inhibitors of CDK4,
with ribociclib (labelled as ZINC72316335 in the table) and palbo-
ciclib being the most commonly used. In the case of K22A, all four
associated drugs show no significant difference between affin-
ity in wild-type and mutant proteins. According to the docking
results, none of the four drugs is directly influenced by the muta-
tion, and their inhibitory effect should not be compromised. The
highest affinity of the four associated drugs was observed for pal-
bociclib (Ebind = −9.5 kcal/mol), and, therefore, it is the top hit for
potential treatment. Moreover, several other drugs were predicted
as even better binders, with lumacaftor (Ebind = −11.2 kcal/mol)
being the top hit indicating a potential for the drug repurposing
strategy (Figure 3).

In summary, the results contributed to evaluating the effect
of the mutation. Several parallel lines of evidence obtained from
PredictONCO calculations and database searches suggested that
the mutation K22A significantly affects protein structure and
function and can be related to tumour pathophysiology with high
probability. The PDF report with all results for the K22A mutation
is available in the Supplementary Materials.

USE CASE 2: ANALYSIS OF ANAPLASTIC
LYMPHOMA KINASE 4 E1197K MUTATION
IN A PATIENT WITH LUNG CARCINOMA
In a patient with EML4::ALK rearranged non-small cell lung car-
cinoma initially treated with crizotinib, sequencing of tumour
tissue resected upon tumour progression was performed to search
for a potential cause of treatment failure. The data analysis
revealed the presence of the anaplastic lymphoma kinase 4 (ALK)
E1197K substitution. Since there is only limited evidence regard-
ing the variant’s significance in the clinical databases of genetic
variants, PredictONCO analysis was performed to evaluate the
variant’s impact. The prediction results suggested that the variant
is oncogenic with a 100% confidence score, and it affects the
protein stability as predicted by both FoldX and Rosetta. Within
the provided summary, substantial differences between the wild-
type and mutant residue in their size and charge and a high
level of evolutionary conservation of the wild-type residue are
highlighted, underscoring the potential implications of this sub-
stitution. In terms of therapeutic options, the binding energies of
second- or third-generation inhibitors such as ceritinib, alectinib
and lorlatinib, which could be considered for subsequent treat-
ment, do not appear to be significantly affected by the presence of
the variant. This suggests that these inhibitors may remain viable
options for following clinical management.

The PDF report with all results for the E1197K mutation is
available in the Supplementary Materials.

USE CASE 3: ANALYSIS OF EPIDERMAL
GROWTH FACTOR RECEPTOR V765A
MUTATION IN A PATIENT WITH
CONGENITAL MISMATCH REPAIR
DEFICIENCY
The DNA from a tumour of patient with congenital mismatch
repair deficiency (CMMRD) was subjected to NGS analysis.
CMMRD, characterized by a disruption in one of the fundamental
DNA repair mechanisms, led to the presence of hundreds of
variants in the tumour DNA. These variants often possess
unknown functional significance, as they are randomly scattered
throughout the DNA sequence [48]. Patients with CMMRD-
driven tumours are often successfully managed using cancer
immunotherapy [49]. However, if patients experience disease
progression or recurrence, somatic NGS data might be utilized
to evaluate whether there are additional signs of specific
signalling pathway activation that could be therapeutically
explored. In this specific patient, the epidermal growth factor
receptor (EGFR) V765A variant was found together with many
other tumour-associated alterations, representing a potential
predictive biomarker for RTK (receptor tyrosine kinases) inhibitor
administration despite very limited clinical data on its func-
tional impact. To determine whether further investigation was
warranted and to comprehensively evaluate available in silico
evidence, PredictONCO analysis was conducted. The overall
assessment returned a benign prediction with a 55% confidence
score. In alignment with the overall prediction, PredictSNP and
FoldX deemed this mutation to have a neutral impact on both
sequential and structural levels, respectively. Stability prediction
performed by Rosetta yielded discordant results, indicating
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a slightly deleterious effect on protein stability. In terms of
evolutionary conservation, the residue displayed no significant
conservation across species. When considering the entirety of the
PredictONCO analysis, it did not corroborate the potential impact
of the EGFR V765A variant. Consequently, this variant was not
pursued further as a predictive biomarker.

The PDF report with all results for the V765A mutation is
available in the Supplementary Materials.

CONCLUSIONS AND OUTLOOK
PredictONCO 1.0 is a novel web server for rapid analysis of the
effects of missense mutations detected by exome sequencing in
tumour tissue. It enables the analysis of important protein targets
with a known relation to oncological diseases. The tool covers
several important areas of analysis: (i) computational analysis of
sequential and structural properties of the mutant enzyme, (ii) vir-
tual screening of 4380 FDA/EMA-approved drugs and (iii) verified
knowledge aggregated in the UniProt database. To make the tool
accessible to researchers outside the bioinformatics community,
the graphical user interface was designed to be highly interactive
and visualize the critical information obtained from computa-
tions. PredictONCO provides the data in an easy-to-understand
format, using various visual aids and comprehensible language.
To meet the demands for a short execution time required by
clinical practice, only the tools with high predictive accuracy and
low computational time were selected, and they are executed
in a highly parallel manner using our high-performance com-
puting environment. Moreover, all previously calculated results
are stored for their immediate re-use. To ensure the quality of
provided data and prediction, the server was thoroughly validated
using 108 experimentally characterized mutations with known
clinical association with tumour.

One of the limitations of the current version is its limited
ability to target the mutations causing loss of function. Even
though these mutations can be successfully identified during the
calculations, the server itself cannot provide actionable insight
into the treatment strategy. Repurposing the drugs, which are
mostly inhibitors, on an already non-functional protein will not
bring helpful effects. To overcome this limitation in the next
version, we plan to incorporate knowledge from the biological
pathways that will also allow inhibiting proteins downstream in
the pathway. The second drawback of our method is its inability to
predict effect of insertions and deletions even though they are also
often related to oncological diseases. Unfortunately, this problem
is still generally unresolved and there are no reliable tools avail-
able. However, we are actively monitoring newly published tools,
and as soon as any promising options emerge, we will work to
integrate them into PredictONCO. The third challenge concerns
missing and low-quality regions of protein structures. We have
already attempted to use models that AlphaFold 2 [15] predicted,
but faced problems with incorrectly modelled transmembrane
regions. Continued advancement in structural biology can poten-
tially address this issue in the future. The last improvement,
closely related to the lack of structures, is the support of pro-
cessing user-uploaded structures. We want to implement a highly
robust solution to secure that an uploaded and curated protein
structure is correct for calculating biologically meaningful results.

Key Points

• PredictONCO is a web server that analyzes the effects
of mutations on proteins frequently altered in various
cancer types.

• The server assess the impact of mutations on the protein
sequential and structural properties and apply a virtual
screening to identify potential inhibitors that could be
used as a highly individualized therapeutic approach.

• PredictONCO integrates predictive algorithms and state-
of-the-art computational tools combined with informa-
tion from established databases.

• The server currently covers 44 common oncological tar-
gets and provides a fast and compact output ideal for the
often time-sensitive decision-making process in oncol-
ogy.

• Three use cases of missense mutations highlight how
the tool can increase levels of confidence regarding the
pathogenicity of the variants.

SUPPLEMENTARY DATA
Supplementary data are available online at http://bib.oxfordjournals.
org/.
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