J 2024

Quasilinear Schrödinger equations with Stein-Weiss type convolution and critical exponential nonlinearity in R^N

BISWAS, Reshmi, Sarika GOYAL and K. SREENADH

Basic information

Original name

Quasilinear Schrödinger equations with Stein-Weiss type convolution and critical exponential nonlinearity in R^N

Authors

BISWAS, Reshmi (356 India, belonging to the institution), Sarika GOYAL and K. SREENADH (guarantor)

Edition

Journal of Geometric Analysis, Springer, 2024, 1050-6926

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 1.100 in 2022

Organization unit

Faculty of Science

UT WoS

001134164400002

Keywords in English

Quasilinear Schrödinger equation; N-Laplacian; Stein-Weiss type convolution; Trudinger-Moser inequality; Critical exponent

Tags

Tags

International impact, Reviewed
Změněno: 29/1/2024 10:24, Mgr. Marie Šípková, DiS.

Abstract

V originále

In this article, we investigate the existence of the positive solutions to the following class of quasilinear {Schr\"odinger} equations involving Stein-Weiss type convolution \begin{align*} -\Delta_N u -\Delta_N (u^{2})u +V(x)|u|^{N-2}u= \left(\int_{\mathbb R^N}\frac{F(y,u)}{|y|^\beta|x-y|^{\mu}}~dy\right)\frac{f(x,u)}{|x|^\beta} \;\; \text{ in}\; \mathbb R^N, \end{align*} where $N\geq 2,\,$ $0<\mu<N,\, \beta\geq 0,$ and $2\beta+\mu\leq N.$ The potential $V:\mathbb R^N\to \mathbb R$ is a continuous function satisfying $0<V_0\leq V(x)$ for all $x\in \mathbb R^N$ and some appropriate assumptions. The nonlinearity $f:\mathbb R^N\times \mathbb R\to \mathbb R$ is a continuous function with critical exponential growth in the sense of the Trudinger-Moser inequality and $F(x,s)=\int_{0}^s f(x,t)dt$ is the primitive of $f$.