Detailed Information on Publication Record
2024
Quasilinear Schrödinger equations with Stein-Weiss type convolution and critical exponential nonlinearity in R^N
BISWAS, Reshmi, Sarika GOYAL and K. SREENADHBasic information
Original name
Quasilinear Schrödinger equations with Stein-Weiss type convolution and critical exponential nonlinearity in R^N
Authors
BISWAS, Reshmi (356 India, belonging to the institution), Sarika GOYAL and K. SREENADH (guarantor)
Edition
Journal of Geometric Analysis, Springer, 2024, 1050-6926
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
United States of America
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 1.100 in 2022
Organization unit
Faculty of Science
UT WoS
001134164400002
Keywords in English
Quasilinear Schrödinger equation; N-Laplacian; Stein-Weiss type convolution; Trudinger-Moser inequality; Critical exponent
Tags
Tags
International impact, Reviewed
Změněno: 29/1/2024 10:24, Mgr. Marie Šípková, DiS.
Abstract
V originále
In this article, we investigate the existence of the positive solutions to the following class of quasilinear {Schr\"odinger} equations involving Stein-Weiss type convolution \begin{align*} -\Delta_N u -\Delta_N (u^{2})u +V(x)|u|^{N-2}u= \left(\int_{\mathbb R^N}\frac{F(y,u)}{|y|^\beta|x-y|^{\mu}}~dy\right)\frac{f(x,u)}{|x|^\beta} \;\; \text{ in}\; \mathbb R^N, \end{align*} where $N\geq 2,\,$ $0<\mu<N,\, \beta\geq 0,$ and $2\beta+\mu\leq N.$ The potential $V:\mathbb R^N\to \mathbb R$ is a continuous function satisfying $0<V_0\leq V(x)$ for all $x\in \mathbb R^N$ and some appropriate assumptions. The nonlinearity $f:\mathbb R^N\times \mathbb R\to \mathbb R$ is a continuous function with critical exponential growth in the sense of the Trudinger-Moser inequality and $F(x,s)=\int_{0}^s f(x,t)dt$ is the primitive of $f$.