J 2023

Automated Segmentation of Intracranial Thrombus on NCCT and CTA in Patients with Acute Ischemic Stroke Using a Coarse-to-Fine Deep Learning Model

ZHU, K., F. BALA, J. ZHANG, F. BENALI, Petra CIMFLOVÁ et. al.

Basic information

Original name

Automated Segmentation of Intracranial Thrombus on NCCT and CTA in Patients with Acute Ischemic Stroke Using a Coarse-to-Fine Deep Learning Model

Authors

ZHU, K., F. BALA, J. ZHANG, F. BENALI, Petra CIMFLOVÁ (203 Czech Republic, belonging to the institution), B. J. KIM, R. MCDONOUGH, N. SINGH, M. D. HILL, M. GOYAL, A. DEMCHUK, B. K. MENON and W. QIU (guarantor)

Edition

American Journal of Neuroradiology, Denville, American Society of Neuroradiology, 2023, 0195-6108

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

30224 Radiology, nuclear medicine and medical imaging

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 3.500 in 2022

RIV identification code

RIV/00216224:14110/23:00133284

Organization unit

Faculty of Medicine

UT WoS

000992249000001

Keywords in English

Intracranial Thrombus; Automated Segmentation; NCCT; CTA; Acute Ischemic Strok

Tags

Tags

International impact, Reviewed
Změněno: 29/1/2024 12:10, Mgr. Tereza Miškechová

Abstract

V originále

BACKGROUND AND PURPOSE: Identifying the presence and extent of intracranial thrombi is crucial in selecting patients with acute ischemic stroke for treatment. This article aims to develop an automated approach to quantify thrombus on NCCT and CTA in patients with stroke.