Detailed Information on Publication Record
2024
Canonical curves and Kropina metrics in Lagrangian contact geometry
MA, Tianyu, Keegan Jonathan FLOOD, Vladimir S MATVEEV and Vojtěch ŽÁDNÍKBasic information
Original name
Canonical curves and Kropina metrics in Lagrangian contact geometry
Authors
MA, Tianyu, Keegan Jonathan FLOOD (840 United States of America, belonging to the institution), Vladimir S MATVEEV and Vojtěch ŽÁDNÍK (203 Czech Republic, guarantor, belonging to the institution)
Edition
Nonlinearity, BRISTOL, IOP Publishing Ltd, 2024, 0951-7715
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
Netherlands
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 1.700 in 2022
Organization unit
Faculty of Science
UT WoS
001118895700001
Keywords in English
Fefferman-type construction; Lagrangian contact structure; chains; Kropina metric; pseudo-Finsler metric; null geodesics
Tags
Tags
International impact, Reviewed
Změněno: 31/1/2024 12:14, Mgr. Marie Šípková, DiS.
Abstract
V originále
We present a Fefferman-type construction from Lagrangian contact to split-signature conformal structures and examine several related topics. In particular, we describe the canonical curves and their correspondence. We show that chains and null-chains of an integrable Lagrangian contact structure are the projections of null-geodesics of the Fefferman space. Employing the Fermat principle, we realize chains as geodesics of Kropina (pseudo-Finsler) metrics. Using recent rigidity results, we show that 'sufficiently many' chains determine the Lagrangian contact structure. Separately, we comment on Lagrangian contact structures induced by projective structures and the special case of dimension three.
Links
GA20-11473S, research and development project |
| ||
8J20DE004, research and development project |
|