J 2024

Canonical curves and Kropina metrics in Lagrangian contact geometry

MA, Tianyu, Keegan Jonathan FLOOD, Vladimir S MATVEEV and Vojtěch ŽÁDNÍK

Basic information

Original name

Canonical curves and Kropina metrics in Lagrangian contact geometry

Authors

MA, Tianyu, Keegan Jonathan FLOOD (840 United States of America, belonging to the institution), Vladimir S MATVEEV and Vojtěch ŽÁDNÍK (203 Czech Republic, guarantor, belonging to the institution)

Edition

Nonlinearity, BRISTOL, IOP Publishing Ltd, 2024, 0951-7715

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

Netherlands

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 1.700 in 2022

Organization unit

Faculty of Science

UT WoS

001118895700001

Keywords in English

Fefferman-type construction; Lagrangian contact structure; chains; Kropina metric; pseudo-Finsler metric; null geodesics

Tags

Tags

International impact, Reviewed
Změněno: 31/1/2024 12:14, Mgr. Marie Šípková, DiS.

Abstract

V originále

We present a Fefferman-type construction from Lagrangian contact to split-signature conformal structures and examine several related topics. In particular, we describe the canonical curves and their correspondence. We show that chains and null-chains of an integrable Lagrangian contact structure are the projections of null-geodesics of the Fefferman space. Employing the Fermat principle, we realize chains as geodesics of Kropina (pseudo-Finsler) metrics. Using recent rigidity results, we show that 'sufficiently many' chains determine the Lagrangian contact structure. Separately, we comment on Lagrangian contact structures induced by projective structures and the special case of dimension three.

Links

GA20-11473S, research and development project
Name: Symetrie a invariance v analýze, geometrickém modelování a teorii optimálního řízení
Investor: Czech Science Foundation
8J20DE004, research and development project
Name: Variacizace význačných křivek v Cartanově geometrii (Acronym: VVKCG)
Investor: Ministry of Education, Youth and Sports of the CR, Germany