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Abstract—Devices in computer networks cannot work without
essential network services provided by a limited count of devices.
Identification of device dependencies determines whether a pair
of IP addresses is a dependency, i.e., the host with the first IP
address is dependent on the second one. These dependencies
cannot be identified manually in large and dynamically changing
networks. Nevertheless, they are important due to possible un-
expected failures, performance issues, and cascading effects. We
address the identification of dependencies using a new approach
based on graph-based machine learning. The approach belongs to
link prediction based on a latent representation of the computer
network’s communication graph. It samples random walks over
IP addresses that fulfill time conditions imposed on network de-
pendencies. The constrained random walks are used by a neural
network to construct IP address embedding, which is a space
that contains IP addresses that often appear close together in the
same communication chain (i.e., random walk). Dependency em-
bedding is constructed by combining values for IP addresses from
their embedding and used for training the resulting dependency
classifier. We evaluated the approach using IP flow datasets from
a controlled environment and university campus network that
contain evidence about dependencies. Evaluation concerning the
correctness and relationship to other approaches shows that the
approach achieves acceptable performance. It can simultaneously
consider all types of dependencies and is applicable for batch
processing in operational conditions.

Keywords—device dependency, link prediction, dependency
embedding, network traffic analysis, graph-based analysis, ran-
dom walk

I. INTRODUCTION

Each network contains devices that provide essential ser-
vices, e.g., domain name service that translates domain names
to IP addresses or domain controller that enforces active di-
rectory policy for Windows devices. Network communication
reveals that essential services are often targeted with requests
upon which other devices rely. The mapping of asset depen-
dencies has a supportive function for other tasks in network
management (e.g., reveals performance issues in practice) and
is usable for risk analysis of critical systems [1], [2].

Automated dependency detection has been studied for a
long time since manually determining these dependencies is
infeasible [3]. The motivation is often network configuration
management, e.g., analysis of potential impacts in case of
failures, performance issues, and malicious attacks [4], [5], [1].
The previous research revealed dependencies using passively
monitored network traffic [6], active approach [7], system logs
instead of network traces [8], and applying time series or graph

mining [9], [10]. Even though it provided valuable results,
it focused on specific input data, had some limitations, or
revealed only specific types of dependencies.

The current research results from graph-based machine
learning can improve the methods since machine learning
is recommended for complex network topologies [11]. Link
prediction was shown to be useful for recommender systems
in social networks, spam detection, and network routing [12].
Moreover, latent graph representation learning (alternatively
node embedding) reveals the hidden structure of graphs. In
other words, it transforms nodes to their low-dimensional
embedding representation and can identify even relationships
not captured in the input data. Hence, algorithms can be more
efficient with it than with the original graph [13].

We propose an approach that uses latent graph representa-
tion learning (inspired by the Node2Vec approach [14]) for
a new use case, which is to compute dependency embedding
for the training of a dependency classifier. We create its novel
core and most complex part – the custom exploration of
communication chains present in data. We introduce condi-
tions for timestamps of IP flows, which must be fulfilled
by communication chains, discuss how to prepare input IP
flows, and accomplish other design adjustments of graph
representation learning. Our contribution also includes the
measurement of the approach’s properties on data from a con-
trolled environment and campus network and its comparison
with local similarity indices using correlation coefficients.

In this paper, we focus on two research questions:
1) Can we identify device dependencies using graph-based

machine learning for the link prediction problem?
2) What correctness, time aspects, dependency types, and

amount of processed data of the link prediction approach
for device dependency identification can we obtain?

We also focus on passively collected network traffic in the
form of IP flows as input data for our approach.

This paper is organized as follows. Section II describes the
related work from graph-based network analysis and defines
device dependencies. Section III proposes a novel method
for device dependency identification using link prediction.
Implementation of the method is introduced in Section IV, in-
cluding conditions related to types of dependencies. Evaluation
concerning the method’s correctness, time aspects, dependency
types, and amount of data is explained in Section V. The last
Section VI concludes the paper.



II. RELATED WORK

Graph-based approaches to data analysis are not uncom-
mon in the network security domain. The attack graphs, for
example, are the most well-known application of graphs in
this domain. Their construction and usage were exhaustively
covered by Kaynar et al. [15]. Akoglu et al. [16] surveyed
graph-based techniques for anomaly detection in diverse do-
mains, including network traffic analysis. The application of
graphs in network-wide situational awareness was covered by
Noel et al. [17] or recently by Husák et al. [18]. Bowman
and Huang [19] reviewed the challenges of the application
of Graph AI in cyber security. Atzmüller and Kanawati [20]
provided an overview of explainability for complex network
analysis in cyber security. Lagraa et al. [21] surveyed the
application of graphs in intrusion and botnet detection.

A prime example of the application of advanced graph-
based techniques in network security management is criticality
and dependency detection, i.e., finding which devices in the
network are the most important or how they depend on each
other [6], [3]. In this work, we recognize three essential
dependency classes. Direct dependency (DD) is a network
connection between a source and destination IP address that
repeats more than threshold times with the same IP flow
parameters except for timestamps. The local-remote (LR)
dependency from the view of a requesting server (e.g., the
webserver in Figure 1) consists of communication with another
(remote) server (e.g., the database server) to answer the request
from the user device [6]. The remote-remote (RR) dependency
describes that one server is indirectly dependent on another
to provide functionality for user devices [4]. Both servers
provide remote services for the user device. For example, the
user device in Figure 1 cannot access the webserver without
obtaining its IP address from the DNS server.

Correct estimation of criticality and dependencies is vital for
securing and hardening the networks but is hard to achieve
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Fig. 1. A sequence diagram containing local-remote dependency of the
web server on the database server (the first activation of the user device)
and remote-remote dependency of the web server on the DNS server (the
second activation of the user device). Activations (vertical rectangles) denote
participation of lifelines. Time passes from top to bottom in the diagram.

in large networks due to the lack of detailed situational
awareness and local knowledge [22], [18]. Passive network
measurement, e.g., NetFlow [23], is the most widely used for
dependency detection and is briefly described later in this
section. Natarajan et al. [6] proposed the NSDMiner suite
that determines LR dependencies based on passive network
monitoring techniques. Zand et al. [3] proposed the automatic
detection of critical services in the network based on finding
cliques in the graphs of correlated services, i.e., services active
at similar times. Laštovička and Čeleda [22] proposed graph
centrality-based approaches. Lange et al. [9] used the time
series-based analysis of network traffic to detect dependencies
of network services. The topic became of utmost importance
in cloud management, and thus, the SCoRMiner was proposed
by Slimani et al. [10] to detect dependencies between cloud
services using both network traces and application-level data
and graph mining.

Nevertheless, passive network-based approaches are not
the sole approach to dependency detection. Zand et al. [7]
proposed an active approach based on delay injection and
implemented it in the Ripper tool. Lan et al. [8] proposed
an approach based on system log analysis rather than network
traffic, aiming at cloud environment and dependency discov-
ery in microservices. Aksoy et al. [24] presented the most
elaborated method of important IP address selection based
on Laplacian centrality in communication graphs. Recently,
Husák et al. [18] summarized the approaches to criticality es-
timation, connected them with graph-theoretical background,
and briefly commented on their usability in network security
management. An example of a practical take on dependency
detection is the Application Discovery and Dependency Map-
ping (ADDM) from the Server & Application Monitor (SAM)
by SolarWinds [1], which combines manual data entry and
automated discovery.

Link prediction [12] is one of the most widely-used graph-
theoretical approaches in data analysis, with a vast application
potential in cybersecurity as well. The goal is to predict or
disclose future or missing links between entities. Pope et
al. [25] proposed the use of tailored link prediction heuristics
in this domain, while Noel and Swarup [26] used dependency-
based link prediction for learning microsegmentation policies.
It is worth noting that we are not aware of any work that
would use this particular combination of the problem of device
dependency detection and the approach of link prediction.

The rise of machine learning (ML) also covered the graph-
based data. Since traditional ML methods mostly take low-
dimensional vectors as the inputs, there is a need to embed
the graphs or nodes in the graphs into vectors. A well-
known approach inspiring this work is the Node2Vec [14]. An
alternative node representation for ML is the DeepWalk [27].
Readers are kindly referred to the survey by Zhang et al. [13]
for a comprehensive background and comparison. Neverthe-
less, there are classes of ML that allow the processing of
graph structures directly. For example, graph neural networks
(GNNs) are becoming increasingly popular even in network
security management, such as in intrusion detection [28], mal-



ware detection [29], or network slicing in digital twins [30].
Since this and most of the related work relies on network

flows or similar data, we briefly introduce them here as well.
Flow monitoring is a prevalent network traffic monitoring in
large-scale and high-speed networks [23]. Network flow is
defined as a unidirectional sequence of packets that share the
source and destination IP address, IP protocol number, and
TCP or UDP port or ICMP code. The flows are exported
in NetFlow or IPFIX formats and accompanied by further
information, such as timestamp, duration, and number of
transferred packets and bytes. A typical bidirectional network
connection exports as two flows but can be later paired into
biflows, special flow records describing network traffic in both
directions. Readers are kindly referred to an exhaustive tutorial
by Hofstede et al. [23].

III. METHOD FOR IDENTIFICATION OF DEPENDENCIES

The proposed method for the identification of device depen-
dencies creates a dependency classifier obtained via multiple
steps expressed in Figure 2. Even though the approach pro-
cesses bidirectional network communication, input IP flows
must be unidirectional since we sample communication chains
from a directed graph. Bidirectional IP flows must be con-
verted to unidirectional using either distinct or the same start
and end timestamps for both unidirectional flows.

The input IP flows can contain more IP addresses than
can be processed by a neural network in a feasible time. It
is necessary to focus only on IP addresses, among which
we attempt to determine dependencies. We assume that the
most important IP addresses have the highest number of IP
flows except for attacks that produce a lot of communication,
e.g., network scanning. When these IP addresses become
vertices in a graph sample, we need a realistic communication
neighborhood (i.e., communicants) for each vertex during
random walk exploration. For this purpose, we should process
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Fig. 2. Steps of the proposed approach from processing of input data to
obtaining dependency classifier.

enough edges, and sampling must be fair, i.e., all sampled
edges must be chosen with equal probability.

The requirement can be achieved by sampling with a
reservoir of length n [31]. Any incoming k-th edge (i.e., IP
flow for a specific IP address) receives a random number from
0 to k−1. If the number represents an index from the reservoir
(i.e., k < n), the item is stored at such a position. As a result,
we should obtain a directed communication multigraph that
contains the source port, destination port, protocol, and start
and end timestamps for each edge.

The next step is the core and the most complex one. It
creates directed random walks representing communication
chains of IP addresses. The chains are constrained by con-
ditions imposed on timestamps of two subsequent IP flows
to choose the next vertex of the random walk according to
the current and previous vertex. Imposing conditions on more
than two consequent IP flows in a communication chain could
result in the trying of all possible sequences of higher length
and drastically impact performance.

The first condition for creating communication chains is
called the opening of LR dependency, expressed as Condition 1
in Section IV. It corresponds to a sequence of communication
from the user device to the database server via the web server
in Figure 1. The second one is a return from LR dependency
related to a sequence from the database server to the user
device via the web server in Figure 1. It is mathematically
described as Condition 2 in Section IV.

Opening of RR dependency expresses a communication
chain from the user device to the DNS server, from the DNS
server to the user device, and then from the user device to the
web server in Figure 1. However, we omit redundant repeating
user device from the communication chain because the DNS
server and the web server would still be very close to it in
the communication chain. Therefore, the final chain is the
user device, the DNS server, and the web server. The opening
of RR dependency is formally described by Condition 3 in
Section IV. The last condition is the return to the previous IP
address expressed as Condition 4 that is fulfilled, e.g., by a
communication chain of the web server, the database server,
and the web server in Figure 1.

The four conditions represent the building blocks of the
communication chains. Chains that fulfill them can contain
device dependencies in a form suitable for splitting in the
next step. As a result, the approach also reveals transitive
dependencies (TDs) composed of at least two DDs fulfilling
conditions on LR dependency but with communication from
solely one user device. An example of such a transitive
dependency could be the dependency of the user device on
the database server in Figure 1, where also LR dependency
exists between the web server and the database server.

The random walk exploration uses these conditions to create
the inputted number of random walks starting in each vertex.
The length of the random walk is also specified as input
and should typically range from three to seven to capture
dependencies. The second vertex of the random walk is cho-
sen randomly from the vertices fulfilling the input threshold
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Fig. 3. Example of network communication between workstations and servers.
Solid lines represent a communication chain. All edges consist of forward and
reverse IP flows. Numbers are the last octets from IPv4 addresses.

imposed on the number of IP flows, in which the first and
second vertices appear as source and destination IP addresses
(threshold nt in Table I). The third and consequent vertices
are randomly chosen out of vertices that fulfill at least one
condition. If no vertex fulfills a condition, then a vertex that
fulfills the IP flow threshold is randomly chosen. If no vertex
has enough appearances, then any target of directed edges from
the source vertex is randomly chosen so that the random walk
continues using graph edges.

The algorithm creates communication chains where directed
edges are transformed from the captured communication in
concordance with the order of communication steps required
by the dependency types. If an IP address appears commonly
in the same time-constrained communication chain with an-
other IP address, then it is probable that one of them could be
dependent on the other one. The longer the distance between
the IP addresses in the chain, the lower the chance that
dependency exists. Thus, it is beneficial to process the close
pairs as candidate dependencies.

Candidate dependencies are determined from the commu-
nication chain of a specific length using a sliding window
(context), which we explain based on Figure 3. For simplicity,
assume that a communication chain with length four consisting
of 11, 12, 13, and 16 fulfills conditions. If the context size is
three, then we obtain two contexts from this chain. The first is
11, 12, and 13, and the second is 12, 13, and 16. The candidate
dependencies are pairs of addresses from one context where
the first address is the initial address from the context, and the
second one can be any of the following. We obtain candidate
dependencies (11, 12) and (11, 13) from the first context and
(12, 13) and (12, 16) from the second one.

The neural network uses the candidate dependencies to
estimate features of the hidden layer so that IP addresses
from candidate dependencies would be close together in the IP
address embedding space, as is usual for embedding [13]. IP
address embedding contains a vector with a number of values
equal to the number of features in the hidden layer for each IP
address and must be transformed into dependency embedding
using vectors for individual IP addresses.

Binary operations such as average and L1 distance can

transform node embedding to edge embedding [14]. Since the
main purpose of embedding is to have similar nodes close
together and distance is commutative, these operations should
be commutative. In our case, we use a scalar product of two
vectors to combine representation from node embedding to
dependency embedding. It causes the range of values appear-
ing in vectors to increase when we apply the product. In other
words, it extends the space where candidate dependencies are
mapped, and this space is then used for classification. As a
result, the dependency embedding contains a vector of values
for each candidate pair.

As a last step, each possible dependency in the embedding is
given its label that denotes whether it is a dependency. Train-
ing the model with dependency embedding and labels (see
Figure 2) creates a dependency classifier that can determine
whether a pair of IP addresses can be a dependency. This
approach reveals the existence of the dependency, but it cannot
automatically distinguish the direction of dependency because
it uses embedding. Moreover, the revealed dependencies are
influenced by the position of the IP flow collector. If we
capture communication only at the edge of the network, then
all dependencies containing one communication pair will be
between one internal and one external IP address since the
communication graph, in this case, will be bipartite between
internal and external IP addresses.

The method can provide as good results as its input IP
flows. Tunneling approaches and anonymization protocols can
replace original IP headers, and the approach will process the
replaced IP addresses. However, a dependency on a Virtual
Private Network (VPN) server that could be identified is
valid when the VPN is needed to access internal network
resources. Using anonymization protocols in the long term for
communication with critical devices (such as DNS servers and
cloud storage) is a rare scenario. The method also focuses only
on the most essential IP flow properties from packet headers.
Therefore, privacy-preserving protocols (e.g., HTTPS) that
encrypt packet data do not hinder its use.

IV. IMPLEMENTATION OF THE METHOD

The implementation consists of six steps, as depicted in
Figure 2. The first three are discussed separately, while the
remaining are described in Subsection IV-D. Our implementa-
tion reuses existing supportive functionality of the Node2Vec
approach in Python (mainly related to neural network train-
ing) [32]. However, we provide the method’s most complex
step of exploring valid random walks and implement the
remaining parts to process IP flows. The implementation is
available in supplementary materials [33].

A. Sampling and Data Preprocessing

The first step obtains a representative sample with n internal
and m external IPv4 addresses based on the highest number
of IP flows from a batch of data. Consequently, we sample k
edges for the selected internal and external IP addresses. For
this purpose, we implemented reservoir sampling that selects
each edge with equal probability [31]. Data preprocessing



also includes removing communication that does not use TCP
and UDP protocols since, for them, the dependencies are
defined in related work [6] used for ground truth comparison
in Section V.

B. Random Walks

A directed random walk is a sequence v1, v2, . . . , vn where
vertex vi+2 for i ∈ {1, . . . , n−2} is determined based on ver-
tices vi+1 and vi. Since general node embedding approaches
cannot directly support computer network graphs, it considers
time constraints and IP flow properties, e.g., transport ports.

Let t1(vi, vi+1) denote the start timestamp and t2(vi, vi+1)
the end timestamp of IP flow between vertices (i.e., IP ad-
dresses) vi and vi+1. At least one of four conditions must hold
for three subsequent vertices vi, vi+1, and vi+2. The condition
expressing opening of LR dependency:

t1(vi, vi+1) ≤ t1(vi+1, vi+2) ≤ t2(vi+1, vi+2) ≤
≤ t2(vi, vi+1), i ∈ {1, . . . , n− 2} (1)

holds for the forward direction of LR dependency. It expresses
that the first request from a user device to the server (e.g.,
the web server in Figure 1) is followed by another request
from that server to another server (e.g., the database server in
Figure 1) to process the original request. Therefore, the first
IP flow between the user device and the server will not end
until the additional request to another server is processed.

The condition for return from LR dependency:

t1(vi+1, vi+2) ≤ t1(vi, vi+1) ≤ t2(vi, vi+1) ≤
≤ t2(vi+1, vi+2) ∧ ∃j : j ̸= i ∧ vi+2 = vj ∧ vi+1 = vj+1,

i ∈ {1, . . . , n− 2}, j ∈ {1, . . . , n− 1} (2)

describes the reverse direction of LR dependency (i.e., a chain
of reverse IP flows), assuming that the random walk already
contains its forward direction. Consider LR dependency from
Figure 1. In this case, vi denotes the database server, vi+1 the
web server, and vi+2 the user device. The IP flow from the
web server to the user device starts first, but the IP flow from
the database server to the web server will end first. The second
condition differs from the first one in the order of vertices.

The third condition:

t2(vi, vi+1) ≤ t1(vi, vi+2)∧
∧ t1(vi, vi+2)− t2(vi, vi+1) ≤ ε, i ∈ {1, . . . , n− 2} (3)

expresses the opening of RR dependency that should happen
within the specified time ε. For example, let vi be the user
device from Figure 1, vi+1 the DNS server, and vi+2 the
web server. The forward IP flow from the user device to the
DNS server, represented as edge (vi, vi+1), and its reverse
flow that ends approximately at the same time will end before
the request to the web server. The third condition may also
include sequences that accidentally fulfill the condition within
ε, but they will be less frequent per time unit with longer
observation and smaller input parameter ε.

The fourth condition for triplets of form v1, v2, and v1
formalizes return over reverse edge representing reverse flow.
In this case, two unidirectional flows are represented by edges
(v1, v2) and (v2, v1), where the former is the initiator flow.

s(v1, v2) = d(v2, v1) ∧ d(v1, v2) = s(v2, v1)∧
∧ t1(v1, v2) ≤ t1(v2, v1)∧

∧ |t2(v1, v2)− t2(v2, v1)| ≤ ε, i ∈ {1, . . . , n− 1} (4)

expresses that the source (s) and destination (d) ports are equal
but mutually exchanged, and we use time constraints for their
starts and ends.

While the brute-force approach would check that the depen-
dency materialized at least nt times in data, the random walk
exploration checks that there are at least nt sampled IP flows
between the last processed and the next vertex that should
extend the random walk. Consequently, all vertices fulfilling
one of the conditions are chosen with equal probability.

C. Splitting of Chains

Communication chains (i.e., random walks) obtained from
the previous step should be divided into candidate dependen-
cies (i.e., pairs of IP addresses) representing input for the neu-
ral network. For this purpose, we consider the sliding windows
of the neighboring IP addresses in the communication chain,
also called context in DeepWalk and Node2Vec [27], [14]. We
use the one-sided context for the proposed approach based
on the following argumentation, contrary to the general link
prediction on undirected graphs.

Consider Condition 1 holding for triplet vi, vi+1, and vi+2

from forward random walk. Without loss of generality, assume
that (vi, vi+1) and (vi+1, vi+2) are forward IP flows. If we
consider the double-sided window, then we also consider
reverse random walk, i.e., edges (vi+2, vi+1), (vi+1, vi), to the
learning process as a valid sequence of IP addresses. In the
optimal case, the forward IP flow has a lower start timestamp
than the reverse IP flow, and they end approximately at the
same time. Therefore, we obtain t1(vi, vi+1) ≤ t1(vi+1, vi) ≤
t2(vi+1, vi) ≈ t2(vi, vi+1) and similarly t1(vi+1, vi+2) ≤
t1(vi+2, vi+1) ≤ t2(vi+2, vi+1) ≈ t2(vi+1, vi+2).

We know that t1(vi, vi+1) ≤ t1(vi+1, vi+2) ≤
t2(vi+1, vi+2) ≤ t2(vi, vi+1) holds for forward edges from
Condition 1. Denote A = t1(vi+1, vi), B = t2(vi+1, vi),
C = t1(vi+2, vi+1), and D = t2(vi+2, vi+1). One possibility
of ordering A, B, C, and D using ≤ operator and assuming
approximate equations with ≈ is CADB that does not corre-
spond to any of Conditions 1 – 4. It means that we would often
incorrectly consider the opposite direction of dependency as a
valid dependency for neural network training.

D. Embedding and Model Fitting

The context from the previous step is processed by the
neural network in Python. All candidate dependencies (vi, vj)
for the same first vertex vi are processed simultaneously, not
separately, because the neural network can adjust the embed-
ding so that the first vertex is close to all specified vertices. The



neural network also uses stochastic gradient descent, a skip-
gram model, and negative sampling optimization to obtain IP
address embedding [14].

We use positive dependency labels (ground truth) and an
equal number of negative labels for random pairs of vertices
to compute the embedding of their source and destination IP
addresses. Consequently, the scalar product of these values
creates an item for an IP address pair in dependency embed-
ding. We use a random forest classifier in our implementation
to fit dependency embedding to the dependency labels.

V. EVALUATION

In this section, we describe the evaluation datasets and the
ground truth. Correctness, time aspects, and other properties
of the method were evaluated using a proof-of-concept imple-
mentation based on PyTorch Geometric [34], [32]. Moreover,
we compare the proposed approach with local similarity in-
dices and discuss lessons learned. The evaluation was accom-
plished using Python implementation on a personal computer
with 64 GB RAM, 16 CPU cores, and a processor’s clock
speed of 2.5 GHz. All parameters of evaluation are available
in supplementary materials [33].

A. Datasets
We used two kinds of IPFIX flow datasets captured in

network topologies familiar to us in detail. The first kind
was captured during a two-day cyber defense exercise [35],
[36]. The cyber exercise involved six teams (denoted as T1
– T6) that had the same emulated network but behaved in a
different way, which provides six partial datasets. Moreover,
the exercise used one global network common for all teams.
Bidirectional IP flows were captured at the edge of team
networks. We converted them to unidirectional form prior
to the evaluation. We did not consider IP addresses that
represented attacker machines.

The second type was captured in the university campus
network, which is assigned class B address space with /16
CIDR prefix. Two partial campus datasets contain ten-minute-
long (denoted as U10m) and one-hour-long (denoted as U1h)
time windows captured at the network edge during working
hours on one Tuesday in March 2022 (U10m) and on one
Wednesday in February 2023 (U1h). The campus network data
contained unidirectional IP flows.

B. Ground Truth
We determined the ground truth by brute-forcing all possible

sequences of unidirectional IP flows up to a limited length
of four vertices, which is sufficient because of the context
size we consider. Table I contains the number of direct
dependencies (DD) and RR dependencies with two (RR) or
three communication pairs (RR3) for considered datasets. The
dependencies appeared at least nt times. Two subsequent
requests in one RR dependency were accomplished within ε.
Many RR dependencies were DNS dependencies.

We do not distinguish LR dependencies because they are
already present as DDs. However, we list transitive dependen-
cies that can be created by chaining two (TD) or three direct

TABLE I
THRESHOLDS (nt , ε) AND NUMBER OF DEPENDENCIES (DD, RR, RR3,

TD, TD3) FOR TEAM NETWORKS FROM CYBER EXERCISE (T1 – T6) AND
DATASETS FROM CAMPUS NETWORK (U10M, U1H). U1H CONTAINS

AVERAGE VALUES FROM TWELVE TIME WINDOWS AND USED DIFFERENT
nt THRESHOLDS FOR DD AND TD DEPENDENCIES (50) AND RR

DEPENDENCIES (300).

T1 T2 T3 T4 T5 T6 U10m U1h

nt 10 10 10 10 10 10 10 50/300
ε 1 s 1 s 1 s 1 s 1 s 1 s 0.5 s 0.5 s

DD 300 444 330 427 321 143 38,372 2,866
RR 248 131 177 310 98 35 1,731 164

RR3 1,875 113 697 2,067 161 26 23,905 2,347
TD 17 13 22 24 9 14 854 117

TD3 0 0 2 1 0 0 359 81

TABLE II
COUNT OF LR DEPENDENCIES FOR TEAM NETWORKS (T1 – T6) BY
NSDMINER AND DEPENDENCIES FOUND IN THE GROUND TRUTH. C

DENOTES CONFIDENCE.

T1 T2 T3 T4 T5 T6

IP Flows (thousands) 55.1 47.8 29.6 55.6 40.5 23.2

Dependencies for C > 0 7 5 0 2 1 0
Present in ground truth 6 5 0 2 1 0

All dependencies 46 50 29 57 36 15
Present in ground truth 27 18 17 28 20 11

dependencies (TD3) that fulfill LR conditions on timestamps.
It is as if a specific user device solely caused the materi-
alization of LR dependency in the data. Hence, we add its
dependency on the supportive server, e.g., the database server
in Figure 1. Duplicate TDs are allowed only when two distinct
paths materialize the dependency.

We compared the ground truth with the results from the
open-source implementation of NSDMiner [37]. NSDMiner
used the number of bidirectional IP flows listed in Table II.
We did not use transport ports from its output and limited
the number of required appearances of dependencies to ten.
Otherwise, we used the default options of NSDMiner.

Table II shows that almost all dependencies with non-
zero confidence and approximately half of all dependencies
by NSDMiner were revealed. It indicates the validity of the
ground truth since NSDMiner uses a different approach. It
compares only the overall timestamps of biflows, while we
compared these timestamps for forward and reverse IP flows.

C. Properties of the Method

We evaluated the method’s properties by exploring random
walks with five vertices while the context size was four. The
approach accomplished ten walks for each vertex, and each
positive walk was balanced by finding one non-existing (i.e.,
negative) random walk. We used five learning epochs for train-
ing the model because only small changes in the computed loss
between positive and negative random walks were observed
after them. The number of values in the embedding vectors
was 64, i.e., the embedding had 64 dimensions.



TABLE III
AMOUNT OF DATA AND MEASURED TIME FOR TEAM NETWORKS (T1 – T6) AND DATA FROM UNIVERSITY CAMPUS NETWORK (U10M, U1H) USING THE

PROPOSED APPROACH. U1H CONTAINS AVERAGES FROM TWELVE TIME WINDOWS EXCEPT FOR IP FLOWS AND ADDRESSES.

T1 T2 T3 T4 T5 T6 U10m U1h

Data

IP flows 61,346 54,941 34,721 63,266 46,253 28,506 8,259,584 78,270,416
IP addresses 689 1,421 654 1,190 1,047 247 451,365 1,235,300

Vertices 111 96 99 102 95 103 129 93
Edges (contains multiple edges) 21,026 21,720 20,035 22,905 20,986 16,080 15,076 18,411

Time
Preprocessing 12.80 s 14.88 s 8.41 s 13.86 s 11.54 s 6.19 s 27.15 s 27.32 s

Creating embedding 15.93 min 14.02 min 14.06 min 14.83 min 12.98 min 13.95 min 6.23 min 6.93 min
Computation < 3 s < 1 s < 2 s < 2 s < 1 s < 3 s < 1 s < 1 s

TABLE IV
EVALUATION METRICS FOR INDIVIDUAL TEAMS (T1 – T6) FROM CYBER DEFENSE EXERCISE AND TWO CAMPUS NETWORK DATASETS (U10M, U1H).

ACCURACY, PRECISION, AND F1 SCORE CONTAIN AVERAGES FROM FIFTEEN TRAIN-TEST SPLITS EXCEPT FOR U1H THAT WAS ALSO SPLIT INTO TWELVE
CONSEQUENT WINDOWS.

Test size T1 T2 T3 T4 T5 T6 U10m U1h

0.25 Accuracy 0.514 0.417 0.493 0.503 0.429 0.337 0.479 0.515
Precision 0.612 0.521 0.597 0.605 0.530 0.444 0.604 0.615
F1 score 0.666 0.566 0.644 0.656 0.572 0.462 0.625 0.664

0.50 Accuracy 0.535 0.453 0.529 0.532 0.485 0.403 0.515 0.545
Precision 0.628 0.544 0.621 0.630 0.580 0.485 0.612 0.638
F1 score 0.677 0.584 0.669 0.672 0.617 0.510 0.645 0.681

— AUC 0.68 0.64 0.67 0.68 0.67 0.61 0.71 0.69
AP 0.81 0.74 0.80 0.81 0.78 0.68 0.84 0.81

We used the test sizes of 25% and 50% of all labels for
individual train-test splits. The number of positive and negative
labels was the same, but we did not constrain which were
chosen into the test set. All datasets represented one time
window except for a one-hour-long dataset from the university
campus network that was divided into twelve consequent (i.e.,
five-minute-long) time windows since such time windows can
be obtained from IP flow collectors in practice. The method
was executed on each window separately, i.e., nineteen times.

Datasets for correctness evaluation contained numbers of IP
flows and IP addresses listed in Table III. A sampling of input
IP flows outputted approximately one hundred of the most
important IP addresses according to the number of IP flows
in which they participated. Creating embedding (i.e., neural
network training) took approximately a quarter of an hour,
mainly due to the exploration of constrained random walks. A
long learning time is usual for neural network approaches that
infer complex relationships. Computation for considered test
sizes was executed in one to three seconds and took a much
shorter time than brute-forcing all possibilities.

Table IV contains accuracy, precision, F1 score, area under
receiver operating characteristic (ROC) curve (denoted as
AUC), and average precision (AP) for the datasets. Since
the F1 score is a harmonic mean of precision and recall, it
is a suitable measure for imbalanced datasets where most
labels belong to one class. AP summarizes precision-recall
(PR) curves. The curves for team networks are available in
supplementary materials [33]. Examples for team five are
depicted in Figure 4. The perfect ROC curve is very close
to the upper left, and the PR curve to the upper right corner.

The proposed approach obtained approximately as good
AUC, AP, and other metrics for small datasets from cyber
defense exercise as for university campus network data. The
average AUC for all windows from the one-hour-long campus
network dataset was 0.69, while all values ranged between
0.63 and 0.74 AUC. The average AP for the twelve windows
was 0.81, and the APs ranged from 0.74 to 0.88.

The accuracy, precision, and F1 score are not as comprehen-
sive as AUC and AP because test sizes of 25% and 50% may
not be fractions where they achieve their optimal values. Yang
et al. [38] recommend using AP (i.e., the area under the PR
curve) since it can better cope with a typical class imbalance of
link prediction. The random classifier has an AUC of 0.5, but
its AP equals the fraction of positive labels among all labels.
The chance level is listed in all PR curves in supplementary
materials for six teams [33]. It ranged from 61% to 73% for
university data, i.e., the majority class was the positive one.
Due to these facts, we conclude that the approach provides
acceptable performance with respect to the class imbalance.

D. Comparison with Local Similarity Indices

The method should determine more complex dependencies,
not only DDs or missing edges, even though the random walks
were sampled over IP flows, which represent graph edges
and possible DDs. Positive results from correctness evaluation
could mean that it focused too much on DDs (i.e., existing
edges with many occurrences).

Local similarity indices provide a substantially different
approach because they use paths containing three vertices and
determine only possible edges in the graph. We used four local
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Fig. 4. The ROC and PR curves of the proposed approach for team five from
the cyber defense exercise.

similarity indices – Adamic-Adar (AA), Common Neighbors
(CN), Preferential Attachment (PA), and Resource Allocation
(RA). We adjusted them to directed variants:

sAA(x, y) =
∑

v∈Nout(x)∩Nin(y):|Nout(v)|≠1

1

log|Nout(v)|

sCN (x, y) = |Nout(x) ∩Nin(y)|
sPA(x, y) = |Nout(x)| · |Nin(y)|

sRA(x, y) =
∑

v∈Nout(x)∩Nin(y)

1

|Nout(v)|

where Nout(x) denotes a set of vertices v connected from
vertex x by an edge (x, v) and Nin(y) a set of vertices v that
are connected to y by an edge (v, y). These indices are equal
to zero for distant nodes and are higher when they are closer.

The comparison of local similarity indices on data from cy-
ber defense exercise with the results of our method determined
correlation using the Spearman correlation coefficient and
Kendall tau [39]. Both were ranging from 0 to 11%. It means

that each local similarity index outputted uncorrelated values
to the method’s predicted values and also to probabilities
assigned to pairs of IP addresses. It indicates that even though
the method uses graph edges as input, the conditions on
timestamps of IP flows cause it to determine more complex
dependencies that are not directly visible in the input.

E. Lessons Learned

The proposed approach had 0.61 to 0.74 AUC for directed
graphs when predicting dependencies using an imbalanced
set of labels due to counting with all possible pairs of IP
addresses. A more general Node2Vec approach had 0.77
to 0.97 AUC for undirected graphs when only edges were
predicted [14]. Since the task of link prediction for undirected
graphs is much easier and its evaluation used an equal number
of positive and negative labels, the measured AUCs for the
proposed approach seem to be realistic.

The proposed approach can deal with multiple types of
dependencies. However, the separate identification of LR de-
pendencies may not be suitable for it due to the lack of labels
(see Table II). Further tuning of the model can use a different
classifier than random forest, and the parameters can be tuned
for IP flow data using optimization methods, e.g., grid search
and random search [40].

VI. CONCLUSION

This paper addressed device dependency identification
based on passively collected IP flows. We used latent graph
representation learning for a new use case of creating de-
pendency embedding used by a dependency classifier. The
novel core and the most complex part is based on creating
communication chains fulfilling time conditions imposed on
device dependencies.

The proposed device dependency identification achieves
acceptable correctness and is suitable for use cases when the
training time does not represent a disadvantage. However, the
prediction of dependencies using an already trained model can
be very fast compared to using brute force approaches. It can
cope with all dependency types simultaneously and process
large amounts of data split into batches.

Further research can couple the approach to device critical-
ity detection, network topology discovery, and enterprise mis-
sion modeling. It can also be extended by results from active
monitoring and adjusted to discover dependencies of network
services deployed on stable ports and complex dependencies
with redundant devices, such as alternative DNS servers.

The supplementary materials contain a proof-of-concept im-
plementation, a detailed list of parameters used for evaluation,
and plots drawn for data from the controlled environment [33].
All materials can be used to reproduce evaluation results.
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